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In this paper, we numerically investigate two distinct phenomena, coherence resonance
(CR) and self-induced stochastic resonance (SISR), in multiplex neural networks in the
presence of spike-timing-dependent plasticity (STDP). The high degree of CR achieved in
one layer network turns out to be more robust than that of SISR against variations in the
network topology and the STDP parameters. This behavior is the opposite of the one
presented by Yamakou and Jost (Phys. Rev. E 100, 022313, 2019), where SISR is more
robust than CR against variations in the network parameters but in the absence of STDP.
Moreover, the degree of SISR in one layer network increases with a decreasing (increasing)
depression temporal window (potentiation adjusting rate) of STDP. However, the poor
degree of SISR in one layer network can be significantly enhanced bymultiplexing this layer
with another one exhibiting a high degree of CR or SISR and suitable inter-layer STDP
parameter values. In addition, for all inter-layer STDP parameter values, the enhancement
strategy of SISR based on the occurrence of SISR outperforms the one based on CR.
Finally, the optimal enhancement strategy of SISR based on the occurrence of SISR (CR)
occurs via long-term potentiation (long-term depression) of the inter-layer synaptic
weights.

Keywords: coherence resonance, self-induced stochastic resonance, small-world network, multiplex network,
STDP

1 INTRODUCTION

Spiking activity in neural systems can be induced and affected by noise, which can be internally
produced by the system itself and/or externally by processes acting on the system. The sources of
neural noise include 1) synaptic noise, which is externally produced, and is caused by the quasi-
random release of neurotransmitters by synapses and/or random synaptic input from other neurons,
and 2) channel noise, which is internally produced and comes from the random switching of ion
channels [47, 49]. Synaptic and channel noise have been found to give rise to peculiar dynamical
behavior in neural networks, including various resonance phenomena. The most prominent forms of
these noise-induced resonance phenomena include: stochastic resonance (SR) [3, 28], coherence
resonance (CR) [36], self-induced stochastic resonance (SISR) [10, 34], and inverse stochastic
resonance (ISR) [18, 42]. The emergence and the dynamics of SR, CR, SISR, and ISR are quite
different from each other, and therefore, they have mostly been separately investigated in previous
research works. It might nevertheless be possible that fundamental relationships exist between some
or even all of these noise-induced resonances and that efficient enhancement schemes for
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information processing could emerge from their co-existence in a
neural network. Some research works have shown intriguing
results about the interplay between some of these noise-
induced resonance phenomena. The bifurcation and stochastic
analysis in [48] revealed that the parameter that changes the
relative geometric positioning (and stability) of the fixed point
(the quiescent state of the neuron) with respect to the fold point of
the cubic nullcline of the FitzHugh-Nagumo (FHN) model [11]
can cause a switch between SISR and ISR in the same synaptic
weak-noise limit. Experiments have frequently shown that real
biological neurons with similar physiological features, excited by
identical stimuli, may spike quite differently, thus expressing
different neuro-computational properties [40]. The analysis
presented in [48] may, therefore, provide a qualitative
explanation for this particular behavior. Zamani et al. [51]
later showed a similar behavior between SR and ISR in a
minimal bistable spiking neural circuit, where both
mechanisms could co-exist under careful preparations of the
neural circuit. Whether and if so, how all of these different
types of noise-induced resonance mechanisms are related and
what efficient enhancement schemes for information processing
emerge from their interactions is far from being completely
understood.

In this paper, CR and SISR will be the phenomena of interest.
In fact, in both CR and SISR, small random perturbations of an
excitable neural system with a large time scale separation ratio
may lead to the emergence of coherent spiking activity. The
mechanisms behind these noise-induced resonance phenomena,
however, are entirely different, see [10]. CR [36] occurs when a
maximal degree of regularity in the neuron’s spiking activity is
achieved at an optimal noise intensity without a periodic input
signal, provided the neuron’s bifurcation parameters are tuned
near the Hopf bifurcation [25, 26, 36] or the saddle-node
bifurcation [17, 19, 20, 27] threshold. In this case, a relatively
small noise amplitude can easily (without overwhelming the
entire dynamics) drive the neuron towards a coherent spiking
activity that emerges right after the bifurcation threshold. Thus,
during CR, noise plays a relatively passive role. In the FitzHugh-
Nagumo neuron model (that will be used in this work), CR
requires that the noise source is attached to the slow recovery
variable—mimicking the dynamics of channel noise [10].

SISR, on the other hand, occurs when a vanishingly small noise
intensity perturbing the fast variable of an excitable system results
in the onset of a limit cycle behavior that is absent without noise
[34]. SISR combines a coherence resonance-type mechanism with
an intrinsic reset mechanism, and no external periodic driving is
required. The period of the coherent oscillations created by the
noise has a non-trivial dependence on the noise intensity and the
timescale between the fast variable and slow variable of the
excitable system. SISR essentially depends on the interplay
between three different timescales: the two timescales of the
deterministic part of the excitable system (i.e., the fast and
slow timescale of the fast and slow variable, respectively), plus
a third timescale characteristic of the noise, which plays an active
role in the mechanism of SISR, in contrast to CR. Thus, the
mechanism behind SISR is different from that of CR (see [10]),
and remarkably, it can also occur away from bifurcation

thresholds in a parameter regime where the zero-noise
(deterministic) dynamics do not display a limit cycle nor even
its precursor. The properties of the limit cycle that SISR induces
are controlled by both the noise intensity and the time scale
separation ratio. Moreover, unlike CR, SISR requires a strong
timescale separation ratio between the variables of the excitable
system. In the FitzHugh-Nagumo neuron model, SISR (in
contrast to CR) requires that the noise source is attached to
the fast membrane potential variable—mimicking the dynamics
of synaptic noise [10].

Of course, it is worth pointing out that a neuron can have both
channel and synaptic noise simultaneously. In this case, CR and
SISR will compete with each other. The dominant phenomenon
will correspond to the one whose conditions are met first. It is
shown in [10, 34] that SISR will dominate CR because the
oscillations due to SISR are contained in those of CR. Thus,
the conditions necessary for SISR can always be met first. In the
current work, we shall not consider the situations where we have
both channel and synaptic noise in a given layer. Just one type of
noise will be considered in a given layer, and thus the competition
between CR and SISR in a given layer will also not be considered.

The characteristic features of CR and SISR based on (1) time-
delayed feedback couplings and network topology [1, 15, 30], 2)
the multiplexing of layer networks [6, 31, 39, 46, 50], and 3) the
use of one type of noise-induced resonance mechanism to
optimize another type [50] have been established. It has been
shown that appropriate selection of the time-delayed feedback
parameters of FHN neurons coupled in a ring network can
modulate CR: with a local coupling topology, synaptic time
delay weakens CR, while in cases of non-local and global
coupling, only appropriate synaptic time delays can strengthen
or weaken CR [1, 15, 30, 38]. The enhancement of CR and SISR in
neural systems with multiplex layer networks has recently
attracted attention. In a multiplex network [5], the nodes
participate in several networks simultaneously, and the
connections and interaction patterns are different in the
different networks, although the nodes preserve their identities
across the different networks or layers. Since there may exist
different types of relations between neurons or brain regions,
multiplex networks have also been proposed as
neurophysiological models [8]. For instance, functional
couplings, like synchronization, between brain regions can be
realized in different frequency bands. And each such frequency
band can process a different type of information, for instance in
language processing, phonetic, semantic and prosodic
information [13]. But the main purpose of our paper is a
formal investigation of the interplay between different types of
stochastic resonance in a model where the individual units follow
FHN dynamics, as FHN has become a paradigmatic model
system for nonlinear dynamics [24] where many features can
be studied in rather explicit terms.

