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The critical point and the critical exponents for a phase transition can be determined
using the Finite-Size Scaling (FSS) analysis. This method assumes that the phase
transition occurs only in the infinite size limit. However, there has been a lot of interest
recently in quantum phase transitions occurring in finite size systems such as a single
two-level system interacting with a single bosonic mode e.g., in the Quantum Rabi
Model (QRM). Since these phase transitions occur at a finite system size, the
traditional FSS method is rendered inapplicable for these cases. For cases like
this, we propose an alternative FSS method in which the truncation of the system
is done in the Hilbert space instead of the physical space. This approach has
previously been used to calculate the critical parameters for stability and
symmetry breaking of electronic structure configurations of atomic and molecular
systems. We calculate the critical point for the quantum phase transition of the QRM
using this approach. We also provide a protocol to implement this method on a digital
quantum simulator using the Quantum Restricted Boltzmann Machine algorithm. Our
work opens up a new direction in the study of quantum phase transitions on quantum
devices.

Keywords: finite-size scaling, quantum phase transition, quantum simulator, quantum restricted Boltzmann
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1 INTRODUCTION

A phase transition occurs whenever the thermodynamic functions of a system become non-
analytic e.g. as a liquid changes into a gas, the density of the system changes discontinuously. If
the phase transition occurs at a finite temperature T ≠ 0, the transition is called a classical phase
transition (CPT) as it is dominated by thermal fluctuations. On the other hand, if the transition
occurs by tuning some parameter in the system’s Hamiltonian as T → 0, it is called a quantum
phase transition (QPT) since it is dominated by quantum fluctuations. A CPT appears only when
the system is infinite i.e., in the thermodynamic limit [1]. On the other hand, a QPT doesn’t
necessarily require the thermodynamic limit. Recently there has been a lot of interest in QPTs
occurring in finite size light-matter interaction systems [2–7].

Quantum Rabi Model (QRM) describes the interaction of a two-level system with a bosonic field
mode (see Eq. 1 for the Hamiltonian.) This model has gained a lot of significance in the study of
ultrastrong light-matter coupling regimes where the so-called counterrotating terms can not be
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ignored [8]. Quantum Rabi Model has been shown to exhibit a
QPT [2]. Namely, when the energy separation of the two levels in
the system Ω becomes infinitely large compared to the frequency
of the bosonic mode ω0, the ground state of the Hamiltonian
undergoes a phase transition from a normal phase to a
superradiant phase as the light-matter coupling exceeds the
critical value. Moreover, the ground state of the Jaynes-
Cummings model (JCM) which can be obtained from the
QRM by performing the rotating-wave approximation has also
been shown to exhibit the normal-superradiant phase transition
[3]. Later on, a more general anisotropic QRM in which the
rotating and counter-rotating terms can have different coupling
strengths was also considered [4]. The QRM and JCM are limiting
cases of this model. It was shown that the ground state for this
more general case also undergoes the normal-superradiant phase
transition. The phase transition in QRM has also been
demonstrated experimentally using a 171Yb+ ion in a Paul trap
[7]. This experimental demonstration of a phase transition in a
single two-level system has incited a lot of interest since this opens
up an avenue for studying critical phenomena in controlled, small
quantum systems.

In CPTs and some QPTs (which require N → ∞), a finite-
size scaling (FSS) analysis can be done to extract the critical
point and the critical exponents of the transition [1, 9]. While
this procedure is inapplicable to the QPTs discussed above
since these phase transitions occur at a finite system size, the
phase transitions in these paradigmatic light-matter
interaction models occur only in the limit Ω/ω0 → ∞ and
FSS analysis can be done in Ω/ω0 [2–4] instead. In this paper,
however, we propose a different approach to study such phase
transitions. We apply the FSS in Hilbert space method [10–15]
to the QPT in Quantum Rabi Model. In this approach, the
truncation of the system is done not in the physical space but in
the Hilbert space. The set of basis states spanning the infinite
dimensional Hilbert space is truncated to a finite set and the
scaling ansatz is employed in terms of the size of this set. This
approach has previously been developed and applied to a
single particle in Yukawa potential [11, 13] and the
problem of finding electronic structure critical parameters
for atomic and molecular systems [10, 12, 14–16].

