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We obtained families of generalized van der Waals equations characterized by

an even number n = 2, 4, 6 and a continuous free parameter, which is tunable

for a critical compressibility factor. Each equation features two adjacent critical

points which have a common critical temperature Tc and arbitrarily two close

critical densities. The critical phase transitions are naturally two-sided: the

critical exponents are αP � γP � 2
3 and βP � δ−1 � 1

3 for T > Tc and αP � γP � n
n+1

and βP � δ−1 � 1
n+1 for T < Tc. In contrast with the original van der Waals equation,

our novel equations all reduce consistently to the classical ideal gas law in the

low-density limit. We tested our formulas against the NIST data for 11 major

molecules and showed agreements better than the original van der Waals

equation, not only near to the critical points but also in low-density regions.
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Introduction

Two-sided phase transitions are rather out of the ordinary critical phenomena as their

critical exponents take different values in the higher-and the lower-temperature phases.

When the general renormalization group argument, e.g. [1], might appear to suppress

such an unusual bilateral critical behavior, they have been reported to occur in various

systems, such as the isotropic ferromagnet [2], XY-Heisenberg model [3], complex

Sachdev–Ye–Kitaev models [4], and liquid–gas transitions of real molecules [5]. To

explain the two-sided critical phase transitions while respecting the analyticity of the

canonical partition function of a finite system, it was hypothesized that there may exist not

a single but double critical points, which should be quite close to each other [5].

It is the dual purpose of the present article to modify the van der Waals equation

toward the description of the two-sided phase transitions and to test our novel formulas

against the NIST reference data (RRID:SCR_006452) [6], specifically for 11 real

molecules. Our proposed equation of state, which we dub Janus van der Waals

equations,1 is characterized by extremely adjacent two critical points. The two critical

points share strictly the same critical temperature, Tc, but, remarkably, the critical
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pressure, Pc, and the critical volume per particles, vc, differ by

arbitrarily small amounts, such that the two distinct critical

points can appear practically indistinguishable.

The (original) van der Waals equation of state,

Pr + 3
v2r

( ) vr − 1
3

( ) � 8
3
Tr, (1)

was meant to be an improvement of the classical ideal gas

law, i.e.,

Pv � kBT 5 Prvr � χTr : χ � kBTc

Pcvc
, (2)

by attempting to take into account the finite volume of molecules

and intermolecular attractions. In (1) and (2), and henceforth, Pr =

P/Pc, Tr = T/Tc, and vr = v/vc are the reduced pressure, temperature,

and volume per particle, respectively, while χ = kBTc/(Pcvc) denotes

the inverse of the critical compressibility factor which is

dimensionless. The critical point is given by Pr = Tr = vr = 1,

such that the van der Waals Eq. 1 contains the critical point as

(1 + 3)(1 − 1
3) � 8

3 and may describe the near critical behavior.

However, in a large volume or low-density limit, Eq. 1 gives

Pv ≃
8Pcvc
3Tc

( )T ≠ kBT. (3)

Thus, unless χ � 8
3 by chance, the van der Waals Eq. 1 cannot be

reduced to the classical ideal gas law (2) in the low-density limit

and accordingly fails to describe real gases at low densities. In

fact, the experimental real values of χ are typically around

3.5 larger than 8
3. In contrast, our proposed Janus van der

Waals equations are going to be consistent with the classical

ideal gas law (2) at low densities. They are not particularly

motivated by the finite volume or intermolecular effects.

Instead, we addressed directly the definition of the critical

point in thermodynamics: for a given equation of state, a

critical point can be identified as a stationary inflection point

in the constant temperature line on a pressure versus volume

diagram. Specifically for a certain natural number greater than or

equal to two, nc ≥ 2, we have at the critical point,

zkP Tc, vc( )
zvk

� 0 for 1≤ k≤ nc, (4)

while the next higher-order derivative having k = nc + 1 is

nontrivial. In particular for van der Waals Eq. 1, the number

takes the minimal value nc = 2, and its spinodal curve, that is, by

definition the lowest order k = 1 in (4), is given by

Tr � 1 − vr − 1( )2 4vr − 1( )
4v3r

. (5)

This expression shows clearly that on the spinodal curve, the

temperature is locally maximal at the critical point. In general,

the characteristic number nc can differ from two and may be used

to classify the critical points, being dubbed as ‘critical index’ [5].

