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Recently, real topological phases protected by PT symmetry have been actively
investigated. In two dimensions, the corresponding topological invariant is the Stiefel-
Whitney number. A recent theoretical advance is that in the presence of the sublattice
symmetry, the Stiefel-Whitney number can be equivalently formulated in terms of Takagi’s
factorization. The topological invariant gives rise to a novel second-order topological
insulator with odd PT-related pairs of corner zero modes. In this article, we review the
elements of this novel second-order topological insulator, and demonstrate the essential
physics by a simple model on the honeycomb lattice. Novelly, the higher-order topological
boundary modes can not only be tuned by the parameters but also the geometric shape of
the sample.
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INTRODUCTION

The symmetry-protected topological phases, such as topological (crystalline) insulators (TIs) and
superconductors (TSCs), have been one of the most active fields of physics during the last 15 years
[1–9]. Based on the topological K theory, the topological band theory has been established to classify
and characterize various topological states [10–12]. Symmetry plays an fundamental role in the
classification of topological phases. Considering three discrete symmetries, namely time reversal T ,
charge conjugation C and chiral symmetry S, physical systems can be classified into ten symmetry
classes, termed Altland-Zirnbauer (AZ) classes [10–15], among which the eight ones with at least T
or C are called real AZ classes. The topological classifications in the framework of the eight real AZ
classes correspond to the realK theory. Using the realK theory, gapped systems including topological
insulators and topological superconductors were first classified [11, 12, 16], and then gapless systems
were classified as well [17–20]. All the classification tables exhibit an elegant eightfold periodicity
along the dimensions for the eight real AZ classes. After internal symmetries like T and C, more and
more spatial symmetries were involved to enrich symmetry-protected topological matter. It was
noticed that combined symmetries PT and CP correspond to the orthogonal K theory with P the
spatial inversion, since they leave every k point fixed in the reciprocal space. Hence, the topological
classification table was worked out [21]. A remarkable feature is that groups Z, Z2 and 0 in the table
appear in the reversed order in dimensionality, compared with previous tables for the real AZ classes.
PT and CP are fundamental in nature, and therefore the classification table has been applied to
explore topological phases in various physical systems, such as quantum materials [6, 22, 23],
topological superconductors [24–27], and photonic/phononic crystals and electric-circuit arrays
[27–35], and can generate unique topological structures with many novel consequences, such as non-
Abelian topological charges, cross-order boundary transitions, and nodal-loop linking structures [22,
23, 36–40].
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Remarkably, from the classification table, the symmetry
class with (PT )2 � 1 corresponds to the Z2 classification for
d = 1 and d = 2. As revealed in Ref. [22], (PT )2 � 1 leads to real
band structures in contrast to conventional complex band
structures. Then, the Z2 topological invariant w1 for d = 1
can be formulated as the quantized Berry phase in units of π
modulo 2π. The case of d = 2 is much fascinating. The
topological invariant is the Euler number, a real version of
the Chern number, for two valence bands. The Euler number is
valued in Z, but only its parity is stable if more trivial valence
bands are added into consideration. The parity, namely the
Euler number modulo 2, is just the Stiefel-Whitney number w2

in two dimensions, which determines whether the real vector
bundle can be lifted into a spinor bundle.

The topological invariant w2 gives rise to novel topological
phases with extraordinary properties. In 3D, it characterizes a
real Dirac semimetal, which can be transformed into a nodal
ring with symmetry-preserving perturbations. Then, the nodal
ring is characterized by two topological charges (w1, w2). In
2D, it describes a topological insulator. The common
topological wisdom is that the bulk topological invariant
determines a unique form of the boundary modes, namely
the well-known one-to-one bulk-boundary correspondence.
However, a remarkable discovery in Ref. [41] is that w2

corresponds to multiple forms of boundary modes,
extending the one-to-one correspondence to one-to-many.
The 2D topological insulator can host various second-order
phases with odd PT -related pairs of corner zero-modes, which
are mediated by first-order phases with helical edge states.
Similarly, the 3D semimetal can host second-order hinge
Fermi arcs and first-order surface Dirac states as well.
Recently, graphynes have been proposed as the material
candidates which can realize both the 2D topological
insulator and the 3D topological semimetal [37, 42, 43].

