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Detector simulation is a key component for studies on prospective future high-energy
colliders, the design, optimization, testing and operation of particle physics experiments,
and the analysis of the data collected to perform physics measurements. This review starts
from the current state of the art technology applied to detector simulation in high-energy
physics and elaborates on the evolution of software tools developed to address the
challenges posed by future accelerator programs beyond the HL-LHC era, into the
2030–2050 period. New accelerator, detector, and computing technologies set the
stage for an exercise in how detector simulation will serve the needs of the high-
energy physics programs of the mid 21st century, and its potential impact on other
research domains.
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1 INTRODUCTION

Simulation is an essential tool to design, build, and commission the sophisticated accelerator facilities and
particle detectors utilized in experimental high energy physics (HEP). In this context, simulation refers to
a software workflow consisting of a chain of modules that starts with particle generation, for example,
final state particles from a proton-proton collision. A second module simulates the passage of these
particles through the detector geometry and electromagnetic fields, as well as the physics interactions with
its materials. The output contains information about times, positions, and energy deposits of the particles
when they traverse the readout-sensitive components of the detector. In most modern experiments, this
module is based on the Geant4 software toolkit [1–3] but other packages such as FLUKA [4, 5] and
MARS [6] are also widely used, depending on the application. A third module generates the electronic
signals from the readout components in response to the simulated interactions, outputting this data in the
same format as the real detector system. As such, the datasets generated through simulationmay be input
to the same algorithms used to reconstruct physics observables from real data. Simulation is thus not only
vital in designing HEP experiments, it also plays a fundamental role in the interpretation, validation, and
analysis of the large and complex datasets collected by experiments to produce physics results, and its
impact here should not be underestimated [7].
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With many unanswered questions remaining in particle
physics and the end of the Large Hadron Collider (LHC)
program expected in the late 2030’s, plans and ideas for the
next big facilities of the 2030s–2050s are gaining momentum. As
these facilities intend to explore ever higher energy scales and
luminosities, the scale of simulated data samples needed to design
the detectors and their software, and analyze the physics results
will correspondingly grow. Simulation codes will thus face
challenges in scaling both their throughput and accuracy to
meet these sample size requirements with finite but ever
evolving computational facilities [8]. The LHC era has already
seen a significant evolution of simulation methods from “full”
detailed history-based algorithms to a hybrid of full and “fast”
parameterized or machine-learning based algorithms for the
most computationally expensive parts of detectors [9]. A
hybrid simulation strategy, using a combination of full and
fast techniques will play a major role for future collider
experiments, but full simulation will still be required to
develop and validate the fast algorithms, as well as to support
searches and analyses of rare processes. The goal of this article is
to discuss how detector simulation codes may evolve to meet
these challenges in the context of the second and third elements of
the above simulation chain, that is the modeling of the detector,
excluding the generation of initial particles. An overview of the
computational challenges here may be found in [8].

Section 2 presents the design parameters of future accelerators
and detectors relevant to their simulation such as colliding particle
types, beam parameters, and backgrounds. Challenges in the
description and implementation of complex detector geometries
and particle navigation through rapidly varying magnetic fields and
detector elements of different shapes and materials are discussed in
Section 3, while the physicsmodels needed to describe the passage of
particles through the detector material at the energy ranges
associated with the colliders under consideration will be
discussed in Section 4. Beam backgrounds from particle decay or
multiple hard collisions are another important topic of discussion,
particularly in the case of beams with particles that decay or emit
synchrotron radiation, and will be discussed in Section 5. Section 6
focuses on readout modeling in the context of the opportunities and
challenges posed by new detector technology, including novel
materials and new generation electronics. Section 7 looks
forward to the computing landscape anticipated in the era of
future colliders, and how these technologies could help improve
the physics and computing performance of detector simulation
software, and even shape their future evolution. Section 8 will
discuss the evolution of simulation software toolkits, including
how they might adjust to new computing platforms, experiment
software frameworks, programming languages, and the potential
success of speculative ideas, as well as the features that would be
needed to satisfy the requirements of future collider physics
programs. For decades, HEP has collaborated with other
communities, such as medical and nuclear physics, and space
science, on detector simulation codes, resulting in valuable
sharing of research and resources. Section 9 will present
examples of application of detector simulation tools originating
in HEP, in particular to the medical field, and how the challenges for
future HEP simulation may overlap.

This article is one of the first reviews on the role and potential
evolution of detector simulation in far future HEP collider
physics programs. We hope it contributes to highlight its
strategic importance both for HEP and other fields, as well as
the need to preserve and grow its priceless community of
developers and experts.

2 FUTURE ACCELERATORS AND
DETECTORS IN NUMBERS

There are several designs for future particle accelerators, each
with its strengths and challenges. This chapter focuses on the
accelerator and detector design parameters and issues relevant for
software modeling. In particular, we survey a number of the most
mature proposals, including the high luminosity LHC (HL-LHC),
the high energy LHC (HE-LHC), the Large Hadron-electron
Collider (LHeC) and its high luminosity upgrade (HL-LHeC),
the Future Circular Collider (FCC) program of ee (electron-
positron), hh (hadron-hadron), and eh (electron-hadron)
colliders, the Circular Electron Positron Collider (CEPC), the
Muon Collider, the International Linear Collider (ILC), the
Compact Linear Collider (CLIC), and the Cool Copper
Collider (CCC). Table 1 summarizes the parameters of these
proposed future accelerators, including design values for maximal
energy, peak luminosity, and integrated luminosity, and
references for each proposal. There are other potential future
colliders that are still being designed, including the Super Proton-
Proton Collider (SPPC) [10], an electron-muon collider [11], a
muon-proton collider [12], and a muon-ion collider [13].

Modern particle physics accelerators operate with bunched
beams and reach peak luminosities higher than 1–2 ×
1034 cm−2 s−1, exceeding the initial LHC design specification.
The luminosity for future hadron colliders, such as the High
Luminosity LHC (HL-LHC), is limited by the maximum number
of simultaneous proton-proton collisions, or pileup, under which
the detectors can operate effectively. For circular lepton colliders
at higher energies, the luminosity is limited by the beamstrahlung
(deflection-induced synchrotron radiation), and “top-up” or
“top-off” schemes to inject additional particles during beam
circulation are expected to be necessary to extend beam
lifetime [14]. For linear machines, design parameters like the
beam size, beam power, beam currents, and repetition rates drive
the peak luminosity.

Proton-proton collisions offer the greatest energy reach, but
they are limited by construction costs and the availability of high-
field magnets. The largest proposed center-of-mass collision
energy comes from the FCC-hh at 100 TeV. Lepton colliders
can also push the energy Frontier to multiple TeV. The muon
collider requires R&D in order to reduce the transverse and
longitudinal beam emittance via cooling and to accelerate to
collision energies all within the muon’s 2.2 μs lifetime [15].
However, it offers an exciting path to collision energies up to
a few tens of TeV by suppressing synchrotron radiation relative to
electrons. The beam-induced background (BIB) created by beam
muons decaying in flight places new and unique demands on
simulation [16]. Wakefield acceleration also offers a possibility
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for reaching high energies more compactly in the further
future [17].

The proposed detector technologies for the next generations of
experiments at colliders are growing in breadth, as indicated by
the summary in Table 2. These increases in technological variety
are driven by both physics goals and experimental conditions. In
addition, new detectors will be increasingly complex and
granular. The interplay between instrumentation and
computing is therefore increasingly important, as detectors
become more challenging to simulate. One example is the
upcoming High Granularity Calorimeter (HGCAL) at the
Compact Muon Solenoid (CMS) experiment [18]. With
roughly six million channels, it will be the most granular
calorimeter built to date. This massively increases the
geometry complexity, leading to a ~40–60% increase in the
time to simulate the detector [19]; in addition, the increased
precision of the detector is expected to require correspondingly
more precise physical models, which may further double the
simulation time in existing software [20]. The incorporation of
precision timing information may also place more demands on
the accuracy of the simulation.

The HL-LHC is the nearest-future collider surveyed here, and
most further-future colliders aim at higher precision
measurements or present even more difficult environments.
Therefore, detector complexity should be expected to continue
to increase, in order to facilitate the physics programs and
measurements for these new colliders. More than ever before,
increasingly energetic and potentially heavier particles will

interact with the detector materials, and massive increases in
accumulated luminosity will enable physicists to explore the tails
of relevant kinematic distributions very precisely. New
technologies will pose their own challenges, such as the muon
collider BIB, or new materials whose electromagnetic and nuclear
interactions may not be fully characterized. This motivates the
continued development of detector simulation software, to ensure
its computational performance and physical accuracy keep up
with the bold next steps of experimental high energy physics.