Thoroughly from (4), both the critical isobar of Pr ≡ 1, and the

spinodal curve satisfies simple power-law behaviors around the

critical point:

T − Tc ∝ v − vc( )1+nc : critical isobar,
T − Tc ∝ v − vc( )nc : spinodal curve. (6)

Combined with the analyticity of the underlying canonical partition

function, this result fixes the (isobaric) critical exponents [8], αP �
γP � nc

1+nc and βP � δ−1 � 1
1+nc. These satisfy Rushbrooke and

Widom scaling laws. Since nc ≥ 2, the two curves of (6) are

actually tangent to each other at the critical point.

The main result of [5] was that the NIST reference data on

20 major molecules [6] are indeed consistent with the analytic

prediction of the critical exponents and, moreover, that the critical

phase transitions are remarkably two-sided: for T > Tc the critical

index is 2 universally, yet for T < Tc it varies as n ≡ 2, 3, 4, 5, 6

depending on eachmolecule, collectively denoted by a pair of critical

indices, nc 0 (n+, n−) = (2, n). In this work, we present Janus van

der Waals equations characterized by a pair of adjacent critical

points with indices (n+, n−) = (2, n) for n = 2, 4, 6 (even). With one

continuous input parameter, which will be chosen to match the

critical compressibility, they are shown to describe all the real

molecules remarkably well with even critical indices identified in

[5]. They are cyclopentane (C5H10) for n = 2; nitrogen (N2), argon

(Ar), methane (CH4), ethylene (C2H4), ethane (C2H6), propylene

(C3H6), propane (C3H8), butane (C4H10), and isobutane (C4H10) for

n = 4; and helium-4 (4He) for n = 6.

Ansatz and derivation

Our Janus van der Waals equations assume an ansatz,

Pr + χfn vr( )( ) vr − b( ) � χ Tr, (7)

where fn (vr) is supposed to be a polynomial in v−1r , and χ � kBTc
Pcvc

is

the (experimentally determinable) genuine free parameter which

will guarantee the consistency with the classical ideal gas law (2)

in the large-volume limit, hence resolving the inconsistency of

the original van der Waals Eq. 3. Each molecule will have its own

Janus van der Waals equation characterized by two input

parameters, χ (continuous) and n = 2, 4, 6 (discrete).

With four constants {a, b, s, t}, which will be determined

shortly, we require the spinodal curve to meet

Tr � − vr − b( )2dfn vr( )
dvr

� 1 − vr − a( )n vr − 1( )2 v2r − svr + t( )
vn+4r

.

(8)
When the first equality comes from the definition of the spinodal

curve, crucially the second generalizes the van der Waals case (5)

and gives rise to two distinct critical points:

nc, Pr, Tr, vr( ) � n, 1 + ϵ, 1, a( ) and 2, 1, 1, 1( ). (9)
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At each critical point, in view of (6), we clearly have

Tr − 1∝ vr − a( )n as vr → a
vr − 1( )2 as vr → 1

.{ (10)

Their critical indices, pressure, and volume per particle may

differ, but the critical temperature is the same, i.e., Tr = 1. For this,

it is necessary to set 0 < a < 1 and s2 ≠ 4t. We also put n to be even,

n = 0, 2, 4, 6, /, such that the critical temperature is (locally)

maximal on the spinodal curve, which is the case with the van der

Waals fluid (5), a relativistic ideal Bose gas [8] (Figures 2, 6

therein), and supposedly real molecules. Accordingly, the

spinodal curve (8) has “twin peaks” in temperature, as

depicted in Figure 1. Moreover, in order to be consistent with

the realistic molecules for which only one critical point has been

usually assumed, we shall let a be close to 1−, and then, from ϵ∝
(1 − a)n+3, which we shall derive later in (17), the two critical

pressure values, Pr = 1 and Pr = 1 + ϵ, will be practically

indistinguishable from each other.