As aforementioned, the second-order phases of the 2D
topological insulator feature odd PT -related pairs of corner
zero modes. It is interesting to look for its 3D analog, which
has been presented in Ref. [44]. Referring to the topological
classification table for PT and CP symmetries, we notice that
although the classification for (PT )2 � 1 is trivial, with an
additional chiral symmetry S with {PT ,S} � 0 the
classification is preserved as Z2 in 2D and, more importantly,
becomes non-trivial as Z2 in 3D. It is found that the
corresponding topological invariants can be formulated in
terms of Takagi’s factorization. The topological invariant in
2D is equivalent to w2, while that in 3D is a new topological
invariant. Either in 2D or in 3D the bulk topological invariant can
be manifested as odd PT -related pairs of corner zero-modes.
Now, with the chiral symmetry, the two zero-modes in each pair
are eigenstates with opposite eigenvalues of the chiral symmetry.

In this article, we review the elements of 2D PT -protected
topological insulators with or without chiral symmetry. The
essential physics is demonstrated by the Honeycomb-lattice
model, with only the nearest-neighbor hopping amplitudes.
We show that under certain dimerization patterns the model is
a topological insulator with non-trivial Stiefel-Whitney
number or the Takagi topological invariant, and therefore

presents all the non-trivial topological phenomena.
Particularly, under various PT -invariant geometries, there
are always odd PT -related pairs of corner zero-modes for
the second-order topological phase. Before diving into the
details, it is noteworthy that the dimerized honeycomb model
can be regarded as an abstraction from the graphynes [37,
42, 43].

THE HONEYCOMB-LATTICE MODEL

Let us start with presenting the honeycomb-lattice model, the
lattice structure is shown in Figure 1A. The Hamiltonian in
momentum space is given by

H k( ) �

0 t3 0 χ 2( )
k 0 t1

t3 0 t2 0 �χ 1( )
k 0

0 t2 0 t1 0 χ 3( )
k

�χ 2( )
k 0 t1 0 t3 0
0 χ 1( )

k 0 t3 0 t2
t1 0 �χ 3( )

k 0 t2 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (1)

where χ(i)k � ti′e−ik·ai with i = 1, 2, 3. Here, ai are the bond vectors
connecting the centers of nearest-neighbor unit cells, as indicated
in Figure 1A with ∑iai = 0. The Hamiltonian has inversion
symmetry with P̂ � σ1 ⊗ I3Î, spinless time-reversal symmetry
with T̂ � K̂Î, and therefore spacetime-inversion symmetry with
P̂T̂ � σ1 ⊗ I3K̂, where K̂ is the complex conjugation and Î is the
inversion of momenta. Note that σ’s are the Pauli matrices acting
on the sublattice space (see Figure 1A), and I3 is the 3 × 3 identity
matrix. Each inversion center is taken as the center of a hexagon
in real space. The sublattice symmetry operator is Ŝ � I3 ⊗ σ3.
Since the inversion exchanges sublattices, both P and PT anti-
commute with S, namely, {P̂, Ŝ} � {P̂T̂ , Ŝ} � 0.

To obtain the non-trivial topological phases, we calculate the
determinant of the Hamiltonian (Eq. 1) at Γ point1 in the
Brillouin zone as

det H Γ( )[ ] � − t21t1′ + t22t2′ + t23t3′ − 2t1t2t3 − t1′t2′t3′( )2. (2)
Since the bulk topological criticality generally corresponds

gap-closing point, we can obtain the topological phase-transition
points by letting det[H(Γ)] � 0, which gives

t21t1′ + t22t2′ + t23t3′ � 2t1t2t3 + t1′t2′t3′. (3)
Interestingly, if (Eq. 3) holds, the system is generally reduced

to a topologically equivalent graphene model with two Dirac
points in the first Brillouin zone [45]. When
t21t1′ + t22t2′ + t23t3′ < 2t1t2t3 + t1′t2′t3′ , the system steps into a
topological phase, while conversely the system becomes a
trivial phase, which can be checked by computing Stiefel-
Whitney number or Takagi’s factorization.