3 GEOMETRY DESCRIPTION AND
NAVIGATION

Geometric modeling is a core component of particle transport
simulation. It describes both the material properties of detector
components, which condition the particle interactions, and their
geometric boundary limits. Particles are transported through
these geometries in small spatial steps, requiring fast and
accurate computation of distances and finding the geometry
location after crossing volume boundaries. This task uses a
significant fraction of total simulation time even for the
current LHC experiments [8], making performance a general
concern for the evolution of geometry modeling tools. As
discussed in Section 2, future detectors will have higher
granularity and, in same cases, will need to handle higher
interaction rates than at the LHC, requiring the geometry
modeling and navigation software to increase the throughput

TABLE 1 | The parameters of various future accelerators. * Muon colliders face beam-induced backgrounds, which have different properties from pileup at ee or pp colliders.

Collider Particles
��
s

√
Peak lumi.

[1034 cm−2 s−1]
Peak Pileup Int. lumi.

[ab−1]

HL-LHC [99, 100] pp 14 TeV 7.5 200 3–4
HE-LHC [100, 101] pp 27 TeV 16 500 15
LHeC [102, 103] ep 1.3 TeV 0.5–2.4 0.1 1
HE-LHeC [102, 103] ep 1.77 TeV 1.5 0.1 2
FCC-ee [104–106] ee 88–365 GeV 1.5–230 0 1.5–150
FCC-hh [104, 105, 107] pp 100 TeV 30 1,000 20
FCC-eh [104, 105, 107] ep 3.5 TeV 1.5 1 2
CEPC [108, 109] ee 90–240 GeV 32–3 0 2.6–16
Muon Collider [110] μμ 3–14 TeV 1.8–40 * 1–20
ILC [111, 112] ee 250–500 GeV 2.7–3.6 0 1–4
CLIC [113, 114] ee 0.38–3 TeV 1.5–6 0 1–5
CCC [115] ee 250–550 GeV 1.3–2.4 0 2–4

TABLE 2 | Summary of technologies and applications for future projects.

Technology Tracker Calorimeter Muon Detector Pid

Solid state Planar, 3D Si, GaAs LGAD
MAPS, LGAD, CMOS

Gas TPC, DC RPC, MPGD RPC, MPGD TPC, DC
DT, MWPC MRPC

Scintillator SciFi, SiPM Tiles, fibers, crystals Panels
Noble liquid LAr
Cherenkov Quartz fibers RICH, TOF

TOP, DIRC
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of the above calculations given this increased complexity.
Providing the navigation precision necessary to achieve the
required physics accuracy will likely be challenged by the
presence of very thin detectors placed far away from the
interaction point.

The detector geometry description of a HEP experiment goes
through several processing steps between the initial computer-
aided designs (CAD) [21] to the in-memory representation used
by the simulation. These transformations primarily reduce the
complexity and level of detail available in the CAD model to
increase computing performance without compromising the
required physics accuracy. To start with, the detector design
study phase is particularly important for future collider
experiments. Essential detector parameters concerning solid
angle acceptances, material composition or engineering
constraints need to be optimized in a tight cycle involving full
simulation. DD4hep [22] has emerged as a commonly used
detector description front-end for future accelerator
experiments, providing an internal model representation
independent on the geometry modeler back-end, and
interfaces for importing the geometry representation from
many sources. This not only facilitates the design optimization
cycle, but also the handling of multiple geometry versions and the
integration of important detector conditions such as alignment,
which affect the geometry during the experiment operation.

Although the geometry models at the core of today’s HEP
detector simulation were designed in the 60’s, Geant geometry
implementations [1, 23] have enjoyed continuous success over
many generations of CPU architectures because of a number of
features that reduce both the memory footprint and algorithmic
complexity. Multiple volume placements, replication using
regular patterns, and hierarchies of non-overlapping
‘container’ volumes enable efficient simulation of very complex
setups comprising tens of millions of components. However,
creating the model description for such setups is often a long
and arduous process, and the resulting geometry is very difficult
to update and optimize.

The most popular 3Dmodels used in simulation nowadays are
based on primitive solid representations such as boxes, tubes, or
trapezoids, supporting arbitrarily complex Boolean combinations
using these building blocks. Different simulation packages use
different constructive solid geometry (CSG) flavours [24],
providing a number of features and model constraints to
enhance the descriptive power and computation efficiency.
However, performance can be highly degraded by overuse of
some of these features, such as creating unbalanced hierarchies of
volumes or creating overly complex Boolean solids. Using such
inefficient constructs in high occupancy detector regions near the
interaction point generally leads to significant performance
degradation.

The current geometry implementations have a very limited
adaptive capability for optimizing such inefficient constructs,
mainly due to the high complexity of the model building
blocks. The geometry queries can only be decomposed to the
granularity of solid primitives, so user-defined constructs cannot
be internally simplified. This calls for investigating surface models
as alternatives to today’s geometry representations. Adopting

boundary representation (BREP) models [25] composed of
first and second-order algebraic surfaces, would allow
decomposing navigation tasks into simple surface queries. An
appropriate choice of the BREP model flavor allowing surface
queries to be independent could greatly favor the highly-parallel
workflows of the future.

Developing automatic conversion tools from CAD surface-
based models to the Geant4 simulation geometry proved to be too
challenging in the past. DD4hep provides a conversion path for
complex surfaces into tessellated bodies usable directly in
simulation [26]. A conversion procedure relying exclusively on
tessellation would however introduce important memory and
performance overheads during simulation. Supporting surface
representations directly in the simulation geometry would make
such conversions more efficient. This would also provide a
simpler transition from the engineering designs to the
simulation geometry, having fewer intermediate
representations. It would also make it easier to implement
transparent build-time optimizations for inefficient user
constructs.

Successive upgrades to adapt to new computing paradigms
such as object-oriented or parallel design have not touched the
main modelling concepts described above, which served their
purpose for decades of CPU evolution but are quickly becoming a
limiting factor for computing hardware with acceleration. Recent
R&D studies [27, 28] have shown that today’s state-of-the-art
Geant-derived geometry codes such as VecGeom [29] represent a
bottleneck for vectorized or massively parallel workflows. Deep
polymorphic code stacks, low branch predictability, and
incoherent memory access are some of the most important
reasons for performance degradation when instruction
execution coherence is a hardware constraint. This is intrinsic
to the model being used, combining in the same query algorithms
of very different complexity, called in an unpredictable manner
and unfriendly to compiler optimizations. These studies also
indicate the need to simplify the geometry models being used,
highly reducing or eliminating unnecessary abstractions.

Performance optimization is particularly important for
common geometry navigation tasks such as collision detection
of the simulated particle trajectories with the geometry setup, and
relocation after crossing volume boundaries. Navigation helpers
are using techniques such as voxelization [30] or bounding
volume hierarchies (BVH) [31] to achieve logarithmic
complexity in setups having several millions objects. Adopting
efficient optimization strategies will be more relevant for the more
complex detectors of the future.

The same problem of collision detection is addressed by
graphics systems, in particular, ray-tracing (RT) engines such
as NVIDIA OptiX [32] that make use of dedicated hardware
acceleration. Adapting HEP detector simulations to use such
engine was implemented in the Opticks library [33], and
demonstrated speedups of more than two orders of magnitude
compared to CPU-based Geant4 simulations of optical photon
transport in large liquid-Argon detectors. This required adapting
the complete optical photon simulation workflow to GPUs, but
also simplifying and transforming the geometry description to
match OptiX requirements. Generalizing this approach for future
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HEP detector simulation would require a major re-engineering
effort, in particular for the geometry description. How exactly RT
technology evolves will likely have a big impact on the solutions
adopted for detector geometry modeling. As the use of RT
acceleration proliferates in the gaming industry, APIs
supported by dedicated languages and libraries will most
probably be made publicly available. Combined with larger
on-chip caches, future low-latency graphics chips may allow
externalizing geometry as an accelerated service for simulation.
Such service could become an important booster, but would be
conditional to the simplification of the geometry description and
added support for batched multi-track workflows.

Evolution in computing technology will most probably
present game-changing opportunities to improve simulation
software, as described in Section 7. For example, tensor cores
[34] provide a large density of Flops, although at a cost in
precision. Geometry step calculations cannot make use of half-
precision floating point (FP16) directly because rounding errors
would become too important and affect both physics precision
and transportation over large distances in the detector. Some
optimizations may however be delegated to a FP16-based
navigation system using ML inference to, for instance,
prioritize candidate searches. Single-precision FP32-based
geometry distance computation should be given more weight
in the context of the evolution of reduced-precision accelerator-
based hardware, because the option to reduce precision fulfils
physics requirements in most cases. Furthermore, it would
provide a significant performance boost due to a smaller
number of memory operations for such architectures. Recent
studies report performance gains as large as 40% for certain GPU-
based simulation workflows [28], making R&D in this area a good
investment, as long as memory operations remain the dominant
bottleneck, even if chips evolve to provide higher Flops at FP32
precision or better. The precision reduction option is, however,
not suitable for e.g., micron-thin sensors, where the propagation
rounding errors become comparable to the sensor thickness.
Addressing this will require supporting different precision
settings depending on the detector region.