From the fact that the last expression in (8) should be

divisible by (vr − b)2, two constraints arise:

b − 1( )2 b − a( )n b2 − sb + t( ) � bn+4;
2

b − 1
+ n

b − a
+ 2b − s

b2 − sb + t
� n + 4

b
, (11)

which subsequently determine s and t in terms of a and b,

s � 2b + n + 2( )ab − n + 4( )a + 4b − 2b2

b − 1( )3 b − a( )n+1( )bn+3;
t � b2 + n + 1( )ab − n + 3( )a + 3b − b2

b − 1( )3 b − a( )n+1( )bn+4. (12)

With these identifications, the second equality of (8) fixes the

function fn (vr):

fn vr( ) � 1
b5

∑n+1
l�0

cl
n + 3 − l

b

vr
( )n+3−l

, (13)

where the coefficients are given, with (12), by 2:

cl � ∑l
j�0

j − l − 1( )
n

j − 4
( )a4 + n

j − 3
( ) 2 + s( )a3 + n

j − 2
( ) 1 + 2s + t( )a2[

+ n

j − 1
( ) s + 2t( )a + n

j
( )t] −a

b
( )n−j

. (14)

FIGURE 1
Schematic zoomed-in diagram of a spinodal curve (black
colored) and three isobar curves (blue colored). There are two
adjacent critical points on a spinodal curve at vr = a and at vr = 1.
When Pr < 1, the isobar crosses the spinodal curve twice at vr <
a and at vr > 1. When Pr > 1, the isobar does not meet the spinodal
curve. When Pr = 1, with negligible ϵ, the critical isobar touches the
spinodal curve at the two critical points. Specifically, along the
critical isobar, as the temperature increases from Tr < 1 to Tr = 1−,
the critical point at vr = awith the critical index of nc = n = 2, 4, 6 is
relevant. On the other hand, as the temperature decreases from
Tr > 1 to Tr = 1+, the dominant critical point is at vr = 1 with nc = 2.
Between the two peaks on the spinodal curve, there is a local
minimumwhichmay be also identified as a “critical point” of which
the critical temperature is less than Tc. This third critical point is
sandwiched by the two extremely adjacent critical points and plays
an inconsiderable role in our analysis. The diagram generalizes the
single-peaked spinodal curve of a relativistic ideal Bose gas,
depicted in Figure 1 of Ref. [8], to twin-peaks, and furthermore will
be confirmed through a concrete example as in Figure 2.

FIGURE 2
Diagram featuring the spinodal curve (red colored) and the
critical isobar (blue colored) of the n = 4 Janus van der Waals
equation with the two adjacent critical points at vr = a = 0.99 and
vr= 1.00. We have set χ= 3.4556 as for nitrogen (N2). Since ϵ=
6.0846 × 10–15 (17), the two critical isobars Pr = 1 and Pr = 1 + ϵ are
indeed practically indistinguishable. The (common) critical isobar
then touches both the critical points, as anticipated in Figure 1. The
local minimum value of Tr sandwiched by the twin critical points is
lower than 1 by a small amount (<10–12) and is thus also
experimentally hard to detect.

2Essentially, the coefficients (14) stem from a recurrence relation cl − 2cl−1 +
cl−2 = hl for some hl, whose solution reads in general cl � ∑l

j�0(l + 1 − j)hj.
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TABLE 1 Coefficients of the n = 4 Janus van der Waals equations for nine molecules.

Molecule
(n = 4)

χ k2 k3 k4 k5 k6 k7 b

Nitrogen (N2) 3.4556 −0.30474 28.762 −57.117 56.913 −28.406 6.0760 0.50091

Argon (Ar) 3.4542 −0.31380 28.784 −57.150 56.941 −28.418 6.0783 0.50093

Methane (CH4) 3.4936 −0.044104 28.110 −56.162 56.132 −28.059 6.0110 0.50013

Ethylene (C2H4) 3.5563 0.38638 27.034 −54.582 54.840 −27.484 5.9032 0.49885

Ethane (C2H6) 3.5726 0.49759 26.755 −54.174 54.505 −27.335 5.8752 0.49852

Propylene (C3H6) 3.6279 0.87670 25.806 −52.781 53.364 −26.827 5.7797 0.49739

Propane (C3H8) 3.6168 0.80075 25.996 −53.060 53.593 −26.929 5.7989 0.49762

Butane (C4H10) 3.6529 1.0482 25.376 −52.150 52.847 −26.597 5.7363 0.49688

Isobutane (C4H10) 3.6251 0.85816 25.852 −52.849 53.420 −26.852 5.7844 0.49744

FIGURE 3
Isochoric curves of cyclopentane (C5H10) at 1/vr = 0.02 (A), 1/vr = 0.5 (B), 1/vr = 1.0 (C), and 1/vr = 1.5 (D),respectively. Boxes are from the NIST
data. The red solid line is drawn from the n = 2 Janus van der Waals Eq. 23 and is better fitted than the three other equations: the n = 0mono-critical
Eq. 21, the original van der Waals Eq. 1, and the classical ideal gas law (2).
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It should be noted that the binomial coefficient (nk) � n!
k!(n−k)!

should be trivial if k or n − k is negative.

