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Background: Assessment of renal lesions and deficiency accurately remains

critical in the diagnosis of congenital anomalies of the kidneys and urinary tracts

(CAKUT) in children. Advanced imaging such as Magnetic resonance Imaging

(MRI) and Diffusion weighted Imaging (DWI) allows structural and functional

insufficiency to be detected. Currently, radiomics machine learning models are

being explored as full-automated diagnostic tools. We aimed to develop a

machine learning integrated radiomics model to predict renal anomalies and

deficiency in children.

Methods: A retrospective study of 280 children with MRI/DWI were enrolled

between 2018 and 202 at a children’s hospital. A total of 1,037 radiomics

features were extracted from the DWI images of each participant, which

were divided into training set and test set (8:2 split). Using 5-fold cross-

validated method, multiple machine learning algorithms were employed to

predict renal lesions and deficiency when compared with the radiologist’s

diagnosis based on DWI, 99mTc-labeled dimercaptosuccinic acid (DMSA)

SPECT cortical renal scintigraphy or 99mTc-labeled diethylenetriamine

pentaacetate (DTPA) renal scan.

Results: For detecting the kidney lesions, the LASSO + Random Forest

algorithm outperformed other classifiers with an accuracy of 0.750 (95%

confidence interval, 0.734–0.766) and area under the curve (AUC) of 0.765

(95% confidence interval, 0.700–0.831). The performance of classifiers did not

show a significant difference (p > 0.05) in detecting bilateral or unilateral kidney

lesions by DWI scanning. The classifiers performed significantly better in

bilateral kidney deficit than in unilateral kidney deficit (p < 0.05). We next

built prediction models for renal deficiency using the radiomics signature
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and clinical features compared to renal scintigraphy. The ensemblemodel had a

high-test accuracy of 80.9% ± 4.2% and a sensitivity of 91.7% ± 7.1% with a

moderate calibration.

Conclusion: An ensemble model integrated with DWI-radiomic and clinical

features can be utilized to predict renal lesions and deficiency in children with

CAKUT.

KEYWORDS

congenital anomalies of the kidneys and urinary tracts (CAKUT), machine learning,
radiomics, diffusion weighted imaging (DWI), children

Introduction

Congenital anomalies of the kidneys and urinary tracts

(CAKUT) account for roughly 20% of all birth defects [1].

CAKUT is not only associated with urinary tract infection

(UTI), but also increases the risk of renal deficit in febrile

UTI. CAKUT affects around 5 per 1,000 live births,

accounting for 30%–50% chronic kidney disease (CKD) in

children [2]. Therefore, early diagnosis of kidney anomalies

and renal deficits is critical for CAKUT heath improvement.

Advanced imaging, including ultrasound, magnetic

resonance imaging (MRI), and scintigraphy, allow for the

retrieval of structural, functional, and molecular

information that may be used to identify changes in renal

tissue properties and functionality [3]. Diffusion weighted

imaging (DWI) is a non-invasive magnetic resonance

modality, which uses the motion of water molecules as a

contrast to measure in vivo movement of water diffusion or

Brownian motion. It reflects the microstructure of the tissue

by describing the water restriction and diffusivity within this

tissue. DWI has been described as a reliable biological marker

of renal interstitial fibrosis, renal perfusion alterations or

water handing [4]. Nevertheless, DWI quantification

involves a lot of manual procedures, making it time

consuming and observer dependent, limiting its clinical

utility. Radiomics is a new tool for diagnosing renal disease

that has been utilized successfully for renal cancer, diabetic

nephropathy, polycystic kidney disease, and urolithiasis

differentiation [5–8]. Radiomics is a method designed to

retrieve a large number of quantitative features from

medical images to aid diagnostic reasoning [9]. We

hypothesized that DWI-based radiomics might be

developed as a diagnostic assistance for CAKUT.

For early detection the renal deficiency before a loss of kidney

function estimated with serological test, there is great interest in

developing novel methods that can be used to detect renal

deficiency in children at an early stage. Here we present a

novel machine learning model for predicting renal anomalies

and deficiency in children based on DWI radiomics and clinical

features.

Materials and methods

Study population and clinical features

After receiving approval from the Research Ethics Board of

Children’s Hospital of Fudan University (NO. 2018-286), a total

of 280 pediatric patients (age below 18 years old) were recruited

in the study between January 2018 and December 2020. All

participants and/or their legal guardians were fully informed

about the study’s aims and provided their written and/or verbal

consent prior to the examination. The inclusion criteria were 1)

age under 18 years old, 2) MRI including T1-weighted, T2-

weighted and DWI were available, 3) the image quality was

adequate for analysis, no motion or artifacts.