4 PHYSICS PROCESSES AND MODELS

As mentioned in Section 1, Geant4 has emerged as the primary
tool to model particle physics detectors. Geant4 offers a
comprehensive list of physics models [35] combined with the
continuous deployment of new features and improved
functionality, as well as rigorous code verification and physics
validation against experimental data.

4.1 Current Status
During the first two periods of data taking in 2010–2018, the LHC
experiments produced, reconstructed, stored, transferred, and
analyzed tens of billions of simulated events. The physics
quality of these Geant4-based Monte Carlo samples produced
at unprecedented speed was one of the critical elements enabling
these experiments to deliver physics measurements with greater
precision and faster than in previous hadron colliders [7, 36].

Future accelerator programs will, however, require the
implementation of additional physics processes and
continuous improvements to the accuracy of existing ones. A
quick review of the current status of physics models in Geant4 will
precede a discussion of future needs.

Physics processes in Geant4 are subdivided over several
domains, the most relevant for HEP being particle decay,
electromagnetic (EM) interactions, hadronic processes, and
optical photon transport. The precision of the modeling has to
be such that it does not become a limiting factor to the potential
offered by detector technology. EM physics interactions of e−/e+/γ
with the detector material, producing EM showers in
calorimeters, consume a large fraction of the computing
resources at the LHC experiments. Reproducing the response,
resolution, and shower shape at a level of a few per mille requires
modeling particle showers down to keV levels, which contain a
large number of low-energy secondary particles that need to be
produced and transported through magnetic fields. This level of
accuracy is required in order to distinguish EM particles from
hadronic jets, and to efficiently identify overlapping showers.
Highly accurate models for energy deposition in thin calorimeter
layers are also essential for reconstruction of charged particles
and muons. Simulation of tracking devices requires accurate
modeling of multiple scattering and backscattering at low and
high energy, coupled with very low energy delta electrons. Geant4
delivers on all these requirements by modeling EM processes for
all particle types in the 1 keV to 100 TeV energy range. The
accuracy of Geant4 EM showers is verified by the CMS [37] and
ATLAS [38] experiments.

Geant4 models physics processes for leptons, long-lived
hadrons, and hadronic resonances. Simulation of particle
decay follows recent PDG data. The decay of b-, c-quark
hadrons and τ-leptons is outsourced to external physics
generators via predefined decay mechanisms.

Simulation of optical photon production and transport is also
provided by Geant4. The main accuracy limitation arises from the
large compute time required to model the large number of
photons and the many reflections that may occur in within
the detector. Various methods to speed-up optical photon
transport are available, depending on tolerance to physics
approximations.

Hadron-nuclear interaction physics models are needed to
simulate hadronic jets in calorimeters, hadronic processes in
thin layers of tracking devices, and for simulating shower
leakage to the muon chambers. Geant4 hadronic physics is
based on theory models and tuned on thin target data [3].
This approach guarantees a more reliable predictive power
than that offered by parametric models for a wide range of
materials, particle types and energy ranges for which data
measurements are not available. Parameter tuning and model
extensions are necessary to describe all particle interactions at all
energies [2]. Geant4 has adopted the approach of combining
several models that fit the data best in different energy ranges,
since it is unrealistic to expect that one single model would do the
job over the full kinematic range of interest. This is done by
providing several sets of predefined “physics lists”, which are
combinations of EM and hadronic processes and models.
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Experiments need to identify the most suitable for their own
physics program by performing the necessary physics validation
studies and possibly applying calibration corrections [37–40].

4.2 Future Needs
The large data volumes to be collected by the HL-LHC
experiments will enable experiments to reduce statistical
uncertainties, therefore demanding more accurate simulation
to help reduce systematic uncertainties in background
estimation and calibration procedures. The next generation of
HEP detectors to be commissioned at the LHC and designed to
operate in future lepton and hadron colliders will have finer
granularity and incorporate novel materials, requiring simulation
physics models with improved accuracy and precision, as well as a
broader kinematic coverage. Materials and magnetic fields will
also need to be described in more detail to keep systematic
uncertainties small. Moreover, new technologies [41–43] will
allow detectors to sample particle showers with a high time
resolution of the order of tens of picoseconds, which will need
to be matched in simulation. Consequently, the simulation
community has launched an ambitious R&D effort to upgrade
physics models to improve accuracy and speed, re-implementing
them from the ground up when necessary (e.g., GeantV [27],
Adept [28], Celeritas [44]). Special attention will be needed to
extend accurate physics simulation to the O (100)TeV domain,
including new processes and models required to support the
future collider programs.

Achieving an optimal balance between accuracy and software
performance will be particularly challenging in the case of EM
physics, given that the corresponding software module is one of
the largest consumers of compute power [36]. Reviews of EM
physics model assumptions, approximations and limitations,
including those for hadrons and ions will be needed to
support the HL-LHC and Future Collider (FCC) programs.
The Geant4 description of multiple scattering [45] of charged
particles provides predictions in good agreement with data
collected at the LHC. Nevertheless, the higher spatial
resolution in new detectors [41, 46–48], may require even
higher accuracy to reproduce measured track and vertex
resolutions. Excellent modeling of single-particle scattering and
backscattering across Geant4 volume boundaries for low energy
electrons are critical for accurate descriptions of shower shapes in
calorimeters, such as CMS’s high granularity hadronic
calorimeter. At the very high energies present at the FCC,
nuclear size effects must be taken into account, and elastic
scattering models must be extended to include nuclear form
factors in the highest energy range. The description of form
factors may affect EM processes at high energies in such a way
that it affects shower shapes and high energymuons. A theoretical
description of the Landau-Pomeranchuk-Migdal (LPM) effect,
significant at high energy, is included in the models describing the
bremsstrahlung and pair-production processes in Geant4. For the
latter, introducing LPM leads to differences in cross-sections at
very high energies that will need to be understood when data
become available. A relativistic pair-production model is essential
for simulation accuracy at the FCC. Rare EM processes like γ
conversion to muon and hadron pairs also becomes important at

very high energies and will have to be added. This is also essential
to properly model beam background effects in the collision region
of a Higgs Factory. In the cases of the FCC and dark matter search
experiments, the description of pair production will need to be
extended to include the emission of a nearby orbital electron
(triplet production) and to take into account nuclear recoil effects.
Finally, γ radiative corrections in EM physics may affect
significantly the accuracy of measurements at Higgs factories
and will need to be added to the models. All these rare processes
must be added to the simulation to improve the accuracy in the
tails of the physics distributions, where backgrounds become
important. These corrections must be included such that they are
invoked only as needed, thus not increasing the computing cost of
EM modeling. At the FCC collision energy, the closeness of
tracking devices to the interaction points will also require
widening the range of physics models of short lived particles.
This will be particularly important for high-precision heavy flavor
measurements, as non-negligible fractions of beauty and charm
hadrons will survive long enough to intercept beam pipes and the
first detector layers. Describing the interaction of such particles
with matter may already be required at the HL-LHC program
because of a reduction of the distance between the trackers and
the interaction point [41, 46]. A review of how detector
simulation interfaces to dedicated decay generators during
particle transport may be necessary.

In hadronic interactions, more than one model is needed to
describe QCD physics processes accurately over the whole energy
range. Typically, a hadronic interaction is initiated when a high
energy hadron collides with a nucleon in the nucleus of a given
material. This is followed by the propagation of the secondary
particles produced through the nucleus, the subsequent de-
excitation of the remnant nucleus and particle evaporation,
until the nucleus reaches the ground state. Different sets of
models map naturally to these phases depending on the initial
energy of the collision: a parton string model for energy above few
GeV, an intra-nuclear cascade model below that threshold. Pre-
compound and de-excitation models are used to simulate the last
steps in the evolution of the interaction. A reliable description of
showers in hadronic calorimeters requires accurate descriptions
of all these processes.

Geant4 offers two main physics lists to describe hadronic
physics in high energy collider experiments. The main difference
between the two consists in the choice of the model describing the
initiating quark-parton phase mentioned above, either a quark-
gluon string model, or a Fritiof model [3]. Having more than one
model allows to estimate the systematic uncertainties arising from
the approximations they use. Unfortunately, neither of them is
accurate enough to describe the hadronic interactions at multi-
TeV energies occurring at the FCC. New processes will need to be
implemented in the hadronic physics simulation suite to address
this higher energy domain, taking inspiration from those
available in the EPOS generator [49], used by the cosmic ray
and heavy ion physics communities.

Another element essential for the simulation of hadronic
physics is precise calculations of interaction cross-sections. At
the highest energies, Geant4 uses a general approach based on the
Glauber theory [50], while at lower energies cross-sections are

Frontiers in Physics | www.frontiersin.org June 2022 | Volume 10 | Article 9135106

Apostolakis et al. Detector Simulation Future Accelerator Experiments

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


evaluated from tables obtained from the Particle Data Group [51].
This approach profits from the latest thin-target experiment
measurements and provides cross-sections for any type of
projectile particle. The precision of cross-section calculations
for different types of particles will need to be improved as
more particle types become relevant to particle flow
reconstruction in granular calorimeters.