The remaining two constants a, b are then determined by

requiring that the reduced critical pressure Pr should take the

aforementioned values of 1 + ϵ and 1 at the two critical points of

vr = a and vr = 1 (9):

χ
1

a − b
− fn a( )[ ] � 1 + ϵ; χ

1
1 − b

− fn 1( )[ ] � 1.

(15)
We obtained from the latter

χ � n + 3( ) 1 − b( )n+3
1 − b( )n+3 + bn+3

, (16)

and by subtracting the latter from the former, we obtained

ϵ � 2χ 1 − a( )n+3 1 − b( )3 a − b( )n+1 + n + 1( )a − b + 3{ }bn+3[ ]
n + 3( ) n + 2( ) n + 1( )a3 1 − b( )3 a − b( )n+1 .

(17)

Inverting (16), we solve for b in terms of the physically

measurable compressibility factor,

b � n + 3 − χ( ) 1
n+3

n + 3 − χ( ) 1
n+3 + χ

1
n+3
. (18)

Clearly from (17), ϵ becomes small ϵ∝ (1 − a)n+3 as the constant

a gets close to unity from below. In fact, ϵ is positive when 0 < a <
1 and 0 < χ < n + 3. This confirms that the two critical points (9)

can be indeed extremely adjacent and experimentally

indistinguishable. Naturally, the limit a → 1− does not match

the exact value of a = 1: the former is still bi-critical, while the

latter is mono-critical with the enhanced critical index nc = n + 2.

However, away from the critical points in the phase diagram, we

may practically put

a ≈ 1, (19)
and obtain approximate Janus van der Waals equations, which

we shall test against the NIST reference data [6].

FIGURE 4
Isobaric curves of cyclopentane (C5H10) at Pr= 1.5 (A), Pr= 1.0 (B), and Pr=0.5 (C), respectively. Boxes are from theNIST data. The red solid line is
drawn from the n= 2 Janus van derWaals Eq. 23 and is better fitted than the n=0mono-critical Eq. 21, the original van derWaals Eq. 1, or the classical
ideal gas law (2).
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Figure 2 is the diagram of a spinodal curve (8) for the choice of

n = 4, a = 0.99, and χ = 3.4556 as for nitrogen (N2). It follows from

(18) b = 0.5009 and subsequently (12) fixes s, t. The curve confirms

theanticipatedtwoadjacentcriticalpointsata=0.99and1.00.Spinodal

curves for other molecules can be obtained by the same method.

Theoretical result: Janus van der
waals equations

We now spell our modified van der Waals equations for each

case of n= 0 (mono-critical) and n= 2, 4 (bi-critical/Janus) explicitly.

n = 0: Mono-critical generalization

When n = 0, the parameter a becomes irrelevant as there is

only one critical point. Consequently, (7) reduces to a one-

parameter generalization of the van der Waals equation,

Pr +
χ
1
3 − χ − 3( )13[ ] χ

2
3 − χ − 3

∣∣∣∣ ∣∣∣∣23[ ]
v2r

+ 2 − χ + χ
1
3 χ − 3
∣∣∣∣ ∣∣∣∣23

v3r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
vr − χ − 3( )13

χ − 3( )13 − χ
1
3

⎡⎢⎣ ⎤⎥⎦ � χ Tr. (20)

The critical compressibility factor is at our disposal. Choosing

χ � kBTc
Pcvc

� 8
3, one recovers the original van der Waals Eq. 1.

Among the 11major molecules we examined, cyclopentane is

exceptional as its critical phase transition is not two-sided: nc = 2

universally for the temperature T > Tc and T < Tc [5]. Logically, it

can be either mono-critical with n = 0 or bi-critical with n = 2. To

examine which is correct with the NIST data, we put χ = 3.5572 as

for the value of cyclopentane and prepared an n = 0 equation

from (20):

Pr + 1.1632
v2r

− 0.52356
v3r

( ) vr + 1.1694( ) � 3.5572Tr. (21)

FIGURE 5
Isothermal curves of cyclopentane (C5H10) at Tr = 1.01 (A), Tr = 1.00 (B), and Tr = 0.99 (C), respectively. Boxes are from the NIST data. The red
solid line is drawn from the n = 2 Janus van der Waals Eq. 23 and is better fitted than the n = 0mono-critical Eq. 21, the original van der Waals Eq. 1, or
the classical ideal gas law (2).