In particular, the enhancement of CR in one layer of a
multiplex network of FHN neurons based on the occurrence
of SISR in another layer was established in [50]. In this case, two
enhancement schemes for CR were compared: In one scheme
(CR-CR scheme), one layer of the multiplex network is
configured so that CR is optimal and the other layer
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configured so that CR is non-optimal in isolation. In the other
scheme (SISR-CR scheme), one layer of the multiplex network is
configured so that SISR is optimal, and the other layer is
configured so that CR is non-optimal in isolation. It was then
shown that depending on which optimal resonance mechanism
(CR or SISR) we had in one layer of the multiplex network, the
best enhancement of CR in the other layer would depend on the
multiplexing time delay and strength between the two layers.
With weaker multiplexing strength and shorter time delays
between the layers, the CR-CR scheme performs better than
the SISR-CR scheme. But with stronger multiplexing
connections, the SISR-CR scheme outperforms the CR-CR
scheme, especially at weaker noise amplitudes and longer
multiplexing time delays. This result suggests that the
interactions between different noise-induced resonance
mechanisms in neural networks could open up new
possibilities for control and enhancement of information
processing. These enhancement schemes could allow us to
enhance information processing in neural networks more
efficiently, using the interplay between different noise-induced
resonance mechanisms and the multiplexing of layer networks.
Enhancement schemes based on multiplexing (or, in general, on
connecting several layers to form a multilayer network) are
advantageous because the dynamics of one layer can be
controlled by adjusting the parameters of another layer. So far,
the enhancement of CR and SISR based on the multiplexing of
neural layer networks has been established only in regular
networks in the absence of STDP [6, 31, 39, 46, 50].

Adaptive (or learning) rules in biological neural networks have
been linked to an important mechanism, namely, spike-timing-
dependent plasticity (STDP) [16, 29]. STDP describes how the
synaptic weights get modified by repeated pairings of pre-and
postsynaptic action potentials (spikes) with the sign and the
degree of the modification dependent on the relative timing of
the firing of neurons. Depending on the precise timing of pre-and
postsynaptic action potentials, the synaptic weights can exhibit
long-term potentiation (LTP, i.e., persistent strengthening of
synapses) or long-term depression (LTD, i.e., persistent
weakening of synapses). There are two main types of
STDP—Hebbian excitatory STDP (eSTDP) and anti-Hebbian
inhibitory STDP (iSTDP). In this paper, we will focus only on
eSTDP.

The ubiquity and importance of STDP in neural dynamics
require us to investigate the enhancement of CR and SISR in
adaptive neural networks driven by STDP. Such an investigation
should be instrumental both theoretically and experimentally.
Some previous works have shown the crucial role of adaptivity in
network of coupled oscillators. For example, in [2] it is shown that
the plasticity of the connections between oscillators plays a
facilitatory role for inverse stochastic resonance (ISR), where
adaptive couplings guide the dynamics of coupled oscillators to
parameter domains in which noise effectively enhances ISR. In
[12], it is shown how the interaction of noise and multiscale
dynamics, induced by slowly adapting feedback, may affect an
excitable system, giving rise to a new mode of behavior based on
switching dynamics which allows for an efficient control of the
properties of CR.

In the current work, the main questions we want to address are
the following: 1) How do network topology and STDP parameters
affect the degree of coherence due to CR and SISR? 2) In the
presence of STDP, which of these noise-induced resonance
phenomena is more robust to parametric perturbations? 3) In
the presence of STDP, is an enhancement of the less robust
phenomenon in an isolated layer network still possible via
multiplexing? 4) Can the occurrence of one resonance
phenomenon in one layer be used to enhance the other
phenomenon in another layer in the presence of STDP? 5) If
the answers to the previous questions are affirmative, then what
behavior (LTP or LTD) of the STDP learning rule optimizes the
multiplexing enhancement strategy?

Here is an outline of the remainder of this article: In Section 2,
we present the mathematical model of the stochastic neural
networks and give a brief description of the STDP learning
rule and the dynamical differences in the emergent nature of
the two noise-induced resonance phenomena that are of interest.
In Section 3, we present the numerical methods used in our
numerical simulations. In Section 3.1, we discuss the results of
the dynamics of CR and SISR in isolated layer networks. In
Section 3.2, we discuss the results of the enhancement of SISR
using the multiplexing technique. Finally, we summarize our
findings and conclude in Section 4.

2 MATHEMATICAL MODEL

We consider the following two-layer multiplex network, where
each layer represents a network of N diffusively coupled FHN
neurons in the excitable regime and the presence of noise:

dv1i � v1i − v31i
3
− w1i − Is1i t( ) + Im2i t( )[ ]dt + σ1dW1i,

dw1i � [ε1 v1i + α − γ1w1i( )]dt + σ2dW2i,

dv2i � v2i − v32i
3
− w2i − Is2i t( ) + Im1i t( )[ ]dt + σ̂1dW3i,

dw2i � [ε2 v2i + α − γ2w2i( )]dt + σ̂2dW4i,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

v1i ∈ R and w1i ∈ R represent the fast membrane potential
variables and the slow recovery current variables in the first
layer, respectively. Similarly, v2i ∈ R and w2i ∈ R, respectively
represent the membrane potential and recovery current variables
for the neurons in the second layer. The index i = 1, . . . , N stands
for the ith neuron in the network ofN neurons. 0 < ε1≪ 1 and 0 <
ε2 ≪ 1 are the time-scale separation ratios between the fast
membrane potential and the slow recovery current variables in
the first and second layers, respectively. γ1 > 0 and γ2 > 0 are co-
dimension-one Hopf bifurcation parameters in each of the layers
and thus define the excitability threshold. α ∈ (0, 1) is a constant
parameter. σ1W1i is the uncorrelated Gaussian white noise with
standard deviation σ1, and similarly for σ2W2i, σ̂1W3i, and σ̂2W4i.
σ1W1i and σ̂1W3i which are attached to the fast membrane
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potential variables should be interpreted as representing synaptic
noise sources, while σ2W2i and σ̂2W4i which are attached to the
slow recovery variables both represent channel noise sources.