A correct description of particle multiplicity within hadronic
showers is also needed to model the physics performance of
highly granular calorimeters (e.g. CMS [18]), and is also essential
to simulate high-precision tracking devices (e.g. LHCb
spectrometer). The parameters describing hadronic models
must be tuned to describe all available thin target test beam
data, and the models expanded to provide coverage to as many
beam particles and target nuclei as possible. For flavor physics, it
is important to take into account the differences in hadronic
cross-sections between particle and anti-particle projectiles.

5 BEAM BACKGROUNDS AND PILEUP

The main categories of beam backgrounds at ee colliders are
machine and luminosity induced [52]. The former is due to
accelerator operation and includes Synchrotron Radiation (SR)
and beam gas interactions. The latter arises from the interaction
of the two beams close to the interaction point of the experiment.

The SR that may affect the detector comes from the bending
and focusing magnets closest to it. While detectors will be
shielded, a significant fraction of photons may still scatter in
the interaction region and be detected. This is expected to be one
of the dominant sources of backgrounds in the FCC-ee detector
[53]. Beam gas effects are a result of collisions between the beam
and residual hydrogen, oxygen and carbon gasses in the beam
pipe inside the interaction region.

The luminosity induced background is generated from the
electromagnetic force between the two approaching bunches,
which leads to the production of hard bremstrahlung photons.
These may interact with the beam and an effect similar to e+e−

pair creation can occur, or they scatter with each other which can
result in hadrons, and potentially jets, in the detector. Stray
electrons due to scattering between beam particles in the same
bunch can also hit the detector.

The main background at pp colliders are the large number of
inelastic proton–proton collisions that occur simultaneously with
the hard-scatter process, collectively known as pileup. This
usually results in a number of soft jets coinciding with the
collision. The number of interactions per crossing at the future
colliders is expected to exceed 1,000, compared to no more than
200 at the end of the HL-LHC era. An additional source of
luminosity induced background is the cavern background.
Neutrons may propagate through the experimental cavern for
a few seconds before they are thermalized, thus producing a
neutron-photon gas. This gas produces a constant background,
consisting of low-energy electrons and protons from spallation.

Machine induced backgrounds at pp colliders are similar to the
ee ones [38]. Besides the beam gas, the beam halo is a background
resulting from interactions between the beam and upstream

accelerator elements. In general, pile-up dominates over the
beam gas and beam halo.

Muon colliders are special in that the accelerated particles are
not stable. Decays of primary muons and the interaction of their
decay products with the collider and detector components [54]
constitute the main source of beam background. Compared to ee
colliders this represents an additional source of background
resulting in a large number of low momentum particles that
may not be stopped by shielding and enter the interaction region
of the detector. Additionally, this type of background needs to be
simulated with higher precision outside of the interaction region.

An important consideration is the detector response and
readout time compared to the time between collisions, which
is often longer. In-time and out-of-time pile-up should be
considered separately. In-time pileup arises from additional
collisions that coincide with the hard-scatter one, while out-of-
time pile-up comes from collisions occurring at bunch crossings
different from the hard-scatter one, although affecting the
readout implicitly.

5.1 Bottlenecks in Computational
Performance
The biggest bottleneck in the time it takes to model pileup in a pp
collider is the number of interactions per bunch crossing. As seen
in black circles in Figure 1, the CPU time requirement has a very
steep dependence on this parameter, which needs to match data-
taking conditions. The second issue can be the slow response time
of the detectors, requiring a large number of out-of-time bunch

FIGURE 1 | Comparison of the average CPU time per event in the
standard ATLAS pileup digitization (black open circles) and the pre-sampled
pileup digitization (red filled circles) as a function of the number of pp collisions
per bunch crossing (μ). The CPU time is normalized to the time taken for
the standard pileup for the lowest μ bin. Taken from Ref. [55].
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crossings to be simulated. This can be solved by only simulating
the detectors when needed, as not all have the same sensitive time
range. Improvements in detector technologies that will be used in
future experiments may make these times small enough not to
cause a significant overhead.

Traditionally each in-time or out-of-time interaction is
sampled individually and taken into account at the digitisation
step, when detector digital responses are emulated. Experiments
pre-sample pile-up events and reuse them between different
samples to reduce computational time [55, 56]. While the pre-
sampling itself still has the same CPU limitations, using those
pileup events barely depends on the amount of pileup (red circles
in Figure 1), but could cause larger stress on storage. Thresholds
to analogue signals are applied at digitization to reduce the
amount of saved digits significantly, at the cost of reduced
precision when two digital channels are merged. Thus pre-
sampling thresholds need to be tuned for each individual
detector, and computing resources can only be saved by
reusing pre-sampled events, where a compromise between
CPU savings and increased storage needs to be made in a way
that maintains optimal physics performance.

Another option to fully avoid the CPU bottleneck of pileup
pre-sampling is to use pileup events from data. The main
bottlenecks here are non-constant detector conditions and
alignment. Re-initializing the simulated geometry adds
overheads which may be mitigated by averaging conditions
over long periods. However, this solution will come at the cost
of reproducing data less precisely. Furthermore detector readout
only provides digital information above some thresholds which
are usually tuned for primary collisions and thus relatively high.
This reduces precision when merging the information with the
simulated hard-scatter event.

While other types of background are much lower at pp
colliders and their simulation can usually be skipped, this is
not the case for ee colliders. Some of those backgrounds, e.g.,
beam gas effects, synchrotron radiation and intra-beam
scattering, happen outside the detector cavern. They are
simulated by the accelerator team as they also affect beam
operations. To avoid re-simulating the same type of
background, the simulation can be shared with the experiment
as a list of particles that enter the interaction region [57], though
this is still a large number of low-momentum particles to
simulate. Experiments thus also use randomly-triggered
collision events for the background estimation, while also
being affected by the threshold effects.

5.2 Optimal Strategy for Future Colliders
During the development stage of the future experiments, detailed
simulation of all types of beam backgrounds is of utmost
importance. Simulation provides estimates of the physics
impact of backgrounds and helps to optimize the detector
design to minimize them as much as possible [58]. Some
backgrounds can be parametrized or even completely
neglected. One such example is that of cavern background
neutrons at hadron colliders. In most cases their contribution
is orders of magnitude smaller than that of pileup, although outer
muon chambers would require a detailed description, if high

precision is required. As low momentum neutron simulation is
very slow, it can be performed only once and used to derive
parametrized detector responses, which can then be injected at
the digitization stage.

As discussed earlier in this section, separate simulation of
beam backgrounds and pre-digitization saves computing
resources and has a negligible impact on physics performance
when reused randomly between samples. With the increased
background rates expected in future colliders, iterative mixing
and merging of background contributions will become an
essential technique. Detector readout thresholds must be set
sufficiently low to allow merging of digital signals multiple
times with negligible degradation of accuracy. This would
allow iterative pileup pre-sampling, where multiple events with
a low number of interactions could be merged to give an event
with a high number of interactions. It would also allow to merge
different types of backgrounds that would be prepared
independently. Furthermore, a special set of lower background
thresholds could be setup in the actual detector to enable the use
of real data events as background sources. The latter would yield a
reduced performance degradation as compared to current
detectors.

Most of all the beam background simulation strategy depends
on physics accuracy requirements. As mentioned in Section 1,
current experiments are moving towards a more frequent use of
fast simulation methods, either based on parametrized detector
responses or on machine learning technologies. The latter could
be used to choose the precision of the simulation algorithm
depending on the event properties, or to fully generate the
background on the fly. Regardless of the choice of the strategy
used to simulate large volumes of physics samples, a detailed
modeling as provided by full simulation will always be needed, if
nothing else to derive and tune the faster methods.

6 ELECTRONIC SIGNAL MODELING

The ambitious physics program at future accelerator-based
experiments requires detectors which can perform very
accurate measurements and handle high occupancy at the
same time. To achieve these goals, it is of paramount
importance to collect as much information from each
individual detector channel as possible, including the three
spatial coordinates, time and energy.

For simplicity, this section focuses on two main classes of
detectors that pose the most challenges from a computational
point of view: tracking detectors and calorimeters. Those are the
ones that usually use the largest number of electronic readout
channels, thus their behavior needs to be simulated in detail.

New generation calorimeters are designed as tracking devices
as well as providers of energy deposition information in the form
of the five-dimensional measurement referred to in the first
paragraph. These extended capabilities beyond traditional
calorimetric observables present challenges to the simulation
effort, since modeling must achieve accurate descriptions of all
these observables simultaneously. Additionally, calorimeters will
often operate in a high-occupancy environment in which sensor
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and electronics performance degrade fast as a consequence of
radiation damage.