Frontiers in Physics frontiersin.org06

Kim et al. 10.3389/fphy.2022.917453

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.917453


The plus sign in the second bracket (which is generically the case

for χ > 3) is in contrast with the negative sign in the original van

der Waals Eq. 1.

n = 2 equation for cyclopentane (C5H10)

For n = 2, in the limit a → 1− or a ≈ 1 (19), we have

χfn�2 vr( ) ≈
χ
1
5 5 − χ( )15 χ

1
5 − 5 − χ( )15[ ] χ

2
5 + 5 − χ( )25[ ] + 4χ − 10

v2r

+
χ
1
5 5 − χ( )25 χ

2
5 − 2χ

1
5 5 − χ( )15 + 3 5 − χ( )25[ ] − 6χ + 20

v3r

+
χ
1
5 5 − χ( )35 χ

1
5 − 3 5 − χ( )15[ ] + 4χ − 15

v4r

+χ
1
5 5 − χ( )45 − χ + 4

v5r
. (22)

Letting χ = 3.5572, we obtain an n = 2 Janus van der Waals

equation for C5H10 (cyclopentane),

Pr + 5.0608
v2r

+ 2.1811
v3r

− 3.8860
v4r

+ 2.1710
v5r

( )
vr − 0.45500( ) ≈ 3.5572Tr. (23)

As we shall see in the following section, the NIST data on

cyclopentane are better described by this bi-critical equation

rather than the mono-critical one (21).

n = 4 equations for nitrogen (N2), argon
(Ar), methane (CH4), ethylene (C2H4),
ethane (C2H6), propylene (C3H6), propane
(C3H8), butane (C4H10), and isobutane
(C4H10)

For n = 4 with b � (7−χ)17
(7−χ)17+χ17 and a ≈ 1 (19), we have

χfn�4 vr( ) ≈ 21 − 140b + 392b2 − 588b3 + 490b4 − 196b5

b7 + 1 − b( )7[ ]v2r
+ −35 + 245b − 728b2 + 1176b3 − 1078b4 + 490b5

b7 + 1 − b( )7[ ]v3r
+ 35 − 245b + 735b2 − 1218b3 + 1176b4 − 588b5

b7 + 1 − b( )7[ ]v4r
+ −21 + 147b − 441b2 + 735b3 − 728b4 + 392b5

b7 + 1 − b( )7[ ]v5r
+ 7 − 49b + 147b2 − 245b3 + 245b4 − 140b5

b7 + 1 − b( )7[ ]v6r
+ −1 + 7b − 21b2 + 35b3 − 35b4 + 21b5

b7 + 1 − b( )7[ ]v7r .

(24)

FIGURE 6
Three-dimensional Pr − vr − Tr phase diagram of the exact n = 2 Janus van der Waals Eq. 7, as for the cyclopentane molecule (C5H10). The bold
purple line corresponds to the isotherm of Tr= 1.00, as depicted in Figure 5B; the red line is the Janus van derWaals spinodal curve with a= 0.99; and
the red dot is the critical point.
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Choosing χ from the experimental data, we obtained n = 4 Janus

van der Waals equations for nine molecules,

Pr + k2
v2r

+ k3
v3r

+ k4
v4r

+ k5
v5r

+ k6
v6r

+ k7
v7r

( ) vr − b( ) ≈ χTr, (25)

of which the coefficients are listed in Table 1.

n = 6 equation for helium-4 (4He)