The terms Is1i(t), Is2i(t), Im1i(t), and Im2i(t) in Eq. 1 represent
synaptic currents (modelled by diffusive electrical couplings) and
also govern the STDP learning rule between connected neurons.
We point out that we are using adaptive (based on STDP)
electrical synapses so that we can directly compare our results
to those in [50] where non-adaptive electrical synapses are used to
study CR and SISR. The intra-layer synaptic currents Is1i(t) and
Is2i(t) of the ith neuron in the layer 1 and layer 2 at time t are
respectively given by

Is1i t( ) � 1

c1i
∑
j≠i

a1ijK
1
ij t( ) v1j t − τ1( ) − v1i t( )( ),

Is2i t( ) � 1

c2i
∑
j≠i

a2ijK
2
ij t( ) v2j t − τ2( ) − v2i t( )( ),

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(2)

where the synaptic connectivity matrices A1 � {a1ij}Ni, j�1 and

A2 � {a2ij}Ni, j�1 of the layer 1 and layer 2, respectively, have

a1ij � 1 � a2ij if the neuron j is pre-synaptic to the neuron i;
otherwise, a1ij � 0 � a2ij. The synaptic connections in each
layer, represented by the connectivity matrices A

1

and A
2

,
are modeled in terms of the time-invariant Watts-Strogatz
small-world network [41, 43, 44], where the in-degree of the
ith neuron in the ℓth layer (i.e., the number of synaptic
inputs to the neuron i in layer ℓ) is given by cℓi � ∑j≠ia

ℓ

ij, (ℓ =
1, 2). The intra-layer time delays of the electric synaptic
coupling in layer 1 and layer 2 are represented by τ1 and τ2,
respectively.

The inter-layer synaptic currents Im1i(t) and Im2i(t) (which we
shall also sometimes refer to as multiplexing currents) of the
ith neuron in layer 1 and layer 2 at time t are respectively
given by

Im1i t( ) � K12
ii t( ) v2i t − τ12( ) − v1i t( )( ),

Im2i t( ) � K12
ii t( ) v1i t − τ12( ) − v2i t( )( ),{ (3)

where τ12 represents the multiplexing (inter-layer) time delay of
the electrical synaptic coupling between layer 1 and layer 2. With
increasing time t, the intra-layer synaptic strengths K1

ij(t) and
K2

ij(t), and the multiplexing (inter-layer) synaptic strength
K12

ii (t) for each synapse are updated with a nearest-spike pair-
based STDP rule [33]. To prevent unbounded growth, negative
conductances (i.e., negative coupling strength) and elimination of
synapses (i.e., K1

ij � K2
ij � K12

ii � 0), we set a range with the lower
and upper bounds: {K1

ij, K
2
ij, K

12
ii } ∈ [0.0001, 1]. The initial intra-

layer synaptic weights (i.e., K1
ij(t � 0) and K2

ij(t � 0)), are
normally distributed with mean and standard deviation equal
to 0.1 and 0.02, respectively. And each of the N initial inter-layer
synaptic weights K12

ii (t � 0) is uniformly distributed in the
interval [0.0001, 1]. They are updated according to the rule

K1
ij → K1

ij + λΔK1
ij Δt1ij( ),

K2
ij → K2

ij + λΔK2
ij Δt2ij( ),

K12
ii → K12

ii + λΔK12
ii Δt12ii( ),

⎧⎪⎪⎨⎪⎪⎩ (4)

The intra-layer synaptic modifications ΔK1
ij(Δt1ij) and ΔK2

ij(Δt2ij)
depend on the relative time difference Δtij � (t(post)i − t(pre)j )
(Δtij � Δt1ij,Δt2ij) between the nearest-spike times of the post-
synaptic neuron i and the pre-synaptic neuron j. The inter-layer
synaptic modification ΔK12

ii (Δt12ii ) depends on the relative time
difference Δt12ii � (t(post)2 − t(pre)1 ) between the nearest-spike times
of the ith post-synaptic neuron in layer 2 and the ith pre-synaptic
neuron in layer 1. The parameter λ represents the learning rate. It
was found that small learning rates lead to more robust learning
[32]. Hence, in this work, we choose a small learning rate (i.e., λ =
0.0001) which, by the way, also simulates the effect of STDP on
the long-term evolution of a neural network [37]. In the
numerical simulations, we will consider eSTDP with an
asymmetric Hebbian time window for the synaptic
modifications given by [4, 22]:

ΔK1
ij Δt1ij( ) � P1 exp −Δt1ij/τ1p( ) if Δt1ij > 0

−D1 exp Δt1ij/τ1d( ) if Δt1ij < 0
0, if Δt1ij � 0

⎧⎪⎪⎨⎪⎪⎩
ΔK2

ij Δt2ij( ) � P2 exp −Δt2ij/τ2p( ) if Δt2ij > 0
−D2 exp Δt2ij/τ2d( ) if Δt2ij < 0
0, if Δt2ij � 0

⎧⎪⎪⎨⎪⎪⎩
ΔK12

ii Δt12ii( ) � P12 exp −Δt12ii /τ12p( ) if Δt12ii > 0
−D12 exp Δt12ii /τ12d( ) if Δt12ii < 0
0 if Δt12ii � 0,

⎧⎪⎪⎨⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where LTP occurs if Δt1ij > 0, Δt2ij > 0, and Δt12ii > 0 (i.e., a post-
synaptic spike follows a pre-synaptic spike); LTD if Δt1ij < 0,
Δt2ij < 0, and Δt12ii < 0 (i.e., a post-synaptic spike precedes a
pre-synaptic spike); and no synaptic modification if
Δt1ij � Δt2ij � Δt12ii � 0. In Eq. 5, P1, P2, and P12 (D1, D2, and
D12) represent the potentiation (depression) adjusting rate
parameters in layer 1, layer 2, and between layer 1 and 2,
respectively. And τ1p, τ2p, and τ12p (τ1d, τ2d, and τ12d)
represent the potentiation (depression) temporal window
parameters in layer 1, layer 2, and between layer 1 and 2,
respectively. The amount of synaptic modification
(i.e., strengthening or weakening) is controlled by the
adjusting rate parameters P1, P2, P12, D1, D2, and D12, while
the time window for the synaptic modification is controlled by
τ1p, τ2p, τ12p, τ1d, τ2d, and τ12d.

Experimental investigations [7, 9, 14, 45, 52] have shown that
for a fixed stimulus, D1τ1d > P1τ1p ensures dominant depression
of synapses, otherwise (i.e.,D1τ1d ≤ P1τ1p) dominant potentiation.
In Figures 1A,B, we show the asymmetric Hebbian time window
for the synaptic modification ΔK1

ij(Δtij) given by Eq. 5
(ΔK2

ij(Δt2ij) and ΔK12
ii (Δt12ii have the same behavior). We see

that ΔK1
ij(Δtij) varies, depending on the relative time difference

Δt1ij between the nearest spike times of the post-synaptic neuron i
and the pre-synaptic neuron j. In Figure 1A, for a fixed value of
D1 (= 0.5), τ1d (= 20), and τ1p (= 20), we show the effects of P1 on
LTP and LTD. In Figure 1B, for a fixed value of D1 (= 0.5), τ1(=
20), and P1 (= 0.5), we show the effects of τ1d on LTP and LTD. In
the same way, fixing P1 and τ1d and varying D1 and τ1p show
similar effects on LTD and LTP. Thus, for a particular noise
intensity, when we fix parameter values of D1 and τ1p, the
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inequality D1τ1d > P1τ1p (D1τ1d ≤ P1τ1p) can switch from LTD
(LTP) to LTP (LTD) by changing the values of the parameters P1
and τ1d. Hence, the synapses can exhibit LTD and LTP if we vary
only two parameters (i.e., P1 and τ1d or D1 and τ1p) and keep the
other two constant. Therefore, throughout our studies, we fix the
depression adjusting rate parameter at D1 = 0.5 and the
potentiation temporal window parameter at τ1p = 20, and
choose the potentiation adjusting rate parameter P1 ∈ [0.1, 1]
and the depression temporal window parameter τ1d ∈ [0.2, 30] as
the alterable (control) parameters of the eSTDP learning rule.