In recent years, digital and analog quantum simulators have
emerged as a promising platform for the simulation of
quantum phenomena. Quantum simulators have already
been used to study phase transitions using the method of
partition function zeros [17] and the Kibble-Zurek
mechanism [18, 19]. In this paper, we present a protocol to
implement the finite-size scaling method on a digital quantum
simulator. We use the Quantum Restricted Boltzmann
Machine (QRBM) algorithm to find the critical point of the
Quantum Rabi model.

This paper is organized as follows. In Section 2, we explain the
theory of Quantum Rabi Model, Finite-Size Scaling and the
Quantum Restricted Boltzmann Machine. In Section 3, we
present our results obtained using the exact diagonalization
method and QRBM. Finally in Section 4, we discuss our
results and future prospects of studying quantum phase
transitions on quantum devices.

2 THEORY

2.1 Quantum Rabi Model
The QRM describes a two-level system interacting with a bosonic
field mode. The Hamiltonian is [2],

HRabi � Ω
2
σz + ω0a

†a − λσx a + a†( ) (1)

where we’ve chosen Z = 1. Here, σz and σx are the Pauli Z and X
matrices respectively, Ω is the energy separation between the two
levels in the system, ω0 is the frequency of the bosonic mode and λ is
the system-environment coupling strength. The parity operatorΠ �
eiπ(a†a+|↑〉〈↑|) commutes with HRabi. So, HRabi has a Z2 symmetry.

This model has a critical point at g � 2λ/
����
ω0Ω

√ � gc � 1 in the
limit Ω/ω0 → ∞ [2]. Ω/ω0 → ∞ is analogous to the
thermodynamic limit for this case, and in experiments where
Ω/ω0 has to be finite, we’ll observe finite-size effects like in any
other phase transition [2]. For g < 1, the system is in the normal
phase and the ground state is |ϕ0np(g)〉 � S[rnp(g)]|0〉|↓〉 where
S[x] � exp[x2 (a†2 − a2)] and rnp(g) � −1

4 ln(1 − g2). The
rescaled ground state energy and photon number are eG(g) �
ω0
Ω 〈HRabi〉 � −ω0/2 and nG(g) � ω0

Ω 〈a†a〉 � 0 respectively. For
g > 1, the system is in a superradiant phase and the ground state is
two-fold degenerate, |ϕ0sp(g)〉 � D[± αg]S[rsp(g)]|0〉|↓±〉 here
rsp(g) � −1

4 ln(1 − g−4) and D[α] � exp[α(a† − a)]. |↓±〉 is the
negative eigenvalue eigenstate of 1

2g2σz ±
2λαg
g2Ωσx where

αg �
�����������
Ω

4g2ω0
(g4 − 1)

√
. The rescaled ground state energy and

photon number are eG(g) � ω0
Ω 〈HRabi〉 � −ω0(g2 + g−2)/4 and

nG(g) � ω0
Ω 〈a†a〉 � (g2 − g−2)/4 respectively.

As shown in Figures 1A,B, d2eG/dg
2 is discontinuous at g = gc

= 1, indicating a continuous phase transition and nG � ω0
Ω 〈a†a〉 is

an order parameter for this phase transition. In the normal phase,
nG is zero whereas in the superradiant phase, Z2 symmetry is
spontaneously broken and nG becomes non-zero.

We can also write effective low-energy Hamiltonians in both
the normal and the superradiant phases. For g < 1, HRabi can be
reduced to the following effective Hamiltonian [2],

Hnp � ω0a
†a − ω0g2

4
a + a†( )2 − Ω

2
. (2)

The system’s degrees of freedom have been removed by
projecting to |↓〉〈↓|, since this is a low energy description.
Similarly, for g > 1 the effective Hamiltonian can be written as [2],

Hsp � ω0a
†a − ω0

4g4
a + a†( )2 − Ω

2
g2 + g−2( ), (3)

where this time around the Hamiltonian has been projected along
|↓±〉〈↓±|. In Section 3, we’ll use Hnp and Hsp to find the critical
point of the model.