1By the numerical calculation of Wilson loop, one can easily check that only the
algebra of parameters obtained at Γ point is the real bulk criticality, while the others
are not.
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TOPOLOGICAL INVARIANTS

The topology can be determined by various formulas of the
topological invariant. We now briefly review them. First, as
given in Ref. [22], the topological invariant can be determined
by the Wilson loop

W ky( ) � P exp −i∫
Cky

dkx A kx, ky( )⎛⎝ ⎞⎠ (4)

(with P indicating the path order) along large circles
parametrized by kx. Cky is the contour at a fixed ky and
A(kx, ky) is the non-Abelian Berry connection for the valence
bands. The topological information is encoded in the phase
factors θ(ky) ∈ (−π, π] of the N eigenvalues λm(ky) of W(ky)
for valence bands:

θm ky( ) � Im log λm ky( )[ ]. (5)
Different from the conventional TIs and Chern insulators, the

Wilson loop spectral flow for real phases are mirror symmetric
with respect to the θ = 0 axis see Figure 1B. This is because
W(ky) is equivalent to a mapping from ky ∈ S1 to O(N) up to a
unitary transformation [22]. The topological information can be
pictorially derived from counting how many times ζ the
trajectories cross θ = π as

w2 � ζ mod 2. (6)
For honeycomb lattice with

t21t1′ + t22t2′ + t23t3′ < 2t1t2t3 + t1′t2′t3′ , a single crossing exsit as
shown in Figure 1B, namely, w2 = 1, which indicates the
model is in a topological non-trivial phase.

As aforementioned, our system is protected by spacetime
inversion symmetry PT and sublattice (chiral) symmetry S.
These symmetries constraint the classifying space of H(k) to be
symmeric unitary matrices. Thus the Z2 invariant from the Takagi’s
factorization can be defined [44], which leads to an alternative
formulation for w2. We now prove the equivalence of the two
formulas. For technical simplicity, we assume the momentum space
as a sphere S2, which is sufficient to present the essential ideas.

In general, S requires the HamiltonianH(k) to be block anti-
diagonal and PT requires the upper-right block to be symmetric.
Thus the flattened Hamiltonian ~H(k) is given by

~H k( ) � 0 Q k( )
Q† k( ) 0

[ ], Q � QT, QQ† � IM, (7)

FIGURE 1 | (A) Schematic of the honeycomb-lattice model. ti represents intracell hoppings and ti′ represents intercell hoppings with i = 1, 2, 3. The six atomic sites
in a unit cell can be divided into two sublattice, as marked by the gray and brown circles, so that a site in one sublattice has all its nearest neighbors from the other
sublattice. (B) The winding of Wilson loop around ky for topological nontrivial case. TheWilson loop is computed along a large circle parametrized by kx for fixed ky (where
kx,y represents periodic direction along a1, a2 or a3). The loop exhibits a cross at θ = π and ky = 0, which means the Z2 topological invariant ] = 1. The parameters are
set as t1 � t2 � t3 � 1, t1′ � t2′ � t3′ � 3.

FIGURE 2 | The Takagi factors in 2D. D2
S and D2

N represent the south
hemisphere and north hemisphere respectively, the overlapping region is
equator S1. UN/S is the Takagi factors over D2

N/S.
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whereQ(k) � U(k)UT(k) is a unitary symmetric matrix for each
k and M denotes the number of valence (conduction) bands.
U(k) ∈ U(M) is the Takagi factor. The classifying space for this
symmetric class is US(M) = U(M)/O(M) [44]. Here,
π2[US(M)] � Z2 corresponds to the topological invariant of
our system. Consider a 2D sphere S2, which is divided into
north and south hemispheres D2

N,S, overlapping along the
equator S1. The Takagi factors UN/S over D2

N/S, respectively,
can be transformed to each other by a gauge transformation
OS1 over the equator S

1, as shown in Figure 2. OS1 is given by

OS1 � U†
N|S1US|S1 , OS1 ∈ O M( ).

π1[O(M)] � Z2 for M > 2 leads to obstructions for a global
Takagi’s factorization over S2.

The conduction and valence wavefunctions of ~H(k) can be
given by

|+, n〉 � 1�
2

√ Uφn

Upφn
[ ], |−, n〉 � i�

2
√ Uφn−Upφn

[ ], (8)

where n ∈ {1, 2, . . . ,M}. φn = (0 0/ 0 1 0 0/ 0)T is a unit vector
with “1” locating at the n-th position.

Performing a unitary transformation UR � e−iπ/4eiπσ1/4 on this
system, the Hamiltonian and valence wavefunctions both become
real. Meanwhile, PT and S are transformed to K̂ and σ2,
respectively. Over the intersection S1, transition function tS1 of
real valence wavefunctions can be given by

tS1[ ]mn � 〈−, m|N|S1U†
RUR −, n〉S| |S1 � OS1[ ]mn. (9)

Thus, we know the transition function tS1 of real valence
wavefunctions is equal to the gauge transformationOS1 . As noted
in Ref. [22], w2 is just the parity of the winding number of the
transition function for valence bands. Thus, we see the
equivalence of two 2D topological invariants.