The digitization step of simulation takes as input the
Geant4-generated analogue signals from the detector. The
first step of the digitization process accumulates this input
and groups it for individual read out elements. This is done in a
number of time slots which define the integration time for the
detector. Beyond this step, modeling is highly detector
dependent. It is driven by detailed descriptions of readout
electronics including the noise component, cross-talk, and the
readout logic which involves the shaping of the signal and the
digitization of the pulse. Finally, a digit is recorded when the
signal is above a predefined threshold.

6.1 Tracking Detectors
Various types of tracking detectors are currently employed in
HEP experiments at colliders [51], with the most widely used
being silicon, gaseous (RPC, MDT, Micromegas, etc), transition-
radiation, and scintillation detectors. Of these, silicon-based
detectors are among the most challenging and computationally
expensive to simulate, given the large number of channels and
observables involved.

Silicon detectors give rise to electron-hole pairs which are
collected with a certain efficiency, amplified, digitized, and
recorded. When biased by a voltage difference, the response of
the sensor to the passage of ionizing particles is characterized by
its charge collection efficiency (CCE) and its leakage current
(Ileak). As the sensors are operated well above their full depletion
voltage, the CCE is expected to be high. The current digitization
models for silicon detectors use either parametric or bottom-up
approaches. For parametric approaches, the overall simulated
energy deposit is split across readout channels using a purely
parametric function based either on detailed simulations or data;
for bottom-up approaches the energy deposit is used to generate
multiple electron-hole pairs that are then propagated through a
detailed simulation of the electric field and used to compute the
expected signal generated at the electrodes. Several models are
employed for how the overall deposited energy is split. They
range from simple models performing an equal-splitting along
the expected trajectory to more complex models [59], each giving
different increasing levels of accuracy at the price of being
computationally more expensive.

Exposure to radiation induces displacements in the lattice and
ionization damage, liberating charge carriers. These effects
contribute to a reduction of the CCE and increase in the Ileak.
The increase in instantaneous luminosity projected at the HL-
LHC collider challenged experiments to implement simulation
models able to predict the reduced CCE expected in the presence
of radiation damage. A detailed simulation of the electric field is
used with more refined models describing the probability of
charge-trapping and reduced CCE [60–62]. Those models tend
to be heavy on computing resources, prompting parametric
simulation approaches to be developed as well.

Detector designs for future colliders differ substantially
depending on the type of environment they will have to
withstand. Detectors at moderate to high-energy e+e−

colliders will see a clean event and moderate rates of

radiation. For such detectors, a detailed simulation strategy is
crucial for high precision physics measurements; however, the
demand for large simulated samples makes a hybrid approach
including parametrizations most likely. Silicon-based tracking
detectors are also the technology of choice at muon colliders.
The radiation environment within this machine poses unique
challenges due to the high level of beam-induced backgrounds
(BIBs). Real-time selection of what measurements are most
likely to come from the interaction point rather than from
BIBs is likely to rely on detailed shape analyses of the
neighboring pixels that give signals as well as possible
correlation across closely-spaced layers [63]. A hybrid
approach will likely be needed, consisting of a detailed
simulation of the detector layers where the raw signal
multiplicity is the highest and needs to be reduced, together
with a fast simulation approach for the rest of the tracking
detector. For detectors at future hadron colliders, the extreme
radiation environment near the interaction point will make it
mandatory to implement radiation damage effects in the
simulation. For this, a parametrized approach would also be
the most realistic path to keep computational costs under
control.

6.2 Calorimeters
Calorimeters may be broadly classified as of two types. In
homogeneous calorimeters, the entire volume is sensitive and
contribute a signal through the generation of light from
scintillation or Cerenkov emission. These photons are
collected, amplified, digitized and recorded. In sampling
calorimeters, the material that produces the particle shower is
distinct from the material that measures the deposited energy.
Particles traversing sampling calorimeters lose energy through
the process of ionization and atomic de-excitation. The charge
of the resulting products (electrons and ions) is subsequently
collected, amplified, digitized and recorded. In homogeneous
calorimeters, modeling photon transport to the photo-
transducers is CPU intensive and typically implemented as a
parametrization tuned to predictions obtained from a
specialized simulation package [33, 64]. Nowadays,
simulation of optical photons is offloaded to GPUs to
mitigate computing costs, taking advantage of the high levels
of parallelism achievable for electromagnetically interacting
particles’ transport. The photon transmission coefficient is
affected by radiation damage due to formation of color
centers in the medium, thus an assumption is made on the
distribution of color centers in the medium. The light output,
L(d), after receiving a radiation dose d, is described by an
exponential function that depends on the dose:

L d( ) � L0 exp μ · d( ),

where the parameter μ is a property of the material and depends
on the dose rate. The radiation damage parametrizations are
typically calibrated from data coming out of a monitoring system.
The radiation dose and the neutron fluence (flux over time) are
estimated using an independent simulation of the detector setup.

The next step in the simulation chain for calorimeters is the
treatment of the photo transducer, the most commonly used type
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being silicon photo-multipliers. These devices also suffer time-
dependent effects related to the radiation exposure: decrease of
photo-statistics (fewer photons reaching the device) and increase
of the noise coming from dark currents. The noise increases with
the square root of the fluence, which in turn is proportional to the
sensor’s area. Signal simulation in silicon photo-multipliers
involves: emulation of photo-statistics using a Poisson
distribution, description of the distribution of the photo
electrons according to pulse shape, adjustmentment of the
signal arrival time, as well as the modeling of the dark current
(thermal emission of photo-electrons), the cross-talk among the
channels induced in the neighbors of the fired pixels, the pixel
recovery time after being fired, and the saturation effect for large
signals when several photo-electrons fall on the same pixel. An
exponential function describes accurately the re-charge of the
pixel as a function of time, while cross-talk can be modeled using
a branching Poisson process. The Borel distribution [65, 66]
analytically computes the probability of neighboring cells to fire.

Finally, the simulation of the readout electronics includes: the
readout gain, adjusted to get an acceptable signal to noise ratio
throughout the life time of the detector; the electronics noise, with
contributions from the leakage current in the detector, the
resistors shunting the input to the readout chip, and the
implementation of the so-called common mode-subtraction;
and the ADC pulse shape, which decides the fraction of
charge leaked to the neighboring bunches. Zero suppression is
also modeled, keeping only the digits which cross a threshold in
the time bunch corresponding to sample of interest.

In future colliders, simulation of silicon-based calorimeters
will face similar challenges than those described in the previous
section for tracking devices. Parametrizations of time consuming
photon transport may be replaced with detailed modeling and
processed on computing devices with hardware accelerators.
Radiation damage will be more pronounced in high-
background environments such as high-energy hadron
colliders and muon colliders, introducing a time-dependent
component all through the signal simulation chain which will
need to be measured from data and modeled in detail.

7 COMPUTING

Non-traditional, heterogeneous, architectures, such as GPUs, have
recently begun to dominate the design of new High Performance
Computing centers, and are also showing increasing prevalence in
data centers and cloud computing resources. Transitioning HEP
software to run on modern systems is proving to be a slow and
challenging process, as described in Section 7.3. However, in the
timescale of future colliders, this evolution in the computing
landscape offers tremendous opportunity to HEP experiments.
The predicted increase in compute power, the capability to
offload different tasks to specialized hardware in hybrid systems,
the option to run inference as a service in remote locations in the
context of a machine learning approach, open the field of HEP
simulation to a world where simulation data could grow several
times in size, while preserving or improving physics models and
detector descriptions.

7.1 Projection of Hardware Architecture
Evolution
For example, the U.S. Department of Energy (USDOE) will be
setting up three new GPU-accelerated, exascale platforms in
2023–2024 at the Oak Ridge Leadership Computing Facility
(OLCF [67]), Argonne Leadership Computing Facility (ALCF
[68]), and Lawrence Livermore National Laboratory.
Additionally, the National Energy Research Scientific
Computing Center (NERSC [69]) is deploying an NVIDIA-
based GPU system for basic scientific research. Figure 2 shows
peak performance in Flops for machines deployed at the OLCF
between 2012 and 2023. In addition to the projected ~ 55 ×
increase in computing performance from 2012 to 2022, the
percent of peak provided by GPUs has increased from ~ 91% to
greater than 98% over that period. This situation is reflected in
computing centers around the world such as Piz Daint in
Swizterland [70], Leonardo in Italy [71], and Karolina in
Czechia [72] that heavily use NVIDIA GPUs, LUMI in
Finland [73] that will use AMD GPUs, and MareNostrum 4
in Spain [74] that uses both NVIDIA and AMD GPUs. Japan’s
Fugaku [75], the current leader of the Top 500 supercomputers
list [76], has a novel architecture with very wide registers that
behave very much like a GPU. We see similar heterogeneous
computing center designs in smaller institutional clusters and
grid computing sites. Thus, in order to take advantage of the
massive increases in computing capability provided at the HPC
centers, optimizing existing and future simulation codes for
GPUs is essential. The other HPCs at the head of the current
Top500 List which do not explicitly use GPUs, such as
Fugaku, have hybrid architectures that have very wide
vector processors that offer much the same functionality as
traditional GPUs.