2.2 Finite-Size Scaling
The FSSmethod is widely used to determine the critical points and the
critical exponents in phase transitions [1]. To demonstrate the
method, consider that we have an infinite 2d system that
undergoes a classical phase transition at a critical temperature T =
Tc [9]. Suppose Q is a quantity that becomes singular at T = Tc with
some power law behavior
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Q∞ T( ) ~|T − Tc|−ω. (4)
We can also think of this system as an infinite collection of
infinite stripes, where the stripes are infinitely extended along
one direction and stacked along the perpendicular direction.
Now suppose there are only an N number of stripes. If N is
finite, Q should be regular at T = Tc since finite systems cannot
have non-analyticities at T ≠ 0. The singularity at T = Tc

should appear only when N → ∞. The finite size scaling
hypothesis assumes the existence of a scaling function FQ
such that

QN T( ) ≃ Q∞ T( )FQ N/ξ∞ T( )( ), (5)
where QN is the observable Q for a system with N stripes and Q∞

corresponds to the system in the thermodynamic limit. ξ∞ is the
correlation length for the infinite system. Eq. 5 is valid when N is
large. The correlation length also diverges as a power law near the
critical point,

ξ∞ T( ) ~|T − Tc|−]. (6)
Substituting Eqs 4, 6 in Eq. 5,

QN T( ) ≃ |T − Tc|−ωFQ N|T − Tc|]( ). (7)
Since QN(T) should be regular at T = Tc, the scaling function
should cancel the divergence due to |T − Tc|

−ω. Therefore, the
scaling function should be of the form FQ(x) ~ xω/] as x→ 0. We
should then have,

QN Tc( ) ~ Nω/]. (8)
If we define a function ΔQ(T; N, N′) such that

ΔQ T;N,N′( ) � log QN T( )/QN′ T( )( )
log N/N′( ) , (9)

then the value of this function at T = Tc, ΔQ(Tc; N, N′) ≃ ω/] is
independent of N and N′. Therefore, for three different values
N, N′ and N′′, the curves ΔQ(T; N, N′) and ΔQ(T; N′, N′′) will
intersect at the critical point T = Tc. This is how we can locate
the critical point using the finite size scaling hypothesis.

We can also find the critical exponents ω and ]. Noting from
Eq. 4 that

zQ∞ T( )
zT

~|T − Tc|− ω+1( ). (10)

Therefore, we should have ΔzQ/zT(Tc; N, N′) ≃ (ω + 1)/]. Define a
new function Γω(T; N, N′) such that

Γω T;N,N′( ) � ΔQ T;N,N′( )
ΔzQ/zT T;N,N′( ) − ΔQ T;N,N′( ). (11)

The value of this function at the critical point Γω(Tc; N, N′) ≃ ω is
independent of N and N′ and gives us the critical exponent ω.
Then ] can be determined using

] ≃
ω

ΔQ Tc;N,N′( ). (12)

As we’ve already stated in the Introduction, this method
cannot be used for the kinds of phase transitions we are
interested in which occur at a finite system size. However, for
such cases we can consider an extension of the approach
discussed above [10–16]. In this extended approach, instead
of truncating the system in the physical space, the system is
truncated in the Hilbert space [16]. The FSS ansatz looks
exactly the same except that N now represents the size of the
set of basis states which spans the truncated Hilbert space
[16]. Moreover, the temperature T will be replaced by the
parameter g which is being tuned across the critical point.
This approach has been shown by Kais and co-workers to
work in the case of a particle in Yukawa potential [11, 13]
and the calculation of electronic structure critical
parameters for atomic and molecular systems [10, 12,
14–16].