3 NUMERICAL RESULTS

To quantify the degree of SISR (i.e., the degree of coherence of the
spiking activity induced by the mechanism of SISR), we use the
normalized standard deviation of the mean interspike interval,
commonly known as the coefficient of variation [36]. Because the
coefficient of variation is based on the time intervals between
spikes, it does relate to the timing precision of information
processing in neural systems [35] and naturally becomes an
essential statistical measure in neural coding. The coefficient of
variation (CV) of N coupled neurons is defined as [30]:

CV �
�������������
〈ISI2〉 − 〈ISI〉2

√
〈ISI〉

, (6)
where

〈ISI〉 � 1
N

∑N
i�1

〈ISIi〉,

〈ISI2〉 � 1
N

∑N
i�1

〈ISI2i 〉.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(7)

〈ISIi〉 and 〈ISI2i 〉 are respectively the mean and the mean squared
(over time) inter-spike intervals (ISI) of the ith neuron
(i.e., ISIi � tm+1

i − tmi > 0, where tmi and tm+1
i two consecutive

spike times bounding the mth interval). We determine the
spike occurrence times by the upward crossing of the
membrane potential variable vℓi past the spike detection

threshold of vth = 0.0. If CV = 1, we get a Poissonian spike
train (rare and incoherent spiking). If CV < 1, the spike sequence
becomes more regular, and CV vanishes for periodic
deterministic spikes. CV > 1 corresponds to a spike point
process that is more variable than a Poisson process. Thus, a
neural network undergoing a high degree of CR or SISR will show
a pronounced minimum in the values of CV [36].

For our investigations, we numerically integrate the set of
stochastic differential equations in Eq. 1with the Hebbian eSTDP
rule of Eq. 4 by using the fourth-order Runge-Kutta algorithm for
stochastic processes [21] and the Box-Muller algorithm [23]. The
integration time step is fixed at dt = 0.01 for a total time of T = 1.0,
×, 106 unit. Averages are taken over 20 different realizations of the
initial conditions. For each realization, we choose random initial
points [vℓi (0), wℓi (0)] for the ith neuron in the ℓth layer with
uniform probability in the range of vℓi (0) ∈ (−2, 2) and wℓi (0) ∈
(−2/3, 2/3). The initial synaptic weights K1

ij(t � 0), K2
ij(t � 0),

and K12
ii (t � 0) are normally distributed with mean and standard

deviation equal to 0.1 and 0.02, respectively. Furthermore, in our
simulations, we use small-world networks generated by the
Watts-Strogatz algorithm [41, 43, 44]. The average degree 〈sℓ〉
and the rewiring probability βℓ ∈ [0, 1] will be taken as the
network parameters to control the degrees of CR and SISR. We
note that in the context of small-world networks with rewiring
probability βℓ ∈ (0, 1), it is possible to interpolate between a
regular ring network by setting βℓ = 0 and a random network by
setting βℓ = 1 in the Watts-Strogatz algorithm.

Following the work in [10, 50], we note that while CR and SISR
generally require an excitable regime (achieved by fixing γ1 = γ2 =
0.75) for their occurrence, for the particular case of the FHN
neuron model, the occurrence of CR requires the presence of only
channel noise. Thus, when investigating CR in a given layer of Eq.
1, we will set all synaptic noises to zero (i.e., σ1 � σ̂1 � 0) in that
layer. Secondly, because the CR has been shown [10] to be rather
insensitive against variations of the timescale separation ratio, we
will fix these parameters at the standard and most commonly
used value εℓ = 0.01, (ℓ = 1, 2) in the layer in which we investigate
CR. On the other hand, the occurrence of SISR in a given layer
network of Eq. 1 requires 1) presence of only synaptic noise, and
thus, when investigating SISR in a given layer, we will set all

FIGURE 1 | Time windows for an asymmetric Hebbian eSTDP learning rule. Plot of synaptic modification ΔK1
ij versus Δt1ij (� t(post)i − t(pre)j ). t(post)i and t(pre)j are

spiking times of the ith post-synaptic and the jth pre-synaptic neurons, respectively. The blue and magenta curves represent LTP, while the red and cyan curves
represents LTD. Th effects of P1 and τ1d on LTD and LTP are indicated in panels (A) and (B), respectively. The other eSTDP parameters are fixed at: D1 = 0.5, τ1p = 20.
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channel noises to zero (i.e., σ2 � σ̂2 � 0) in that layer, and 2) a
stronger timescale separation ratio between the fast and slow
variables of the FHN model. Thus, we will set εℓ = 0.001 (ℓ = 1, 2)
in the layer in which we investigate SISR—a much smaller value
than for CR. The constant parameter α ∈ (0, 1) is fixed at 0.5
throughout our simulations.

3.1 Optimal CR and SISR in an Isolated
Layer
Before investigating the dynamics of CR and SISR in the
multiplex network of Eq. 1, we should first understand their
dynamics in an isolated layer network. Thus, this subsection is
devoted to the investigation of CR and SISR in a single isolated
layer of Eq. 1. We present the numerical results on the dynamics
of CR and SISR in terms of the network parameters (i.e., the
average degree 〈s1〉, the rewiring probability β1, and the intra-
layer time delay τ1) and the parameters of the eSTDP learning
rule (i.e., the potentiation adjusting rate P1 and depression
temporal window τ1d) in layer 1 of Eq. 1.

3.1.1 With respect to Network Parameters: 〈s1〉, β1, τ1
The average number of synaptic inputs per neuron (i.e., the
average degree connectivity) in layer 1 is given by 〈s1〉 � 1

N∑N
i�1c1i ,

where the in-degree of the ith neuron in layer 1 (i.e., the number

of synaptic inputs to the neuron i in layer 1) is given by
c1i � ∑j≠ia

1
ij. The higher (lower) the value of 〈s1〉, the denser

(sparser) the network in layer 1. The rewiring probability β1 of
layer 1, satisfying 0 ≤ β1 ≤ 1, reflects the degree of randomness in
the network. The network is 1) regular for β1 = 0 with a high
clustering high mean geodesic distance between neurons, 2)
random for β1 = 1 with a low clustering and low mean
geodesic distance between neurons, and 3) small-world for β1
∈ (0, 1) with a relatively high clustering but low mean geodesic
distance between neurons. The time delay τ1 between the signal
transfer between any pair of connected neurons originates from
the finite transmission speed of the neural signal along the axon
pre-synaptic neuron.