For n = 6 with b � (9−χ)19
(9−χ)19+χ19 and a ≈ 1 (19), we have

χfn�6 vr( )≈ 36 − 315b + 1215b2 − 2700b3 + 3780b4 − 3402b5 + 1890b6 − 540b7

b9 + 1 − b( )9[ ]v2r
+ −84 + 756b − 3015b2 + 6975b3 − 10260b4 + 9828b5 − 5922b6 + 1890b7

b9 + 1 − b( )9[ ]v3r
+ 126 − 1134b + 4536b2 − 10575b3 + 15795b4 − 15552b5 + 9828b6 − 3402b7

b9 + 1 − b( )9[ ]v4r
+ −126 + 1134b − 4536b2 + 10584b3 − 15867b4 + 15795b5 − 10260b6 + 3780b7

b9 + 1 − b( )9[ ]v5r
+ 84 − 756b + 3024b2 − 7056b3 + 10584b4 − 10575b5 + 6975b6 − 2700b7

b9 + 1 − b( )9[ ]v6r
+ −36 + 324b − 1296b2 + 3024b3 − 4536b4 + 4536b5 − 3015b6 + 1215b7

b9 + 1 − b( )9[ ]v7r
+ 9 − 81b + 324b2 − 756b3 + 1134b4 − 1134b5 + 756b6 − 315b7

b9 + 1 − b( )9[ ]v8r
+ −1 + 9b − 36b2 + 84b3 − 126b4 + 126b5 − 84b6 + 36b7

b9 + 1 − b( )9[ ]v9r .

(26)

FIGURE 7
Isochoric curves of nitrogen (N2) at 1/vr = 0.02 (A), 1/vr = 0.5 (B), 1/vr = 1.0 (C), and 1/vr = 1.5 (D), respectively. Boxes are from the NIST data. The
red solid line is drawn from the n = 2 Janus van der Waals Eq. 23 and is better fitted than the original van der Waals Eq. 1 or the classical ideal gas
law (2).
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Letting χ = 3.2991, we get an n = 6 Janus van der Waals

equation for helium-4,

Pr − 10.671

v2r
+ 97.188

v3r
− 259.53

v4r
+ 393.69

v5r
− 366.57

v6r
+ 210.75

v7r
− 69.112

v8r
+ 10.066

v9r
( )

vr − 0.51519( ) ≈ 3.2991Tr .

(27)

Comparison with NIST reference data

Henceforth, we look into isochoric, isobaric, and isothermal

cases for real molecules, which will demonstrate that our Janus

van der Waals equations represent excellent agreements with the

NIST data, better than the original van der Waals equation. By

construction, the Janus van der Waals equations reflect the

previously reported two-sided critical phenomena [5] and at

the same time reduce consistently to the classical ideal gas law in

the low-density limit far away from the critical point at vr = 1.

First, we focused on the n = 2 case to which only the

cyclopentane molecule (C5H10) belongs to.

Figure 3 shows the isochoric curves of the cyclopentane

molecule at 1/vr = 0.02 (A), 1/vr = 0.5 (B), 1/vr = 1.0 (C), and

1/vr = 1.5 (D), respectively. They are drawn by the NIST data and

further by the three equations: the n = 2 Janus van der Waals Eq.

23, the mono-critical equation (n = 0) (21), the original van der

Waals Eq. 1, and the classical ideal gas law (2). The n = 2 Janus van

der Waals equation fits best with the NIST data while consistently

reducing to the classical ideal gas law in the low-density limit.

Figure 4 shows the isobaric curves of the cyclopentane

molecule (C5H10) at Pr = 1.5 (A), Pr = 1.0 (B), and Pr = 0.5

(C), respectively. They are drawn by the NIST data and further by

the four equations: the n = 2 Janus van der Waals Eq 23, the

mono-critical equation (n = 0) (21), the original van der Waals

Eq. 1, and the classical ideal gas law (2). The n = 2 Janus van der

Waals equation is in excellent agreement with the NIST data,

especially at the liquid–vapor coexistence region near Pr = 1 and

at the supercritical region of Pr > 1.

FIGURE 8
Isobaric curves of nitrogen (N2) at Pr = 1.5 (A), Pr = 1.0 (B), and Pr = 0.5 (C), respectively. Boxes are from the NIST data. The red solid line is drawn
from the n = 4 Janus van der Waals Eq. 25 and is better fitted than the original van der Waals Eq. 1 or the classical ideal gas law (2).

Frontiers in Physics frontiersin.org09

Kim et al. 10.3389/fphy.2022.917453

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.917453


Figure 5 shows the isothermal curves of the cyclopentane

molecule (C5H10) at Tr = 1.01 (A), Tr = 1.00 (B), and Tr = 0.99

(C), respectively. They are drawn by the NIST data and

further by the four equations: the n = 2 Janus van der

Waals Eq. 23, the mono-critical equation (n = 0) (21), the

original van der Waals Eq. 1, and the classical ideal gas law

(2). The Janus van der Waals equation shows the enhanced

sigmoid shape compared to the original van der Waals

equation when Tr is lower than 1.