2.3 Quantum Restricted Boltzmann
Machine
Solving quantum many-body problems accurately has been a
taxing numerical problem since the size of the wavefunction

FIGURE 1 | Phase Transition in Quantum Rabi Model. (A) The rescaled ground state energy eG/ω0 � 〈HRabi〉/Ω and (d2eG/dg
2)/ω0 as functions of g. The

discontinuity in (d2eG/dg
2)/ω0 at g = gc = 1 indicates a countinuous phase transition. (B) The order parameter nG � ω0

Ω 〈a†a〉 as a function of g. nG becomes non-zero
when the Z2 symmetry is spontaneously broken at g > gc = 1.
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scales exponentially. The idea of taking advantage of the aspects
of Machine Learning (ML) related to dimensionality reduction
and feature extraction to capture the most relevant information
came from the work by Carleo and Troyer [20], which introduced
the idea of representing the many-body wavefunction in terms of
an Artificial Neural Network (ANN) to solve for the ground states
and time evolution for spin models, with a Restricted Boltzmann
Machine (RBM) as the chosen architecture for this ANN. More
recently, the critical behavior of the quantum Hall plateau
transition based on wavefunctions has been studied in a 2D
disordered electron system with the usage of a Convolutional
Neural Network (CNN) [21]. However, we focus on using an
RBM architecture in this work. An RBM consists of a visible layer
and a hidden layer with each neuron in the visible layer connected
to all neurons in the hidden layer but the neurons within a layer
are not connected to each other. The quantum state is ψ expanded
in the basis |x〉:

ψ
∣∣∣∣ 〉 � ∑ψ x( ) x| 〉 (13)

The Neural Network Quantum State (NQS) [20] describes
the wavefunction ψ(x) to be written as ψ(x; θ), where θ
represents the parameters of the RBM. ψ(x; θ) is now written
in terms of the probability distribution that is obtained from the
RBM as follows:

ψ x; θ( )∝ ∑
h{ }
e
1
2 ∑i

aiσzi +∑j
bjhj+∑

ij
wijσzi hj (14)

where, σzi is the Pauli z operator at i
th site, σzi and hj take values { +

1, − 1}, θ = {ai, bj,wij} are the trainable bias and weight parameters
of the RBM. Using stochastic optimization, the energy E(θ) is
minimized.

This work was extended to obtain the ground states of the
Bose-Hubbard model [22] and for the application of quantum
state tomography [23].

With the rapid developments in the domains of ML and
Quantum Computing (QC), the appetite for integrating ideas in
both of these areas has been growing considerably. The last
decade has seen a surge in the application of classical ML for
quantum matter, wherein these methods have been adopted to
benchmark, estimate and study the properties of quantum
matter [24–27], with recently showing provable classification
efficiency in classifying quantum states of matter [28]. RBM
based ansätzes have been shown to capture entanglement
transitions [29] and using an RBM with local sparse
connectivity achieves higher accuracy compared to its dense
counterpart when applied to disordered quantum Ising chains
[30]. The protocols and algorithms related to ML
implementable on a quantum system so-called Quantum
machine Learning [31] is expected to have the potential of
changing the course of fundamental scientific research [32]
along with industrial pursuit.

In lieu of today’s Noisy Intermediate Scale Quantum (NISQ)
devices, the ideas which utilize both classical and quantum
resources, such that the part of the problem which has an
exponential scaling is implemented on the quantum platform
while the rest are dealt with classically, are being carefully

investigated for various applications. Such algorithms are
known as classical-quantum hybrid algorithms. In the work by
Xia and Kais [33], a modified RBM with three layers was
introduced, the third layer to account for the sign of the
wavefunction, to solve for the ground state energies of
molecules (see Figure 2). Now, the parametrized wavefunction
ψ(x; θ) is written as a function of P(x) along with a sign
function s(x):

P x( ) � ∑ h{ } e
∑i

aiσzi +∑j
bjhj+∑ij

wijσzi hj

∑x′ ∑ h{ } e
∑i

aiσz′i +∑j
bjhj+∑ij

wijσz′i hj
(15)

s x( ) � tanh c +∑
i

diσ i⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ (16)

The wavefunction ansatz in terms of the RBM can be
expressed as [33]:

ψ
∣∣∣∣ 〉 � ∑

x

�����
P x( )√

s x( ) x| 〉 (17)

A quantum circuit comprising of a single-qubit (Ry) and
multi-qubit y-rotation gates (C1 − C2 − Ry) is employed, to
sample the Gibbs distribution. The utilization of Ry gates caters to
the bias parameter of visible and hidden layers part of the
distribution, while C1 − C2 − Ry gates tend to the weights
part of the distribution. In the work by Sureshbabu et al. [34],
the implementation of such a circuit on IBM-Q devices was
shown, wherein a new ancillary qubit is introduced to store the
value corresponding to every C1 − C2 − Ry gate (Figure 3). The
term n denotes the number of visible qubits and m denotes the
number of hidden units. In this formalism, the number of
ancillary qubits required is n × m. Starting all the qubits from
a |0〉, the Ry and C1 − C2 − Ry rotations are performed, and a
measurement is performed on all the qubits. If all the ancillary
qubits are in |1〉, then the sampling is deemed successful and the
states corresponding to the first m + n qubits provide the
distribution P(x). The joint probability distribution defined
over the parameters of the circuit θ = {a, b, w} and a set of
y = {σz, h} is given by:

P y, θ( ) � e∑i
aiσzi +∑j

bjhj+∑ij
wijσzi hj

∑ y{ } e∑i
aiσz′i +∑j

bjhj+∑ij
wijσz′i hj

(18)

The probability of successful sampling can be improved by
rewriting the distribution P(y, θ) as Q(y, θ) and setting
k � max(1, |wij|

2 )[33, 35]:

Q y, θ( ) � e
1
k ∑i

aiσzi +∑j
bjhj+∑ij

wijσzi hj( )
∑ y{ } e

1
k ∑i

aiσz′i +∑j
bjhj+∑ij

wijσz′i hj( ) (19)

Firstly, the QRBM is implemented classically, i.e., the
quantum circuit is simulated on a classical computer. This
execution caters to the ideal results that can be obtained
through the QRBM algorithm. Then, the quantum circuit is
implemented on the Digital Quantum Simulator, the qasm
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simulation backend. This simulator is part of the high-
performance simulators from IBM-Q. The circuit is realized
using IBM’s Quantum Information Software Toolkit titled
Qiskit [36]. Though no noise model was utilized, as a result
of finite sampling, statistical fluctuations in the values of

probabilities in observing the circuit in the measurement
basis, are present in the obtained results.

Having obtained the distribution Q(y, θ), the probabilities are
raised to the power of k, to get P(y, θ). Following this, the sign
function is computed classically, thereby calculating |ψ〉. Then,

FIGURE 2 | Restricted Boltzmann Machine architecture. The first layer is the visible layer with bias parameters denoted by ai. The second layer is the hidden layer
with bias parameters denoted by bj. The third layer is the sign layer with bias parameters denoted by c. The weights associated with the connections between the visible
neurons and the hidden neurons are designated by wij. The weights associated with the connections between the visible neurons and the neuron of the sign layer are
designated by di.

FIGURE 3 | The quantum circuit to sample the Gibbs distribution. n is the number of qubits belonging to the visible layer andm is the number of qubits belonging to
the hidden layer. There are m × n ancillary qubits.
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the expectation value for the Hamiltonian H [〈Ψ|H|Ψ〉] is
computed to get the energy, which is minimized using
gradient descent to obtain the ground state eigenenergy of H.

The resource requirements demanded by this algorithm are
quadratic. The number of qubits required are (m + n) to encode
the visible and hidden nodes, and (m × n) to account for the
ancillary qubits. Hence, the number of qubits scales as O(mn).
The number of Ry gates required are (m + n) and the number of
C1 − C2 − Ry gates required are (m × n). In addition, each C1 − C2
− Ry gate requires 6n X-gates to account for all the states spanned
by the control qubits. Therefore, the number of gates required
also scales as O(mn). Obtaining the ground states or minimum
eigenvalues of a given matrix using exact diagonalization has a
complexity of ≈ j3, with j being the dimension of the column space
for the given matrix [37].