The primary driver of this evolution is the power requirements
of high-performance computing. Figure 3 shows power
consumption for OLCF machines from 2012 to 2022. Here, we
see that for a 3× increase in total power consumption there is a 17
fold increase in Flops per MW.

It is difficult to predict the exact nature of the hardware
landscape beyond 5 years or so, but undoubtedly we will see
evolutionary changes of current hardware rather than
revolutionary ones—a failed product can now cost billions
of dollars due to design and fabrication costs. Core counts will
continue to go up, as transistor feature sizes decrease, with
increasing use of multi-chip and 3D stacked solutions needed
to avoid overly large silicon sizes. It is also likely that vendors
will devote larger sections of silicon to specialized functions,
such as we see with Tensor and Ray Tracing cores in current
GPUs. FPGA and ASIC vendors are now offering specialized
component layouts for domain specific applications, and this
level of customization will likely increase. We are also
beginning to see the combination of multiple different types
of cores, such as high and low power CPUs and FPGAs in the
same silicon die or chiplet array, leading to more integrated
heterogeneous architectures with faster communication
channels between the various components and much
quicker offload speeds.
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7.2 Description of Heterogeneous
Architectures
Heterogeneous architectures such as GPUs and FPGAs are
fundamentally different from traditional CPU architectures.
CPUs typically possess a small number of complicated cores
that excel at branch prediction and instruction prefetching. They
have multiple levels of large, fast caches, and typically have very
low access latencies. GPUs, on the other hand, have a very large
number of simple cores (hundreds of thousands for modern
GPUs), that do not handle branch mis-predictions gracefully.
GPU cores that are grouped in a block must operate in lockstep,
all processing the same instruction. Branch mis-predictions and
thread divergence will cause a stall, greatly decreasing
throughput. GPUs often have much more silicon devoted to
lower and mixed precision operations than they do for double
precision calculations, which are heavily used in High Energy
Physics. GPUs are optimized for Single Instruction Multiple Data
(SIMD) style of operations, where sequential threads or cores

access sequential memory locations—randomized memory
access causes significant performance degradation. Finally,
GPUs have very high access latencies compared to CPUs—it
can take tens of microseconds to offload a kernel from a host to a
GPU. The combination of massive parallelism, memory access
patterns, and high latencies of GPUs require a fundamentally
different programming model than that of CPUs.

The architecture of FPGAs is considerably simpler than that of
more general purpose GPUs and CPUs, consisting of discrete sets
of simple logic and I/O blocks linked by programmable
interconnects. Programming an FPGA consists of mapping the
program flow of the code onto the logic layout of the device and
activating the appropriate interconnects. The concept of directly
encoding operations into hardware has gained traction over the
last 5 years, and current compute GPUs have significant
operations encoded directly into the hardware including
mixed-precision matrix-matrix multiplication (tensor cores)
and ray-tracing for AI and graphics applications, respectively.

FIGURE 2 | Peak performance in Flops (A) and fraction of Flops provided by GPU and CPU (B) for GPU-accelerated systems deployed at the Oak Ridge
Leadership Computing Facility (OLCF). The peak performance for Frontier is projected.

FIGURE 3 | Power consumption (A) and Flops per MW (B) for GPU-accelerated systems deployed at the Oak Ridge Leadership Computing Facility (OLCF). The
power requirements for Frontier are projected.
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FPGAs potentially offer greater promise in this regard because
they can be encoded for domain-specific operations, whereas
tensor cores have limited utility outside of the deep-learning AI
space. This strength is also a weakness when it come to deploying
integrated FPGA hardware in large compute centers as
developing code on FPGAs is considerably more challenging
than on GPUs because the programming languages are not as
flexible and the compilation times are several orders of
magnitudes slower, making the programming cycle much
more difficult. Thus, no major FPGA-based large systems are
currently in development, and we suspect that FPGA usage will
remain restricted to local deployments for the near-to-medium
time frame.

7.3 Challenges for Software Developers
All of the GPU manufacturers support programming only with
their own software stack. NVIDIA uses CUDA, AMD promotes
HIP, and Intel employs oneAPI. Other heterogeneous
architectures such as FPGAs also use unique programming
languages such as Verilog and HLS. The vast majority of
current HEP software is written in C++, and supported by
physicists who are usually not professional developers. Typical
HEP workflows encompass millions of lines of code, with
hundreds to thousands of kernels, none of which dominate
the computation. In order to target the current diverse range
of GPUs and FPGAs, we would have to rewrite a very large
fraction of the HEP software stack in multiple languages. Given
the limited available workforce, and the extremely challenging
nature of validating code that executes differently on multiple
architectures, experiments would have to make very difficult
choices as to which hardware they could target, ignoring large
amounts of available computing power. Fortunately, we have seen
a number of portability solutions start to emerge recently, such as
Kokkos, Raja, Alpaka, and SYCL, which are able to target more
than one hardware backend (see Figure 4). Furthermore,
hardware vendors have seen the benefits of cross platform
compatibility, and are working to develop standards which
they are trying to incorporate into the C++ standard. Ideally, a
single language or API that could target both CPUs and all

available heterogeneous architectures would be the preferred
solution.

Currently, mapping computational physics and data codes to
GPU architectures requires significant effort and profiling. Most
HEP code bases are not easily vectorizable or parallelizable, and
many HEP applications are characterized by random memory
access patterns. They tend to follow sequential paradigms, with
many conditional branch points, whichmake them challenging to
adapt to GPUs. Even tasks such as particle transport, which in
high luminosity environments such as the HL-LHC seemingly
offer very high levels of parallelism, are in fact very difficult to run
efficiently on GPUs due to rapid thread divergence cause by non-
homogeneous geometrical and magnetic field constraints.

One avenue that offers some hope for easier adoption of GPUs
is the use of Machine Learning (ML) techniques to solve physics
problems. We are seeing increasing acceptance of ML algorithms
for pattern recognition and feature discrimination tasks in HEP,
as well as for more novel tasks such as generative models for
energy depositions in calorimeter simulations. ML backends for
all GPU and other heterogeneous architectures already exist, and
are often supported directly by the hardware manufacturers,
which greatly eases the burden for HEP developers.

8 SOFTWARE TOOLKITS

The evolution of simulation software toolkits will depend greatly
on the hardware, whose evolution on the timescale of 10 years is
uncertain as discussed in Section 7. Today’s leading toolkit, the
Geant4 toolkit [3] used by most large experiments’ detector
simulation, and also the particle transport tools FLUKA [5]
and MARS15 [6] used in the assessment of radiation effects,
are large, complex, and have evolved over 30 years of CPU-centric
computation.

8.1 Computing Hardware Accelerator
Usage
Whether current simulation toolkits can be adapted to profit
adequately from a variety of computing hardware accelerators,

FIGURE 4 | Portability solutions for heterogeneous architectures.
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principally GPUs, or whether new accelerator-centric codes can
be created and then interfaced into existing toolkits is a key
research question. The profitability of the conversion also
involves the effort required for the development of the
production level code, and the cost to create GPU-capable
applications. The latter is under active exploration.

The research into GPU usage is inspired by efforts in related
particle transport applications in HEP and other fields. As
discussed in Secs. 3 and 6, the Opticks project [33] offloads
simulation of optical photons to NVidia GPUs and
demonstrates methods to deal with complex specialised
geometries on these devices, specifically ones that have many
repetitive structures. MPEXS, a CUDA-based application for
medical physics [77] using Geant4-derived physics models, also
demonstrated efficient use of GPU resources for regular ‘voxelised’
geometries. However, the general problem of modeling a large
range of energies for particles combined with the full complexities
of modern detector geometries has not been tackled yet. Solving
these general problems is the domain of two ongoing R&D efforts,
the Celeritas project [44] and the AdePT prototype [28]. Both are
starting by creating CUDA-based proof-of-concept
implementations of electromagnetic physics, and particularly
showering, in complex detector geometries on GPUs. Key goals
of the projects include identifying and solving major performance
bottlenecks, and providing a first template for efficiently extracting
energy deposits, track passage data, and similar user-defined data.
Initially, both are targeting the simulation of electron, photon, and
positron showers in complex geometrical structures currently
described by deep hierarchies with many repetitions of volumes
at different levels. They have identified the need for a geometry
modeller adapted for GPUs and accelerators, and sufficiently
capable to handle these complex structures (see Section 3).
They are in the process of defining and developing solutions for
such a geometry modeller.