Figure 6 shows the three-dimensional Pr − vr − Tr phase

diagram of the exact n = 2 Janus van derWaals Eq. 7 with (13), as

for cyclopentane molecule (C5H10). The red line shows the

spinodal curve (8), i.e., zvP (T, v) = 0, of the Janus van der

Waals equation with the choice of a = 0.99.

Now, we turn to the case of n = 4 where the following nine

molecules belong to: nitrogen (N2), argon (Ar), methane (CH4),

ethylene (C2H4), ethane (C2H6), propylene (C3H6), propane

(C3H8), butane (C4H10), and isobutane (C4H10). Here, we

chose nitrogen as a representative example. The other eight

molecules and the n = 6 case to which only the helium-4

molecule belongs to are dealt in the Supplementary Material

separately.

Figure 7 shows the isochoric curves of nitrogen (N2) at 1/vr =

0.02 (A), 1/vr = 0.5 (B), 1/vr = 1.0 (C), and 1/vr = 1.5 (D),

respectively. They are drawn by the NIST data and further by the

four equations: the Janus van der Waals equation for n = 4 (25),

the original van der Waals Eq. 1, and the classical ideal gas law

(2). The Janus van der Waals equation fits best with the NIST

data, especially at the region of Tr > 1 better than the original van

derWaals equation. Again, we confirmed that the n = 4 Janus van

der Waals equation reduces to the classical ideal gas law in the

low-density limit.

Figure 8 shows the isobaric curves of nitrogen (N2) at Pr = 1.5

(A), Pr = 1.0 (B), and Pr = 0.5 (C), respectively. They are drawn by

the NIST data and further by the three equations: the Janus van

der Waals equation for n = 4 (25), the original van der Waals Eq.

1, and the classical ideal gas law (2). The n = 4 Janus van der

Waals equation is in excellent agreement with the NIST data,

especially at the liquid–vapor coexistence region near Pr = 1 and

at the supercritical region of Pr > 1.

FIGURE 9
Isothermal curves of nitrogen (N2) at Tr = 1.01 (A), Tr = 1.00 (B), and Tr = 0.99 (C), respectively. Boxes are from the NIST data. The red solid line is
drawn from the n = 4 Janus van der Waals Eq. 25 and is better fitted than the original van der Waals Eq. 1 or the classical ideal gas law (2).
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Figure 9 shows the isothermal curves of nitrogen (N2) at Tr =

1.01 (A), Tr = 1.00 (B), and Tr = 0.99 (C), respectively. They are

drawn by the NIST data and further by the three equations: the

n = 4 Janus van der Waals Eq. 25, the original van der Waals Eq.

1, and the classical ideal gas law (2). The Janus van der Waals

equation shows the enhanced sigmoid shape compared to the

original van der Waals equation when Tr is lower than 1.

Figure 10 shows the three-dimensional Pr − vr − Tr phase

diagram of the exact n = 4 Janus van derWaals Eq. 7 with (13), as

for nitrogen (N2). The red line shows the spinodal curve (8),

i.e., zvP (T, v) = 0, of the Janus van der Waals equation with the

choice of a = 0.99.

Discussion

Our Janus van der Waals equations may appear somewhat

similar to the other known equations of state, such as an earlier

modified van der Waals equation (9) or the virial equation of

state [10], a typical example of series expansion. Irrespective of

the similarity of appearance to other equations, Janus van der

Waals equations differ significantly from others as the starting

point is directly from statistical physics itself at the quantum

level: in other words, the partition function of any finite system

should be analytic. Alternative to the conventional

thermodynamic limit [11, 12], if we persistently take the

analyticity of a partition function for granted [8, 13–17], it

becomes the spinodal curve itself that draws the liquid–gas

phase diagram where a critical point is identified as the

extremum of the spinodal curve, see [8] and Figure 6 therein.

FIGURE 10
Three-dimensional Pr − vr − Tr phase diagram of the exact n = 4 Janus van derWaals Eq. 7, as for nitrogen (N2). The bold purple line corresponds
to the isotherm of Tr= 1.00, as depicted in Figure 9B; the red line is the Janus van derWaals spinodal curve with a =0.99; and the red dot is the critical
point.