3 RESULTS

3.1 Exact Diagonalization
In this section, we demonstrate the calculation of the critical point
of the Quantum Rabi model using the Finite-Size Scaling method.
As discussed before, the phase transition in QRM occurs only in
the limit Ω/ω0 → ∞. This limit is not straightforward to
implement in HRabi given in Eq. 1. Instead, we have
considered the effective low-energy Hamiltonians Hnp and Hsp

given in Eqs 2, 3 respectively. In Hnp and Hsp, Ω is involved only
in a constant term which can be removed from the Hamiltonians
and the limit Ω/ω0 → ∞ can then be easily imposed.

In Hnp andHsp, the degrees of freedom of the two-level system
have been traced out and the only degrees of freedom we have are
those of the bosonic mode. Let’s first consider the normal phase
Hamiltonian Hnp. The Hilbert space for this Hamiltonian is
spanned by the familiar harmonic oscillator number states
{|0〉, |1〉, |2〉, . . .}. We can truncate the full Hilbert space to an
N-dimensional Hilbert space spanned by {|0〉, |1〉, . . . , |N − 1〉}
to apply the finite-size scaling analysis. In this restricted Hilbert
space, the matrix form of H(N)

np can be found by using a|m〉 ���
m

√ |m − 1〉 and a†|m〉 � �����
m + 1

√ |m + 1〉. Once we have the
matrix form, we can then use the exact diagonalization
method to find the ground state of H(N)

np with energy E(N)
np .

Consider the scaling law for the ground state energy in the
vicinity of the critical point g = gc,

E g( ) ~|g − gc|α. (20)
Here E is the ground state energy. We slightly modify the
formula in Eq. 9 to take into account the difference in the
signs of the exponents in Eqs 4, 20. The new formula with Q =
E is,

ΔHnp g;N,N′( ) � log E N( )
np g( )/E N′( )

np g( )( )
log N′/N( ) , (21)

We plot the curves ΔHnp(g;N,N + 2) for N = 8, 10, . . ., 30 in
Figure 4A. We then plot the intersection points g(N)

np of the curves

ΔHnp(g;N − 4, N − 2) and ΔHnp(g;N − 2, N) as a function of N
as shown in Figure 4B. To find the limit of g(N)

np as N → ∞, we
used the Bulirsch-Stoer algorithm [44, 45]. The limit was
calculated to be g(N)

np → 0.999996. So g(np)
c � 0.999996.

In a similar way, we then consider Hsp. The curves
ΔHsp(g;N,N + 2) are plotted in Figure 4C for N = 8, 10, . . .,
30 and the intersection points g(N)

sp are plotted in Figure 4D as a
function of N. In this case, the extrapolation to N → ∞ gives the
critical value g(sp)

c � 0.999987. Both the calculated values of g(np)
c

and g(sp)
c are very close to the exact value gc = 1.

3.2 Quantum Restricted Boltzmann
Machine
Now we illustrate the implementation of the FSS method using
the QRBM algorithm. The results are shown in Figure 5.
Figure 5A,C show the results for Hnp and Hsp using the
classical implementation of the algorithm respectively.
Whereas, Figure 5B,D correspond to the results for Hnp and
Hsp when the algorithm is implemented using the qasm simulator
from IBM-Q respectively. The QRBM algorithm is run for N = 8,
10, 12, 14, 16.

For the case of N = 8, the number of qubits associated with the
visible nodes equals 3, the number of qubits associated with the
hidden nodes equals 3, and 9 ancillary qubits were used. The
quantum circuit consists of 6 Ry gates associated with the bias
parameters, 9 C1 − C2 − Ry gates associated with the weights.
Since, each C1 − C2 − Ry gate requires 6 X-gates, a total of 54 X-
gates were used. For the case of N = 10,..,16, the number of qubits
associated with the visible nodes equals 4, the number of qubits
associated with the hidden nodes equals 4, and 16 ancillary qubits
were used. The quantum circuit consists of 8 Ry gates associated
with the bias parameters, 16 C1 − C2 − Ry gates associated with
the weights. Since, each C1 − C2 − Ry gate requires 6 X-gates, a
total of 96 X-gates were used.