Figures 2A,B depicts the variation in the degree of CR in layer
1 (in isolation) of Eq. 1. We show the variation of CV as a
function of the channel noise intensity σ2 (with σ1 = 0) and the
average degree 〈s1〉 of this layer. In these panels, CR is
characterized by a family of non-monotonic CV curves as a
function of the noise intensity σ2. Panels A and B also indicate
that the phenomenon of CR is robust to changes in the average
degree of the network connectivity 〈s1〉. As 〈s1〉 increases, the
minimum of the CV curves (taking the value CVmin = 0.1108 at σ2
= 7.3 × 10–6) does not change. However, when the network is very
sparse, i.e., when 〈s1〉 = 1, we can see that the green line in
Figure 2A extends a little more to the left compared to the denser

FIGURE 2 | Variation of CV w.r.t. the average degree 〈s1〉 and the noise intensity σ2 for CR or σ1 for SISR. Panels (A) and (B) show CR characterized by a family of
non-monotonic CV curves w.r.t. σ2 (σ1 = 0) at ε1 = 0.01. Panels (C) and (D) show SISR characterized by a family of non-monotonic CV curves w.r.t. σ1 (σ2 = 0) at ε1 =
0.001. In both phenomena, the other parameters of the layer 1 are fixed at: β1 = 0.1, τ1 = 1, P1 = 0.1, τ1d = 20, D1 = 0.5, τ1p = 20, N = 50.
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network configurations. This indicates that when 〈s1〉 = 1, a
relatively weaker noise intensity can enhance the degree of CR.
Therefore, in the rest of our simulations, to have the best degree of
CR while also allowing the network to have a small-world
topology, we will fix the average degree of the layer networks
at 〈s1〉 = 2.

Figures 2C,D show the variation in the degree of SISR in layer
1 (in isolation) of Eq. 1. In this case, we switched on the synaptic
noise intensity σ1 (and turned off the channel noise, i.e., σ2 = 0),
decreased the timescale separation parameter from ε = 0.01 to ε =
0.001, and kept the rest of the parameters at the same values as in
Figures 2A,B. In contrast to CR, SISR is sensitive to changes in
the average degree parameter 〈s1〉. In particular, when the
network is very sparse, i.e., when 〈s1〉 = 1, the degree of SISR
becomes significantly lower, with a minimum value of the CV
curve around CVmin = 0.4 for a wide range of the noise intensity,
i.e., σ1 ∈ (3.7 × 10–7; 1.9, ×, 10–2). As the network becomes denser,
i.e., 〈s1〉 increases, the degree of SISR also increases with the
minimum value of the CV curves occurring at CVmin ≈ 0.1903 for
σ1 ∈ (3.7 × 10–7; 1.9, ×, 10–2). Thus, in the rest of our simulations,
to have a high (low) degree of SISR, we will fix the average degree
of the layer networks at 〈s1〉 = 10 (〈s1〉 = 1), in contrast to CR.

Interestingly, in Figure 2, we see that the best degree of
coherence is higher for CR (with CVmin = 0.1108) than for
SISR (with (CVmin ≈ 0.1903). In previous work [50], where we
investigated CR and SISR in one isolated layer of Eq. 1 in the
absence of STDP, the opposite behavior occurs, i.e., SISR
produces a higher degree of coherence (with CVmin = 0.012)
than CR (with CVmin = 0.130), when all the other parameters are

at their optimal values. This means that in the presence (absence)
of STDP, the degree of coherence due to CR (SISR) is higher than
that of SISR (CR). Furthermore, while the degree of CR is higher
than that of SISR, the range of values of the noise intensity in
which the degree of CR is high is significantly smaller than that of
SISR. This is explained by the fact that high coherence due to SISR
emerges due to the asymptotic matching of the deterministic and
stochastic timescales. While the high coherence due to CR
emerges as a result of the proximity to the Hopf bifurcation
[10, 50]. Figures 2C,D indicate that this matching of timescales
occurs for a wider range of values of the synaptic noise intensity
(with flat-bottom CV curves), hence the larger interval for
coherence. On the other hand, Figures 2A,B show a smaller
interval of the channel noise intensity in which the degree CR is
highest. In this case, the noise intensity has to be just right (not
too weak or strong) to let the systems oscillate between the
excitable and the oscillatory regimes via a noise-induced Hopf
bifurcation, leading to the emergence of a limit cycle behavior
(i.e., noise-induced coherent oscillations). The noise channel
noise should not be too weak so that the systems do not stay
for too long in the excitable regime, thereby destroying the
coherence. Nor should it be too strong to overwhelm the
entire oscillations in the oscillatory regime, hence the relatively
smaller noise interval for the highest coherence in the case of CR.

Figures 3A,B depict the variation in the degree of CR in layer 1
(in isolation) of Eq. 1 as a function of the channel noise intensity
σ2 and the network rewiring probability β1 at an optimal value of
the average degree (i.e., 〈s1〉 = 1) chosen from Figure 2A. The
other parameters are kept fixed at the values given in Figure 2.

FIGURE 3 | Variation of CV w.r.t. the wiring probability β1 and the noise intensity σ1 for SISR or σ2 for CR. Panels (A) and (b) show the CV curves due to CR (σ1 = 0,
ε1 = 0.01, 〈s1〉 = 2). Panels (C) and (D) show the CV curves due to SISR (σ2 = 0, ε1 = 0.001, 〈s1〉 = 10). In both phenomena, the other parameters are fixed at: τ1 = 1,
P1 = 0.1, τ1d = 20, D1 = 0.5, τ1p = 20, N = 50.
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From Figures 3A,B, we notice that variations in the rewiring
probability do not destroy the high degree of CR. Here the
minimum of the CV curves remain very low. However, we
can observe that when the network is regular, i. e, when β1 =
0.0, the minimum of the CV curve (see, e.g., the green curve in
Figure 3A) is noticeably lower than when we have small-world
(with β1 ∈ (0, 1)) and the random network (with β1 = 1) topology.
Nevertheless, because in this work we are interested in non-
regular networks (i.e., β1 ∈ (0, 1]), we will fix β1 to a very low, but
non-zero value (i.e., β1 = 0.1) to have a high degree of CR in a
small-world network. Hence, in the rest of our simulations, to
have the best degree of CR in our small-world network, we will fix
the rewiring probability of the layer networks at β1 = 0.1.

Figures 3C,D show the variation in the degree of SISR in layer
1 (in isolation) of Eq. 1 as a function of the synaptic noise
intensity σ1 and the network rewiring probability β1 at the
optimal value of the average degree (i.e., 〈s1〉 = 10) chosen
from Figure 2C. The rest of the parameter values are the
same as in Figures 3A,B. We observe again that the degree of
SISR is more sensitive to changes in the parameter β1 than the
degree of CR. Furthermore, we observe that varying the rewiring
probability β1 has the opposite effect on the degree of SISR
compared to its effect on the degree of CR. The more regular
the network is (see, e.g., the red curve in Figure 3C), the higher
the CV curve and hence the lower the degree of SISR. Thus, in the
rest of our simulations, to have the best degree of SISR in our

network, we will fix the rewiring probability of the layer networks
at β1 = 1 (see the green curve in Figure 3C).

Figures 4A,B depict the variation in the degree of CR in layer 1
(in isolation) of Eq. 1 as a function of channel noise intensity σ2
and the intra-layer time delay τ1 of the network, at an optimal
value of the average degree (i.e., 〈s1〉 = 2) and the network
rewiring probability (i.e., β1 = 0.1) chosen from Figure 2A and
Figure 3A, respectively. Again we notice, from the low values of
the minimum of the CV curves, the robustness of the degree of
CR to variations of a network parameter, i.e., τ1. Nonetheless,
with the low degree of CR, we can still observe that when the
synaptic connections between the neurons are instantaneous
(i.e., when τ1 = 0), the CV curve (see the green curve in) is
slightly lower than the rest of the curves. Further increase in the
time delay does not affect the degree of CR. In the rest of the
simulations, to have the best degree of CR in our network, we will
fix the intra-layer time delay at a low but non-zero value, i.e., at
τ1 = 1.