FIGURE 3 | (A–C) Possible topological boundary modes for the rhombic-shaped sample with 10, ×, 10 unit cells. Black circles indicate the distribution of density of
zero-mode (A,C) Second-order TI phases with a single pair of zero-modes corners in diagonal and off-diagonal (or horizontal and vertical) directions, respectively. (B)
Helical edge modes with the boundary effective mass mi = 0, which is a critical state separating two second-order TI phases. Parameters are set as (A)
t1,2,3 � 1, t1,2,3′ � 3, (B) t1 � 1, t2 � 2, t3 � 1.5, t1,2,3′ � 3, (C) t1 � 1.8, t2 � 0.2, t3 � 0.8, t1,2,3′ � 3.

FIGURE 4 | (A) Topological corner modes in rhombic sample with ti � 1, ti′ � 3. (B) Topological edge modes in rectangle sample with same parameters as
rhombic(t1,2,3 � 1, t1,2,3′ � 3).
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PHYSICAL CONSEQUENCE

The high-order topological phase in the honeycomb model features
novel bulk-boundary correspondence that is different from the
traditional one, namely, it has one-to-many bulk-boundary
correspondence. Furthermore, the boundary modes can be tuned
by the boundary selection. According to analytical and numerical
methods, we reveal that three pairs of hopping parameters ti and ti′
(with i = 1, 2, 3) jointly determine the configuration of topological
boundary modes. To facilitate understanding the relation between
distinct boundary modes and parameters, we define a boundary
effective mass term mi for each edge:

mi � titi′ − tjtk with i ≠ j ≠ k, (10)
where the subscript i denotes the hopping along the primitive vector
ai direction (a3 =−a1− a2). The aboveEq. 10 can be derived from the
boundary effective Hamiltonian2. Hence, if mi = 0, the
corresponding edges are gapless, which is also the boundary
critical condition to separate two second-order topological phases.

To demonstate the boundary modes, we consider a rhombic-
shaped 2D sample with armchair termination, i.e., by opening
boundary along a1 and a2 direction, as shown in Figure 3. If m1 =

0 andm2≠ 0, the helical edgemodes along periodic a1 can be obtained,
as shown inFigure 3B. However, oncem1,2≠ 0, the helical edgemodes
will be gapped and the localized corner modes will emerge. More
specifically, for the case with sgn(m1) = sgn(m2) (sgn(m1) =− sgn(m2)),
the corner modes will locate at 120° (60°) corners, as shown in Figures
3A,C respectively. The PT symmetry requires that the corner zero-
modes always come in pairs and the chiral symmetry sets the midgap
modes exactly at zero energy 3.

To keep the completeness of honeycomb unit cell in a
rhomboid sample, one only has three kinds of armchair edges,
namely the edge parallel to ai direction with i = 1, 2, 3. If the edge
connected by the same corner has the same mass term mi sign, the
corner zero-modes will be localized at the obtuse angle of the
rhomboid, otherwise at acute corners. We shall theoretically
explain these numerical results in the next section. It is
emphasized that in the whole process of the edge-phase
transitions, the bulk gap is always open and the symmetries are
preserved, therefore, the bulk invariant ] is unchanged. Thus the
conventional bulk-boundary correspondence is not appliable for
TTI, namely, the bulk invariant can not uniquely determine the

FIGURE 5 | (A,D)Orthohexagonal sample with one and three pairs of zero-mode corners respectively. The parameters are set as t1 � 1.3, t2 � 1.5, t3 � 0.5, t1,2,3′ �
3 for (A) and t1,2,3 � 1, t1,2,3′ � 3 for (D). (B,E) Octagonal sample with one and three pairs of zero-mode corners respectively. The parameters are set as
t1,2 � 1, t3 � 0.3, t1,3′ � 3, t2′ � 2. for (B) and t1,2,3 � 1, t1,3′ � 3, t2′ � 2 for (E). (C,F) Hexagonal prisms sample with one and three pairs of corner zero-modes respectively.
The parameters can be seen in Supplementary Appendix SAC.

2Note that a pair of opposite edges parallel to ai have opposite mass terms sincePT
symmetry inverses the effective mass.

3Finite-size effects can split the degenerate zero modes and deviate them from zero
to form a ingap corner modes, but the deviation is exponentially suppressed with
the sample size.
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boundary modes, but dictates an edge criticality, as the concept
mentioned in previous work [41].