FIGURE 11
Comparison of the NIST co-existence curve data on
cyclopentane (C5H10) (blue colored) with the Janus van der Waals
spinodal curve (red colored, a = 0.99) and with the original van der
Waals spinodal curve (dotted black line). It is a conjecture of
Ref. [8] that the liquid–gas co-existence curve should actually
coincide with the spinodal curve. Improving our proposed Janus
van der Waals equations further, this may be realizable.

Frontiers in Physics frontiersin.org11

Kim et al. 10.3389/fphy.2022.917453

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.917453


One surprising result of the previous work by two of us [5] was

the possibility of having more than one critical point which

should be very close to each other. The uncertainty in the

measurement of the temperature is typically the order of

magnitude smaller than that of the density [18], for example,

around the critical point of nitrogen (N2), we have the

temperature uncertainty ΔTr ≲ 0.0079%, which is 16 times

smaller than that of the density Δ(1/vr) ≲ 0.13% [6, 19]. This

has motivated us to conceive the ansatz (8) which modifies

the original van der Waals equation and realizes the idea of

multi-critical points in a simple manner, where the two distinct

critical points assume the same temperature.3 We have restricted

to even critical indices, nc = n = 2, 4, 6 for T < Tc and nc = 2 for T >
Tc, or following the notation of [5], (n+, n−) = (2, n). Our

proposed van der Waals equations then naturally explain the

two-sided phase transitions reported in [5] and provided the

overall effective descriptions of real molecules, in particular

better than the original van der Waals equation and the

classical ideal gas law.

In Figure 11, we have compared the NIST co-existence curve

data on the cyclopentane molecule (C5H10) with the Janus van

der Waals spinodal curve (8) of n = 2, a = 0.99 and also with the

original van der Waals spinodal curve (5). The Janus van der

Waals spinodal curve fits well the NIST co-existence curve data

in a wider range near the critical point, although not perfect.

Further modifications of the present Janus van der Waals

equations to match the spinodal curves with the co-existence

curves of real molecules will lead to more realistic and improved

equations of state. Such modifications may require more than the

two critical points, generalizing the ansatz (8):

Tr � − vr − b( )2df �n vr( )
dvr

� 1 −∏N
i�1

vr − ai( )ni
vr

. (28)

Here, nis are natural numbers, and particularly, those ais with

ni ≥ 2 (even as well as odd) correspond to multi-critical points.

The largest value of such ais should be exactly in unity with the

critical index 2 as the NIST data suggest [5], while the smallest

one should be still close to unity. Furthermore, the former should

be a local maximum of Tr, while the latter should be either a local

maximum as in Figure 1 if the critical index is even or an inflection

point if it is odd. We leave the construction of this kind of multi-

critical Janus van der Waals equations for future work.

The three Janus van der Waals Eqs 23, 25, and 27 have been

obtained after taking the limit a→ 1−. Thus, the formulas should

not be used to see the two-sided critical phase transitions for

which the exact formula (7) with (13) must be taken and zoomed

in sufficiently. When zoomed out, or moderately away from the

two critical points, the two powers, (vr − a)n and (vr − 1)2 in (8)

may appear converging to (vr − 1)n+2 and mimic an enhanced

critical index nc = n + 2. This implies the critical exponents αP �
γP � n+2

n+3 and βP � δ−1 � 1
n+3 and also explains the ‘flatness’ of the

top of the spinodal curve in Figure 11. The three formulas (23),

25, and 27 are for such effective descriptions. The NIST data

analyses of [5], in particular Figures 2–4 therein, seem to agree

with this enhancement moderately away from the critical points.

Having Janus van der Waals equations completely

determined, it is worthwhile to recall

Pr � χTr
z lnZ Tr, vr( )

zvr
, (29)

and to obtain the underlying partition function (per particle),

lnZ � ln vr − b( )T3/2
r[ ] +∑n+1

l�0

cl b/vr( )n+2−l,
n + 3 − l( ) n + 2 − l( )b4Tr

, (30)

where the constant of integration 3
2 lnTr has been added to ensure

the isochoric specific heat cv � 3
2kB at high temperature.

Given the good agreement of the Janus van der Waals

equation and the NIST reference data, which we report in this

work, we call for further investigation of the multi-critical points

and the analyticity of partition functions questioning the (rather

dogmatic) thermodynamic limit.
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