Figures 4C,D show the variation in the degree of SISR in layer
1 (in isolation) of Eq. 1 as a function of synaptic noise intensity σ1
and the intra-layer time delay τ1 at an optimal value of the average
degree (i.e., 〈s1〉 = 10) and the network rewiring probability
(i.e., β1 = 1) chosen from Figure 2C and Figure 3C, respectively.
We observe that the degree of SISR is again more sensitive to
parametric perturbations than the degree CR. Moreover, the
variation in the degree of SISR as a function of the intra-layer

FIGURE 4 | Variation of CV w.r.t. the time delay τ1 and noise intensity σ1 for SISR or σ2 for CR. Panels (A) and (B) show the CV curves due to CR (σ1 = 0, ε1 = 0.01,
〈s1〉 = 2). Panels (C) and (D) show the CV curves due to SISR (σ2 = 0, ε1 = 0.001, 〈s1〉 = 10). In both phenomena, the other parameters are fixed at: τ1 = 1, P1 = 0.1, τ1d =
20, D1 = 0.5, τ1p = 20, N = 50.
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time delay τ1 is not linear and significantly depends on values of
the synaptic noise σ1. In Figure 4A, for τ1 = 0.0, we have CV
values which are higher and lower than those at τ1 = 1,000 and τ1
= 500, respectively. Thus, in the rest of the simulations, to have
the best degree of SISR in our network, we will fix the intra-layer
time delay at τ1 = 1,000.

3.1.2 With respect to STDP Parameters: P1, τ1d
Using the insight from the previous section on the effects of each
network parameter (i.e., 〈s1〉, β1, and τ1) on the degree of CR and
SISR, we now investigate the effects of STDP on the degree of CR
and SISR by varying the parameters P1 of the potentiation
adjusting rate and τ1d of the depression temporal window. To
do this, we first note that the results in Figures 2–4 are obtained
when the parameters of STDP (i.e., P1 and τ1d) are kept fixed at
the values indicated in the captions. So in the sequel, we fix the
network parameters at their non-optimal values, i.e., at values at
which each phenomenon produces the lowest degree of
coherence. Then, we vary the parameters (P1 and τ1d) of the
STDP learning rule in layer 1.

Extensive numerical simulations (not shown) have indicated
that the variations in the degree of CR and SISR with respect to P1
and τ1d are higher at the corresponding optimal network
parameter values indicated in Figures 2–4 than at the non-
optimal network parameter values. Qualitatively, however, the
variations in the degrees of both phenomena are essentially the
same when we have optimal or non-optimal network parameter
values. Because we are interested in the highest degree of CR and
SISR, we present the results on the effects of STDP on the degree

of CR and SISR when the network parameters are non-
optimal. We will then investigate the enhancement
strategies of the degree of each phenomenon using the
multiplexing technique.

In Figures 5A,B, we show the variations in degree of CR and
SISR in layer 1 (in isolation) of Eq. 1 as a function of the channel
(σ2) and synaptic (σ1) noise intensity and the potentiation
adjusting rate parameter P1 at corresponding non-optimal
values of the network parameters, respectively. Figure 5A
shows that the higher (compared to the degree of coherence
induced by SISR in Figure 5B) degree of coherence induced CR is
more (compared to the robustness of the coherence induced by
SISR in Figure 5B) robust to variations in the potentiation
adjusting rate parameter P1. Even though the lowest CV values
for each value of P1 are relatively close to each other, we have the
lowest (highest) CVmin = 0.1363 (CVmin = 0.1804) occurring at
P1 = 0.1 (P1 = 1). For SISR, we the lowest (highest) CVmin =
0.2009 (CVmin = 0.2588) occurs at P1 = 0.1 (P1 = 1).

In Figures 5C,D, we show the variations in degree of CR and
SISR in layer 1 (in isolation) of Eq. 1 as a function of the channel
(σ2) and synaptic (σ1) noise intensity and the depression temporal
window τ1d at corresponding non-optimal values both of the
network parameters and the potentiation adjusting rate
parameter P1 (obtained from Figures 5A,B), respectively. For
CR, we the lowest (highest) CVmin = 0.0254 (CVmin = 0.1849)
occurs at τ1d = 0.01 (τ1d = 30). For SISR, we the lowest (highest)
CVmin = 0.1245 (CVmin = 0.2632) occurs at τ1d = 0.01 (τ1d = 30).
Thus, unlike the opposite effects of the variations in each network
parameter on the degree of CR and SISR, the variations in the

FIGURE 5 | Variation of CV w.r.t. the potentiation adjusting rate P1, depression temporal window τ1d, and the noise intensity σ1 or σ2, with the corresponding non-
optimal network parameter values. Panel (A) and (B) show the values of CV during CR (σ1 = 0, ε1 = 0.01, 〈s1〉 = 10, β = 1, τ1 = 100, τ1d = 20) and during SISR (σ2 = 0, ε1 =
0.001, 〈s1〉 = 1, β = 0.1 τ1 = 600, τ1d = 20). Panel (C) and (D) show the values CV during CR (σ1 = 0, ε1 = 0.01,〈s1〉 = 10, β = 1, τ1 = 100, P1 = 1) and during SISR (σ2 = 0,
ε1 = 0.001, 〈s1〉 = 1, β = 0.1, τ1 = 600, P1 = 1). In both phenomena, the other parameters are fixed at: D1 = 0.5, τ1p = 20, N = 50.
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STDP parameters have similar effects on the degree of CR
and SISR.

In previous work [50], we aimed at enhancing CR (and not
SISR) via the multiplexing technique because CR showed more
sensitivity to parametric perturbations than SISR in the absence
of the STDP learning rule. The results in Figures 2–5 indicate that
the degree of CR becomes more robust to parametric
perturbations than the degree of SISR, which is particularly
sensitive to the variations in the parameters of the STDP
learning rule. For this reason, in the next section, we focus
only on the enhancement of the more sensitive phenomenon,
i.e., SISR, via the multiplexing technique used in [50].

3.2 Enhancement of SISR via the
Multiplexing Technique
It has been shown in [50] that in a two-layer multiplex network
with static (non-adaptive) synaptic couplings, CR or SISR in one
layer could induce and enhance CR in the other layer. Here, we
address whether enhancing a low degree of SISR in one layer of a
multiplex network is possible using an enhanced CR or SISR in
the other layer when adaptive synaptic couplings drive the
network. Then, we investigate which enhancement scheme is
best: 1) the CR-SISR scheme or 2) the SISR-SISR scheme.