As promised in introduction, we now proceed to tune the
boundary modes with fixed parameters. In the rhombic case,
all samples terminate with armchair edges and exhibit
parameter-depended boundary modes. As long as PT and
S are not violated, the finite samples can be cut with not only
rhomb as shown in Figure 3, but also hexagon(see Figure 5).
Beside armchair edges, zigzag edges can serve as termination
too. Creatively, with fixed parameters but different boundary
selections, one can also find various distinguishable boundary
modes. For instance, helical edge states emerge on the zigzag
edges in a rectangle sample as shown in Figure 4B, with the
same hopping parameters as Figure 4A. This result further
proves that the bulk topological invariant can not uniquely
determine the topological boundary modes. We also study lots
of other patterns with the same parameters, and abundant
topological boundary modes consisting of corner zero modes
and gapless edge modes can be obtained (see Supplementary
Appendix SAD). They are all boundary-selection-depended.
Hence, we propose that one can obtain needed topological
boundary modes by choosing particular boundary geometry,
without tuning parameters, which is usually difficult to
perform in real systems.

Novelly, in both situations discussed above, for second-order
topological phases, the number of the zero-energy corners must
be odd pairs. For example, for a hexagonal sample, we can only
find one or three pairs of zero-mode corners, as shown in Figures
5A,B. Similarly, the Octagonal sample also has one or three pairs
of zero-mode corners as shown in Figures 5C,D.

We find that the peculiarity of odd-pair-zero-modes is universal
and it can be generalized to a higher-dimensional situation, such as
3D [44]. The 3Dmodel is constructed by stacking the 2D honeycomb
TTI discussed above in a staggered manner to preserve the sublattice
symmetry S. The details of the construction of the model can be
found in Supplementary Appendix SAC. The inversion center is
chosen as the center of hexagonal in one layer. Thus the anti-
commuting relation of PT and S are preserved. We cut a finite
hexagonal prisms sample that keeps the symmetries. One can find
only odd pairs (one or three) of corner states related by PT appear.
Note that the corner zero-modes can be driven to other corners by
tunning the hopping parameters like in a 2D situation.

ANALYTIC METHOD

We first proceed to solve the boundary criticality along the periodic
a1 direction and openning boundary with a2. Replace e−ik·a2 by S in
Hamiltonian Eq. 1, with S ladder operator and S|i〉 = |i + 1〉, S†|i〉 = |
i − 1〉. Then e−ik·a3 can be represented by eik·a1S† since a3 = −(a1 +
a2). After a series of tedious derivation (see Supplementary
Appendix SAA), we obtian the effective Hamiltonian of the
bottom boundary:

HB k · a1( ) �
0 t3 0 t1
t3 0 t1′eik·a1 0
0 t1′e−ik·a1 0 t2
t1 0 t2 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (11)

Following the same argument with aforementioned bulk
criticality, we can obtain the boundary criticality by letting
det[HB(k · a1)] � 0, which leads to

t1t1′ − t2t3 � 0. (12)
The aboveEq. 12 holds only at k ·a1 = 0. Thus, when the system is

in a topological non-trivial case, Eq. 12 related edge criticality
separates two different second-order topological phases with
corner zero modes. Likely, we can obtain similar results for
periodic a2 and a3 directions. For convenience, we can define
boundary effective mass by the left of Eq. 12 for edges parallel to
a1. Or, generally Eq. 10 for edges parallel to ai. Different from the
armchair edges, the zigzag terminations has an additional boundary
criticality, namely, the effective masses can be defined by

Mi � 1
2
∑
j,k

ϵijk t2jtj′ − t2ktk′( ). (13)

The derived details can be found in the Supplementary
Appendix SAB.

With the effective mass orderly distributing on each edge (2),
the existence of corner zero-modes is reduced to a Jackiw-Rebbi
problem [46]. The corners with opposite effective masses on both
sides can have zero-modes.

DISCUSSION

In this article, we present a simple 2D realizable honeycomb-
lattice model to demonstrate the essential physics of the Takagi
topological insulator. It is found that with unchanged topological
invariant, one can tune topological boundary modes by not only
parameters, but also boundary selections. It goes beyond the
common wisdom about bulk-boundary correspondence, and
gives rise to much richer boundary physics.

Our model with novel physics is closely related to real systems. It
is easier to realize our model by photonic/phononic crystals, electric-
circuit arrays and mechanics systems, since only have nearest-
neighbor hopping amplitudes are included into the model.
Several special cases of our model have been recently realized in
photonic/phononic crystals [47, 48], where hopefully the general
form of our model can be further experimentally examined.
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