The limitations of the bandwidth and latency for
communication between the CPU and accelerator are
important constraints in the utilization of GPUs and other
accelerators for particle transport simulation, and for the
overall application. Minimising the amount of data exchanged,
such as input particles and output hits, between the CPU and
accelerator, is an important design constraint for GPU-based
particle transport. The types of detectors for which it is suitable
may depend on this. The contention for this resource may also
constrain the overall application which integrates the particle
transport and showering with event generation, generation of
signal, and further reconstruction.

Existing prototypes such as AdePT and Celeritas strongly
focus on keeping computation inside the accelerator, and
moving back to the CPU only the absolute minimum of data
and work. When only a selected region of a geometry is
accelerated, a particle which escapes that region must be
returned - as must particle tracks which undergo (rare)
interactions not currently simulated in GPU code, e.g., photo-
nuclear interactions. Of course the largest and critical data
transferred out of the accelerator are the experiment hit
records (or processed signal sum values) and other user
information such as truth information.

Early phase exploration of the potential of FPGAs for particle
transport is being conducted for medical physics simulation [78].
Yet the challenges involved appear more daunting, due to the
need to compile a complex tool into hardware. It seems likely that
this approach would be investigated only after implementations
are built using ‘simpler’ building blocks on GPUs. Potentially
these will profit from leveraging implementations created for
portable programming frameworks.

Based on current trends, except situations where ultimate
performance is required for time critical applications, we
expect the established vendor-specific libraries (CUDA, Hip,
DPC++) to be slowly supplanted by the emerging portable
programming paradigms (Kokkos, Alpaka, SYCL), and within
a few years a convergence to be established on standard-
supported languages and libraries such as C++‘s standard
library std:par execution policy. With the importance of
portability between hardware of different vendors, it is critical
to identify and invest in cross-vendor solutions, and potentially
paradigms that can be used to investigate alternative hardware
platforms, as mentioned above for FPGAs.

8.2 Opportunities for Parallelism
We expect applications and future toolkits will need to expose
multiple levels of parallelism in order to manage resources and to
coordinate with other computations, such as reconstruction and
event generation. Such levels could entail parallel processing of
different events as well as parallel processing of multiple
algorithms or even multiple particles within an event. A
detector simulation toolkit cannot assume that it controls all
resources, but must cooperate with other ongoing tasks in the
experiment application. At this point, it is unclear how to
accomplish this cooperation efficiently.

Seeking to obtain massive parallelism of thousands or tens of
thousands of active particles is challenging to develop in detector
simulation. The GeantV project [27] explored the potential of
SIMD-CPU based parallelism by marshalling similar work
(‘event-based’ in the parlance of neutron simulation), e.g.,
waiting till many particles entered a particular volume before
propagating the particles through that volume. The project’s
conclusion was that the speedup potential was modest -
between 1.2 and 2.0.

It seems clear that the ability to execute many concurrent,
independent kernels on recent GPUs is of crucial interest to HEP,
as it avoids the need for very fine grained parallelism at the thread
level, which was the goal of the GeantV project. Given the
difficulty of taking advantage of the full available parallelism
of modern GPUs by a single kernel, being able to execute many
kernels doing different tasks will be invaluable.

8.3 Parametrized Simulation
In parallel with the need for a full, detailed simulation capability
to meet the physics requirements of the future colliders, the focus
is growing on developing techniques that replace the most CPU-
intensive components of the simulation with faster methods (so
called “fast simulation” techniques), while maintaining an
adequate physics accuracy. This category includes
optimization/biasing techniques that aim at tuning parameters
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concerning simulation constituents such as geometry or physics
models and which are strictly experiment specific, as well as the
possibility of parametrizing part of the simulation (i.e.
electromagnetic shower development in calorimeters), by
combining different machine learning techniques. R&D efforts
are ongoing in all the major LHC experiments to apply cutting-
edge techniques in generative modelling with deep learning
approaches, e.g., GANs, VAEs and normalizing flows,
targeting the description of electromagnetic showers.

We expect the bulk production of Monte Carlo simulation
data to be performed with a combination of detailed and
parametrized simulation techniques. To this end, enabling the
possibility to combine fast and full simulation tools in a flexible
way is of crucial importance. Along these lines, we expect Geant4
to evolve coherently by providing tools allowing integration of
ML techniques with an efficient and smooth interleaving of
different types of simulation.

8.4 Future of Geant4
Due to its versatility, the large number of physics modeling
options, and the investment of many experiments including
the LHC experiments, we expect an evolved Geant4 to be a
key component of detector simulation for both the ongoing and
the near future experiments well into the 2030s. Over the next
decade, we expect Geant4’s capabilities to evolve to include
options for parameterized simulation using machine learning,
and acceleration for specific configurations (geometry, particles
and interactions) on selected hardware, both of which should
significantly increase simulation throughput. These enhanced
capabilities will however come with significant constraints, due
to the effort required to adapt user code to the accelerator/
heterogeneous computing paradigm. Furthermore, there is a
need to demonstrate that substantial speedup or throughput
improvements can be obtained before such an investment in
adaptation of user applications can be undertaken. Full utilization
of accelerators may not be required as offloading some work to
accelerators should free up CPU cores to do additional work at
the same time thereby improving throughput. In addition, some
HPC sites may require applications to make some use of GPUs in
order to run at the site. Therefore, some minimum GPU
utilization by simulation may make it possible for experiments
to run on such HPC resources thereby reducing the total time it
takes to do large scale simulation workflows.

9 APPLICATIONS OF HEP TOOLS TO
MEDICAL PHYSICS AND OTHER FIELDS

After the initial developments of Monte Carlo (MC) methods for
the Manhattan project, the tools became available to the wider
research community after declassification in the 1950’s. One of
the early adapters of MC methods were physicists in radiation
therapy. Researchers were eager to predict the dose in patients
more accurately as well as designing and simulating detectors for
quality assurance and radiation protection. The simulations were
done mainly using in-house developed codes, with some low
energy codes modeling photons up to 20 MeV developed or

transferred from basic physics applications [35, 79]. Use of
MC tools from the HEP domain mainly started with heavy
charged particle therapy, first using protons and Helium ions
and later employing heavier ions such as Carbon ions. Early
research here was also done with in-house codes mostly studying
scattering in inhomogeneous media. In the early 1990’s more and
more high-energy physicists entered the field of medical physics
and brought their expertise and codes with them. Thus started the
use of general-purpose MC codes in radiation therapy that were
initially developed and designed for high energy physics
applications, such as Geant4 and Fluka. Fruitful collaborations
were also established with the space physics field, with HEP-
developed toolkits applied to particle detector design as well as
the similar areas of dosimetry and radiation damage [80].

9.1 Beam Line Design and Shielding
Calculations
Beam line design and shielding calculations are done prior to
installing a treatment device. These applications of MC are no
different to the HEP use case except for the beam energies
studied. Beam line transport would be done by the machine
manufacturers and is often based on specialized codes such as, for
instance, Beam Delivery Simulation (BDSIM) [35]. On the other
hand, shielding calculations aim at a conservative estimate with
limited required accuracy and would use mostly analytical
methods.

Shielding calculations are also critical in both manned and
unmanned space missions to determine the radiation
environment for humans [81] and instrumentation, as well as
detector backgrounds [82].

9.2 Detector Design Studies
Nuclear and HEP physics hardware developments are frequently
finding applications in radiation therapy and space missions due
to similar requirements concerning sensors and real-time data
processing. Detectors are less complex compared to HEP but the
components used in simulations are very similar. Differences are
in the particles of interest as well as the energy region of interest.
As in HEP, MC simulations are a powerful tool to optimize
detectors and treatment devices [83, 84]. In fact, for radiation
therapy or diagnostic imaging, MC are not only being employed
by researchers but also by vendors to optimize their equipment.

9.3 Dose Calculation
Predicting the dose in patients is arguably the most important
task in radiation therapy and has therefore been the most active
MC topic [85]. It has similar importance in space physics for
predicting dose rates for astronauts and in materials/electronics
[81, 86].

Despite its accuracy, MC dose calculation has not found
widespread use in treatment planning in medicine. However,
vendors of commercial planning systems have now developed
very fast Monte Carlo codes for treatment planning where
millions of histories in thick targets need to be simulated in
minutes or seconds in a very complex geometry, i.e. the patient as
imaged with CT [87]. Therefore, these specialized codes have
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replaced multi-purpose MC codes that are often less efficient.
Multi-purpose codes are however being used as a gold standard
for measurements that are not feasible in humans. In addition,
they are often used to commission treatment planning and
delivery workflows. As we are dealing with biological samples
such as patients, scoring functionality often goes beyond about
what is typically used in HEP such as scoring phase spaces on
irregular shaped surfaces or dealing with time-dependent
geometries.