In the CR-SISR scheme, we use the results from Section 3.1
and we set layer 1 such that it has a low degree of SISR, i.e., we
choose the network and STDP parameter values (〈s1〉 = 1, β1 =
0.1, τ1 = 600, P1 = 1, τ1d = 0.01) so that the CV curve is
high—indicating a poor degree of SISR in layer 1 in isolation.
We also set layer two such that it has a high degree of CR,
i.e., we choose the network and the STDP parameter values
(〈s1〉 = 2, β2 = 0.1, τ2 = 1, P2 = 0.1, τ2d = 20) so that the CV
curve is low—indicating a high degree of CR in layer 2 in
isolation. Then, we couple the two layers in a multiplex
fashion, i.e., each neuron in a layer is coupled only to its
replica neuron in the other layer via a synaptic coupling driven
by STDP. In the SISR-SISR scheme, we have the same settings
as in the CR-SISR scheme, except that in layer 2, we set the
network and STDP parameter values (〈s2〉 = 10, β2 = 1, τ2 = 1,
P2 = 0.1, τ2d = 20) so that the CV curve is high—in indicating a
high degree of SISR in layer 2 in isolation.

The STDP driving the multiplexing (inter-layer) synaptic
connections is governed by synaptic weight K12

ii (t) that
evolves according Eqs. 4, 5. Similarly to the intra-layer
synaptic weights of the isolated layer networks of Section 3.1,
we will fix the depression adjusting rate parameter at D12 = 0.5
and the potentiation temporal window parameter at τ12p = 20,
and vary only the potentiation adjusting rate P12 ∈ [0.05, 1], the

FIGURE 6 | Variation of CV of the controlled layer (exhibiting SISR) w.r.t. the noise intensity σ1 and the inter-layer time delay τ12. Panels (A) and (B) show the CV
curves in the absence (τ12 = 0) and presence (τ12 = 1,000) of the inter-layer time delay τ12, respectively. The red curves represent the variation in the degree of SISR in
layer 1 when in isolation. The black and the green curves show the enhancement performances of the CR-SISR and SISR-SISR schemes, respectively. Panel (C) shows
that for the same value of the inter-layer time delay, the SISR-SISR scheme always outperforms the CR-SISR scheme. Parameters of layer 2 in the CR-SISR
scheme: σ̂1 � σ2 � 0, σ̂2 � σ1 ≠ 0, ε2 = 0.01, 〈s2〉 = 2, β2 = 0.1, τ2 = 1, P2 = 0.1, τ2d = 20. Parameters of layer 2 in the SISR-SISR scheme: σ̂2 � σ2 � 0, σ̂1 � σ1 ≠ 0, ε2 =
0.001, 〈s2〉 = 10, β2 = 1, τ2 = 1, P2 = 0.1, τ2d = 20. Parameters of layer 1 in isolation and in both schemes: ε1 = 0.001, 〈s1〉 = 1, β1 = 0.1, τ1 = 600, P1 = 1, τ1d = 0.01, N =
50. Parameters of the inter-layer STDP: P12 = 1, τ12d = 30, D12 = 0.5, τ12p = 20.

Frontiers in Physics | www.frontiersin.org July 2022 | Volume 10 | Article 90936510

Yamakou et al. Optimal Resonances in Multiplex Neural Networks

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


depression temporal window τ12d ∈ [0.2, 30], and the inter-layer
time delay τ12 ∈ [0.0, 1,000] parameters in the intervals indicated.

In Figure 6, we show the performance of each scheme in
enhancing the low degree of SISR in layer 1. Figures 6A,B depict
the performances for an instantaneous (i.e., τ12 = 0) multiplexing
and for a time-delayed (τ12 = 1,000) multiplexing between layer 1
and layer 2, respectively. We recall that layer 1 is the layer of
interest, i.e., the layer with a low degree of SISR when it is in
isolation. The red curve in Figures 6A,B represents the degree of
coherence due to SISR in layer 1 when it is in isolation.We can see
that for the selected set of network and STDP parameters (i.e. 〈s1〉
= 1, β1 = 0.1, τ1 = 600, P1 = 1, τ1d = 0.01), the degree of coherence
due to SISR is very low as indicated by the high values of the red
CV curve for values of the synaptic noise intensity in some
interval, i.e., σ1 ∈ (5.0, ×, 10–8, 3.5 × 10–2).

When layer 1, with its poor degree of SISR, is multiplexed with
layer 2 exhibiting a high degree of CR, the performance of this
CR-SISR scheme is depicted by the black curve in Figures 6A,B
which represent the new degree of SISR in layer 1. We see that the
multiplexing of layer 1 with another layer exhibiting a strong CR
can significantly improve the degree of SISR in layer 1 by lowering
the red CV curve, which becomes black. On the other hand, when
layer 1, with its poor degree of SISR, is multiplexed with layer 2
exhibiting a high degree of SISR, the performance of this SISR-
SISR scheme is depicted by the green curve in Figures 6A,B
which represent the new degree of SISR in layer 1. We see that the
multiplexing of layer 1 with another layer exhibiting a strong SISR
can significantly improve the degree of SISR in layer 1 by lowering
the red CV curve, which becomes green. However, in both
schemes, this enhancement of SISR in layer 1 fails when the
synaptic noise intensity is larger than 1.9 × 10–2, a point from
which the black and the green CV curves of the CR-SISR and
SISR-SISR schemes lie above the red CV curve of layer 1 in
isolation.

Furthermore, we observe that even though the degree of the
coherence induced by CR can be higher than the degree of
coherence induced by SISR in an isolated layer network driven
by STDP, the degree of SISR induced via a multiplexing SISR-
SISR enhancement scheme is higher than that induced by a CR-
SISR enhancement scheme. This is clearly indicated by the black
and green curves simulated with no inter-layer time delay in
Figure 6A and with an inter-layer time delay in Figure 6B. For
the majority of values of the synaptic noise intensity of layer 1, the
green curve lies entirely below the black one.

To further investigate the effect of the inter-layer time delay
τ12 on the degree of coherence due to SISR in layer 1, we
computed the minimum value of the CV curve, (i.e., CVmin)
for a wide range of values of the inter-layer time delay τ12. The
result is shown in Figure 6C, where the green curve representing
the enhancement performance of the SISR-SISR scheme always
lies below the black curve, which represents the performance of
the CR-SISR scheme, as the inter-layer time delay changes in τ12 ∈
[0, 1,000]. Figure 6C also indicates that when the inter-layer time
delay is at τ12 = 550 and τ12 = 1,000, the SISR-SISR scheme
performs significantly better than at other values of the inter-layer
time delay and the CR-SISR scheme. The best inter-layer time
delay values in the CR-SISR scheme occur at τ12 = 0 and at τ12 =

350. The results presented in Figure 6 are for fixed values of the
alterable parameters of the inter-layer STDP learning rule, i.e.
P12 = 0.05 and τ12d = 30.

Now we investigate the effects of varying these two parameters
on the performances of the CR-SISR and SISR-SISR enhancement
schemes. To implement this, we fix, from Figure 6C, the inter-
layer time delay at the optimal value for each scheme, i.e., τ12 =
350 and τ12 = 1,000 for the CR-SISR and the SISR-SISR scheme,
respectively. Figures 7A,B show the performances of the CR-
SISR and SISR-SISR schemes as a function of the multiplexing
STDP parameters, i.e., P12 and τ12d, respectively. For the CR-SISR
scheme, we observe that a larger depression temporal window
(i.e., τ12d → 30) and a smaller potentiation adjusting rate (P12 →
0.05) yield the lowest minimum CV value, given by CVmin =
0.2989 which occurs at the synaptic noise intensity of σ1 �
1.9,×, 10−4 � σ̂2.