Starting from random initialization, all parameters are
updated via gradient descent. A learning rate of 0.01 was
chosen and the algorithm is run for around 30,000 iterations.
In order to assist with the convergence to the minimum
eigenenergies, warm starting is employed. The method of
warm starting is essentially initializing the parameters of the
current point with the parameters of a previously converged point
of calculation, which helps in avoiding the convergence to a local
minima.

The black curves plotted in the insets in Figure 5 represent
the deviation of the QRBM results (black dashed curves) from
the exact diagonalization results (blue solid curves). They were
calculated using the average of the quantity |Δ(ED)(g) −
Δ(QRBM)(g)/Δ(ED)(g)|× 100 over all the four curves. An
enlarged version of the error plots is shown in Figure 6 can
be found in the Supporting Information section. For each case
the overall error close to g = 1.000 is not more than ~ 5%which
implies convergence to the right result. Moreover, for the case
of Hsp, we notice that the error is very small for the classical
implementation i.e., ~ < 1% throughout the range of the graph.

The critical point usingHnp was found to be g(np)
c � 1.008 for

both the classical and qasm implementations. Similarly, the
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FIGURE 4 | Finite-Size Scaling for Quantum Rabi model.We usedN = 8, 10, . . ., 32. (A)Graphs of ΔHnp(g; 8, 10), ΔHnp(g; 10,12), . . . , ΔHnp(g; 30, 32) as a function
of g. (B) Intersection points g(N)np where ΔHnp(g(N)np ;N − 4,N − 2) � ΔHnp(g(N)np ;N − 2,N), as a function of 1/N. As N → ∞, g(N)np → 0.999996. So, g(np)c � 0.999996. (C)
Graphs of ΔHsp(g; 8,10), ΔHsp(g; 10,12), . . . , ΔHsp(g; 30, 32) as a function of g. (D) Intersection points g(N)sp where ΔHsp(g(N)sp ;N − 4,N − 2) � ΔHsp(g(N)sp ;N − 2,N), as a
function of 1/N. As N → ∞, g(N)sp → 0.999987. So, g(sp)c � 0.999987.

FIGURE 5 |QRBM Implementation of FSS for QRM. The light blue line represents results obtained from exact diagonalization and dashed black line represents QRBM
results. (A) Classical implementation of QRBM corresponding to normal phase, graphs of ΔHnp(g; 8, 10), ΔHnp(g; 10, 12), . . . , ΔHnp(g; 14, 16) as a function of g. (B) QRBM
implemented on qasm simulator corresponding to normal phase, graphs ofΔHnp(g; 8,10), ΔHnp(g;10,12), . . . , ΔHnp(g; 14,16) as a function of g. The g(np)c in both the cases
is calculated to be 1.008. (C)Classical implementation ofQRBMcorresponding to superradiant phase, graphs ofΔHsp(g; 8, 10), ΔHsp(g; 10, 12), . . . , ΔHsp(g; 14,16) as
a function of g. (D)QRBM implemented on qasm simulator corresponding to superradiant phase, graphs ofΔHsp(g; 8,10), ΔHsp(g; 10, 12), . . . , ΔHsp(g; 14, 16) as a function
of g. The g(sp)c in both the cases is calculated to be 0.996. The inset plots display the mean percentage error between the exact diagonalization results and QRBM results.
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critical point for the case ofHsp was found to be g(sp)
c � 0.996 for

both the classical and qasm implementations. Here we notice
that although, the convergence for the data obtained from both
the classical and qasm implementations turns out to be the same
for both Hnp and Hsp, such a perfect match appears to be
somewhat coincidental. Here, again the Bulirsch-Stoer
algorithm [44, 45] which sets the criteria used to deduce
these convergence results. The convergence plots are shown
in Figure 7 have been added to the Supporting Information
section.