9.4 Diagnostic Medical Imaging
MC has long been used in the design of imaging systems such as
positron emission tomography (PET) or computed tomography
(CT) [88]. Like in therapy, HEP codes are being applied either
directly or tailored to imaging applications, i.e. for low energy
applications [89]. Time of flight as well as optical simulations are
done usingMC. In recent years MC is more andmore used to also
understand interactions in patients. As radiation therapy is
pursuing image-guided therapy, imaging devices are also
incorporated in treatment machines resulting in problems that
are being studied using MC such as the interaction between
magnetic resonance imaging (MRI) and radiation therapy, either
conventional (photon based) or magnetically scanned proton
treatments.

9.5 Simulation Requirements for Non-HEP
Applications
9.5.1 Physics Models and Data for Energy Ranges of
Interest
Medical and many space applications typically fall not under
high-energy but low-energy physics. HEP tools might therefore
not simulate some effects accurately or their standard settings are
not applicable for low energies and have to be adjusted and
potentially even separately validated [90]. Measurements of
fragmentation cross-sections and attenuation curves are
needed for MC applications in clinical environments. Most
cross-sections and codes are indeed not very accurate for
applications outside HEP because materials and energy regions
of interest are very different. In fact, cross-sections needed for
medical physics applications go mostly back to experiments done
in the 1970’s and are no longer of interest to the basic physics
community. For instance, considerable uncertainties in nuclear
interaction cross-sections in biological targets are particularly
apparent in the simulation of isotope productions [91].
Furthermore, the interest of high-energy physics is mainly in
thin targets whereas medical physics needs accurate
representations of thick target physics to determine energy loss
in patients or devices including Coulomb scattering and
nuclear halo.

9.5.2 Computational Efficiency (Variance Reduction)
In the future wemay see two types ofMC tools in medical physics,
i.e., high-efficiency MC algorithms focusing solely on dose
calculation for treatment planning and multi-purpose codes
from high energy physics for research and development. The
latter can and will be used more and more to replace difficult or

cumbersome experiments such as detector design studies for
dosimetry and imaging. Nevertheless, thick target simulations
are often time consuming and variance reduction techniques have
been developed in medical physics [92] that may also be
applicable for high-energy physics applications, as discussed in
Section 8, with cross-fertilization of the two fields.

9.6 Future Role of MC Tools Outside of HEP
The main application of high-energy physics tools to other
domains will continue to be in detector design, quality
assurance and dose calculation. Furthermore, not only
researchers in medical and space physics but also
manufacturers of therapy and detector equipment are
employing MC methods to develop new devices. Whilst these
fields may not in general have the extreme requirements on
performance and throughput as the future experiments discussed
in Section 2, the improvements necessary here for HEP will
benefit other user communities. By delivering higher accuracy
physics with a smaller computational resource for a given sample
size, a commensurate reduction in the costs to research time,
money, and environmental impact will be possible.

It is important that collaborations between the many
communities utilizing simulation codes are maintained to
ensure sharing of requirements and methodologies to mutual
benefit. Medical physics increasingly overlaps with radiation
biology, where research promises a higher clinical impact than
pure physics studies, a paradigm shift that became apparent in the
last decade. Monte Carlo codes will thus be applied also in the
field of radiation biology and radiation biochemistry [93].
Multiple efforts have already started, most notably the
extensions of Geant4 (Geant4-DNA) and TOPAS (TOPAS-
nBio) [94, 95]. These extensions require codes to evolve
particularly when it comes to physics in small nanometer
volumes and computational efficiency when using very small
step sizes, which may have commonalities with the geometry
developments discussed in Section 3. Figure 5 shows an example
of the geometries of typical size and complexity of molecular
structures that are targeted by these simulations. The toolkit/API
design of codes such as Geant4 have been critical in allowing such
extensions, as well as allowing development of a wide range of
applications for generic use cases [89, 96–98]. It is vitally
important that HEP MC codes continue to use this software
architecture to allow such innovation and extension. With
simulation geometries, energy regions, materials, particle
tracking and scoring that may be very different from HEP
applications, continued exchange of ideas from other user
communities will be invaluable in maintaining and developing
HEP simulation codes.

10 SUMMARY AND CONCLUSION

Detector simulation codes such as Geant4, FLUKA, and MARS
have played a central part in the development and operation of
the current generation of HEP experiments and in the analysis
and interpretation of their physics results. This critical role will
continue as physicists design and plan the next generation of
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collider facilities to operate during the mid-21st century. These
experiments, like their predecessors, will push the boundaries of
accelerator and detector technology to explore and improve our
knowledge of fundamental physics. While simulation codes have
already been significantly upgraded through the LHC era to take
full advantage of technologies including multi-core CPUs and
machine learning, further evolution will be needed for this
software to run on future computing architectures and deliver
the large and accurate data samples demanded by future collider
programs.

The primary challenges for detector simulation posed by
future accelerators and detector designs are driven by the
increased beam luminosities and energies combined with the
high granularity (in space and time) of the proposed detectors.
Higher luminosity naturally means that simulations will need to
deliver larger sample sizes to reduce statistical uncertainties in, for
example, background estimations, driving an overall need to
increase performance and hence throughput. Corresponding
increases in the accuracy and precision of models for
electromagnetic and hadronic physics processes will thus be
required to reduce systematic uncertainties, and to extend
their domain of validity to cover higher beam energies and
novel materials. Beam backgrounds will also increase in line
with luminosity, and are a especially important area to model
during the design phase of experiments to optimize physics and
instrumental backgrounds therefore improving the precision of
physics measurements and extending the reach of new particle
searches. Higher granularity detector systems will challenge
current codes for describing their geometries with the
increased number of volumes, as well as propagating particles
over large distances while retaining precision of their
intersections with small or thin detector elements. R&D
programs are already underway to explore directions for
evolving this critical area of simulation. They are exploring
techniques and hardware used in the computer graphics
industry for ray-tracing and Computer-Aided Design (CAD), a
particularly promising direction of research. Both high
luminosity and detector granularity impact the final simulation
step of digitization. The increased number of detector readout

channels generates a higher computational load, especially for
bottom-up models of signal creation, while the more intense
radiation environment will require time-dependent effects
measured from data to be modelled.

None of these components of the overall simulation toolkit
exist in isolation. For example, the accuracy of energy depositions
in a fine grained tracking calorimeter will be dependent on the
interplay between the physics models and navigation of particles
through the geometry elements under the influence of a magnetic
field. Balancing physics accuracy against computing performance
will be an important aspect for experimentalists and simulation
code developers to consider. It is clear that employing a hybrid of
full and fast parametrized or ML-based techniques is a realistic
strategy for simulating detectors. Fast simulation may well find
application in a broader range of cases than at the present time,
either as a full generative step, or to optimize inputs to, or choice
of, full Monte Carlo algorithms. Complete, high throughput,
“full” simulation workflows will nonetheless be required to
develop, validate, and tune “fast” methods, as well as to retrain
or optimize them in response to changes in experiment
conditions or physics program.

While the debate here is driven by the requirements of future
HEP collider programs, simulation software evolves in the
context of changes in a broader landscape of developments in
hardware and software for High Performance Computing in
academia and industry. The ever rapid pace of technology
development limits predictions of how this may impact HEP
over the next 5 years, let alone the 2040–2050 timescale for
experiments in future collider facilities, but even the current
evolutionary trends in GPU, FPGA and other new
architectures offer many exciting opportunities for greater
computational power at lower monetary and environmental
cost. Equally, a significant challenge for HEP simulation will
be in evolving existing interfaces and algorithms to effectively
utilize this diverse range of emerging architectures. Software
portability tools to assist targeting multiple hardware backends
are developing rapidly, and experience in their use is building
within the HEP community. HEP-originated simulation codes
have permeated to other fields requiring modeling of radiation

FIGURE 5 |Molecules from the protein data bank read into TOPAS-nBio with a proton track (blue) and secondary electrons (red). Two nucleic acids are shown; an
RNA strand and a nucleosome.
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transport, especially in medical, bio-, and space physics. The
collaborations established through this wide range of use cases
have lead to many mutually beneficial developments and impact
in both research and industry, and this can be expected, and
should be encouraged, to continue. Though there are differences
in energy ranges and detector complexity, increased physics
accuracy and computational efficiency and throughput will be
to the benefit of all. Furthermore, new or novel commonalities
may be found, for example in modeling and navigating complex
geometries whether that be a future collider detector or a DNA
molecule.

Predicting the future for any technological or scientific
endeavour can only offer a blurred snapshot of reality, but it
is clear at least that the HEP community will continue to require
accurate and computationally efficient detector simulation codes
to develop and utilize its next generation of facilities. Developing
software that meets these requirements presents a major, yet
exciting, challenge that will foster collaboration across
fundamental physics, high performance computing and
computer science, medical, bio- and space physics, both in
academia and industry. It is this depth and breadth of
expertise across domains that will support and drive
innovation in HEP simulation, making this human resource
the most important to nurture and grow to enable the
realization of HEP physics programs at future colliders during
the second half of the 21st century.
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