The SISR-SISR scheme in Figure 7B shows better overall
performance compared to the CR-SISR scheme with respect to
these inter-layer STDP parameters. First, we observe that the
surface of the graph CVmin in the SISR-SISR scheme (with the
highest value at CVmin = 0.2098, occurring at P12 = 0.5 and τ12 =
0.5) lies entirely below the surface of the graph CVmin in the CR-
SISR scheme (with the lowest value at CVmin = 0.2989, occurring
at P12 = 0.05 and τ12d = 30). Secondly, from Figure 7B, we observe
that small (i.e., P12 = 0.1), but not too small values (unlike in the
CR-SISR scheme in Figure 7Awith P12 = 0.05) of the potentiation
adjusting rate and large values of the depression temporal
window (i.e., τ12 = 30) parameters yield the lowest minimum
CV value, given by CVmin = 0.1005 which occurs at the synaptic
noise intensity of σ1 � 7.3 × 10−5 � σ̂1.

In [50], the synaptic connections between the FHN neurons
are static, and the effects of STDP on the strength of synaptic
couplings are entirely ignored. The results [50] show that
intermediate and strong multiplexing between the layer
networks is required for the enhancement of the coherence,
irrespective of the enhancement scheme. However, in the
current paper, the inter-layer synaptic strength may not be
static. Thus, we cannot choose a priori the strength of the
inter-layer synaptic connections because this is entirely
controlled by the STDP rule, which depends on the neurons’
random spiking times. The best performance of the CR-SISR
scheme (indicated by the lowest of value of CVmin in Figure 7A)
occurs when P12 = 0.05, τ12d = 30, τ12 = 350, and σ1 = 1.9, ×, 10–4.
While the best performance of the SISR-SISR scheme (indicated
by the lowest value CVmin in Figure 7B) occurs when P12 = 0.1,
τ12d = 30, τ12 = 1,000, and σ1 = 7.3 × 10–5. Now, using these two
sets of parameter values, we computed the time-evolution of the
population-averaged multiplexing synaptic weights 〈K12

ii 〉 with
an initial normal distribution of mean 0.1 and standard deviation
of 0.02. The results are depicted in Figure 7C where the green
curve shows that the best enhancement of SISR via the SISR-SISR
scheme occurs via LTP, i.e., the strengthening of the inter-layer
synapses from the initial value. In contrast, the red curve shows
that the best enhancement of SISR via the CR-SISR scheme occurs
via LTD, i.e., the weakening of the inter-layer synapses from the
initial value. We note that the red curve in Figure 7C is close to
zero, but not exactly zero (since the elimination of synapses has
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been avoided by bounding 〈K12
ii 〉 ∈ [0.0001, 1]). The fact that the

weak multiplexing of layer networks could enhance resonance
phenomena in one of the layers was already discovered in [39].
However, this remains an observed behavior as the precise
mechanism behind it is still elusive. A theoretical explanation
of weak-multiplexing-induced resonance phenomena should be
rewarding in theoretical studies and applications, e.g., in
neuroengineering.

4 SUMMARY AND CONCLUSION

In this paper, we have numerically investigated the effects of
varying the network and STDP parameters on the degree of CR
and SISR in isolated and coupled (multiplexed) layer networks
consisting of electrically connected FHN model neurons. In
the isolated layer networks and for a fixed set of parameters,
the results indicate that: 1) in the presence of STDP, the degree
and the robustness of the coherence due to CR are always
higher than those of the coherence due to SISR, unlike in the
absence of STDP where the opposite behaviors occur [50], 2)
the degree of coherence due to SISR increases with the average
degree of the network connectivity and the rewiring
probability of the network topology. While the degree of the

coherence due to SISR shows a nonlinear response to the
variation in the electric time delay between the
neurons—smaller and significantly larger time delays yield a
higher degree of coherence than intermediate values, and 3) the
degree of coherence due to SISR increases with a decreasing
(increasing) value of the depression temporal window
(potentiation adjusting rate) parameter of the STDP learning
rule, especially at (relatively) larger synaptic noise intensities.

In the multiplex networks, we set up two enhancement
schemes for the more sensitive phenomenon, i.e., SISR in
layer 1, based on the multiplexing with layer 2 and using
SISR and CR acting as the enhancing phenomena each with
a high degree of coherence in layer 2. In the first enhancement
scheme (termed the CR-SISR scheme), we have SISR with a low
degree of coherence, achieved with specific values of the
network and STDP parameter in layer 1 obtained in advance.
And in layer 2 we have CR with a high degree of coherence,
achieved with specific values of the network and STDP
parameters obtained in advance. In the second enhancement
scheme, termed the SISR-SISR scheme, we have SISR with a low
degree of coherence in layer 1. And in layer 2 we have SISR with
a high degree of coherence. Our results showed that: 1) both
schemes can significantly enhance (as indicated by the relatively
lower value of the CV curves) the poor degree of SISR in layer 1,

FIGURE 7 |MinimumCV against the multiplexing potentiation adjusting rate P12 and depression temporal window τ12d for layer 1 exhibiting SISR whenmultiplexed
to layer 2 exhibiting CR and SISR in Panels (A) and (B), respectively. The SISR-SISR scheme outperforms the CR-SISR scheme in enhancing SISR in layer 1 in the entire
(τ12d, P12) plane. Parameter values in panels (A) and (B) are the same as in (Figure 6A) with τ12 = 350 and τ12 = 1,000 in the CR-SISR and SISR-SISR scheme,
respectively. Panel (C) shows the time-evolution of population-averaged inter-layer synaptic weights 〈K12

ii 〉 with an initial normal distribution of mean 0.1 and
standard deviation 0.02 at the values of P12, τ12d, and σ1 (see main text) at which CVmin achieves it lowest value in CR-SISR and the SISR-SISR schemes. LTP (LTD)
favours the SISR-SISR scheme (CR-SISR scheme).
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2) at the optimal inter-layer time delay (τ12) of each scheme, a
larger depression temporal window (τ12d) and a smaller
potentiation adjusting rate (P12) parameters of the inter-layer
STDP learning rule improve the CR-SISR and SISR-SISR
enhancement schemes. However, for the SISR-SISR scheme,
the potentiation adjusting rate parameter should not be too
small, 3) the SISR-SISR scheme outperforms the CR-SISR
scheme in the enhancement of SISR in layer 1 for all the
parameter values of the inter-layer STDP learning rule, and
4) at their respective optimal inter-layer time delay, synaptic
noise intensity, potentiation adjusting rate, and depression
temporal window parameter values, the SISR-SISR scheme
enhances SISR in layer 1 via long-term potentiation (LTP) of
the synaptic strength between the layers. In contrast, the CR-
SISR scheme enhances SISR in layer 1 via long-term depression
(LTD) of the synaptic strength between the layers.

Interesting future research directions on the topic would be to
investigate the robustness of the results presented in this paper
when the topologies of the layer and multiplex networks are
different and when the networks are driven by homeostatic
structural plasticity.
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