4 DISCUSSION AND OUTLOOK

In this paper, we have used the Finite-Size Scaling in Hilbert
Space approach to calculate the critical point of the Quantum
Rabi Model. We used the low-energy effective Hamiltonians
for both the normal and superradiant phases respectively to
show that the critical point is gc ≈ 1. The original FSS
approach in which the truncation is done in the physical
space has been widely used to calculate critical points and
critical exponents since its inception. However, that approach
was not applicable to Quantum Phase Transitions which
occur at a finite system size. With the rise in interest in
QPTs occurring in these finite size systems, our approach
provides a natural extension of the original FSS method to
study such phase transitions. To our knowledge, this is the
first time this approach has been used to study a QPT in a
light-matter interaction system.

We have also provided a recipe for the implementation of this
method on a universal quantum computer using the Quantum
Restricted Boltzmann Machine algorithm. It was shown that
results obtained from the classical gate simulation match those
obtained from the IBM-Q’s qasm simulator. Such an
implementation scales quadratically while the exact
diagonalization scales cubically in the best case and
exponentially in the worst case. Looking forward, we are
interested in applying this approach to other QPTs such as the
QPT in anisotropic QRM. We would also like to use our method
to calculate the critical exponents in addition to the critical points
in these phase transitions. It would also be interesting to see if this
approach can be used to predict any new phase transition for
some other non-integrable model.

FIGURE 6 | Error plots from the insets of Figure 5. (A–D) are the insets
shown in Figures 5A–D respectively.

FIGURE 7 | Convergence diagrams for results in Figure 5. (A–D) correspond to convergence results for data in Figures 5A–D respectively. The same procedure
was used as the one shown in Figures 4B,D.
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Another very promising research direction is to implement the
FSS method for phase transitions in classically intractable many-
body models such as exotic electronic and magnetic systems.
These include general quantum materials, for example where
Coulomb potential leads to a gapped spectrum in energy,
including in direct band-gap semiconductors in the
thermodynamic limit. Conventionally speaking, it might be
necessary to resort to the original finite-size scaling in the
physical space approach for these systems since they exhibit
criticality only in the limit N → ∞. However, the ground state
of an appropriately truncated Hamiltonian could be deduced
using the QRBM algorithm as shown in the paper towards
efficient implementation on a digital quantum simulator. A
simile can also be drawn between a many-body bulk gap
separating a continuum of excited states from the ground state
manifold to the gapped Rabi model discussed in this paper. Such
an approach can be useful in emergent topological systems, such
as in Weyl semimetals, 1-D Kitaev spin chains, quantum spin
liquids, and others, on which there is a tremendous explosion of
interest [38–43]. Topological phase transitions are devoid of any
conventional order parameter and a quantum solution deriving
from the approach outlined in this paper can help us bypass
resource and scaling limitations of DMRG and exact

diagonalization approaches to calculate the critical point and
the critical exponents.
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APPENDIX A:

Bulirsch-Stoer Algorithm
For hN = 1/N where N = 0, 1, 2, . . ., the Bulirsch-Stoer algorithm
can be used to find the limit of a function T(hN) as N → ∞44,45.
For demonstration, consider that we only have T(hN) for N = 0, 1,
2, 3, then the following rows are computed successively,

using the following rules

T N( )
−1 � 0 (22)

T N( )
0 � T hN( ) (23)

T N( )
m≥1 � T N+1( )

m−1

+ T N+1( )
m−1 − T N( )

m−1( ) hN
hN+m

( )ω

1 − T N+1( )
m−1 − T N( )

m−1
T N+1( )
m−1 − T N+1( )

m−2
( ) − 1[ ]−1

(24)
where ω is a free parameter determined by minimizing
ε(i)m � |T(i+1)

m − T(i)
m |. The final answer is T(0)

3 .

0 T(0)
0 T(1)

0 T(2)
0 T(3)

0

1 T(0)
1 T(1)

1 T(2)
1

2 T(0)
2 T(1)

2

3 T(0)
3
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