Basic clinical information included patients’ age at examination,

gender, and initial manifestation of urinary tract infection (UTI).

Based on the diagnosis of DWI scanning from 3 independent senior

radiologists, all the participants were divided into two groups: kidney

lesions and non-lesion detected by MRI/DWI. Kidney function

decline was defined as an abnormal value of split renal function

using 99mTc-labeled dimercaptosuccinic acid (DMSA) SPECT

cortical renal scintigraphy or 99mTc-labeled diethylenetriamine

pentaacetate (DTPA) renal scan [10, 11]. Figure 1 showed the

flowchart for the study.

Image processing

A 1.5-T MRI scanner (Avanto, Siemens Healthcare,

Germany) was used. Signal reception was conducted with a

six-element body matrix coil and 12-element design of the

inbuilt spine matrix coil. During the scanning process, the

individuals were required to lie flat on the examination bed,

maintain free breathing, and keep their body motionless with

sedation if necessary. The scan was performed by an experienced

MR technician. Conventional coronal T2WI, axial T1WI, T2WI,

and DWI sequences were performed. DWI applied a single-shot

echo planar imaging (EPI) sequence with free-breathing.

Chemical shift artifacts can be reduced by fat saturation

technique. The images were acquired using a diffusion-
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weighted single shot echo-planar imaging fat saturated sequence.

The repetition time (ms)/echo time (ms) was 3300/57; the flip

angle was 90°; the results of two excitations were averaged; the

field of view was 30 × 30 cm; the matrix size was 128 × 128;

10 coronal slices were acquired with a thickness of 4 mm; the

parallel imaging (ASSET) factor was 3; and the acquisition time

was 180 s. The b-values ranged from 0 to 700 (0, 10, 20, 50, 100,

180, 300, 420, 550, 700). Renal lesions identified by MRI/DWI

include simple cysts, solid/mixed solid cysts, renal cortical

defects, and local/diffuse signal intensity changes (high/low) in

renal parenchymal.

All the images of MRI/DWI scanning were retrieved in

DICOM format at their original dimensions and resolution.

Two readers (a radiologist with 4 years of body MRI expertise

and a medical student with MRI anatomy training) manually

delineated the rectangular 2D ROI that included kidney slice by

slice on a coronal DWI image, and then an experienced

radiologist checked all the ROIs. The largest 2D ROI was then

automatically selected by a self-developed software, and then

used as the mask for all the slices that included kidney regions.

After extracting the region in the mask of each slice, a cubic 3D

ROI (or named VOI) was obtained by stacking all these slices

FIGURE 1
An illustration of themachine learningmodels based onDWI-radiomics in children. MRI, magnetic resonance imaging; DWI, Diffusion weighted
imaging; DMSA, 99mTc-labeled dimercaptosuccinic acid SPECT cortical renal scintigraphy; DTPA, 99mTc-labeled diethylenetriamine pentaacetate
renal scan.
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from a DWI image. The 3D ROI from each DWI image was then

used for further radiomics analysis.

Radiomics feature extraction and feature
selection

We employed an open-source python package called

“PyRadiomics” to extract radiomic features from the DWI

images, and all the results were collected in a form. The

radiomics features were classified into 10 categories: First-

order statistics (n = 18), shape (n = 14), texture derived from

GLCM (n = 24), texture derived from GLSZM (n = 16), texture

derived from GLRLM (n = 16), texture derived from GLDM (n =

14), texture derived from NGTDM (n = 5), wavelet-based

features (n = 744), exponential-based features (n = 93), and

logarithm-based features (n = 93) (Supplementary Table S1).

Each feature was named by concatenating the image type from

which the feature was extracted, feature group and feature name.

For example, original_shape_Elong- ation was a feature extracted

from the original image, shape group, and the feature name was

Elongation.

In the feature selection, we first performed t-test analysis

to pick features and those with p values < 0.05 were selected.

The two independent sample t-test is used to test whether the

mean and distribution of the two independent samples are

significantly different. Several features involved averages in

the two sets of samples of normal and abnormal patients, and

the t-test was used to determine whether these features are

substantially different. If there are significant differences, they

can be reserved for classification tasks and this feature will be

removed if there is no significant difference. T-test analysis

was followed by the Lasso feature selection method, aiming to

remove irrelevant features before classification. Lasso

regression is based on ordinary least squares with

L1 regular expression, the L1 regular expression is used to

prevent the model from overfitting. Lasso can transform the

value of irrelevant features into 0, thereby performing feature

reduction and selecting important features for classification

tasks.

Radiomics model construction and
performance evaluation

To predict kidney lesions or deficiency, DWI-radiomics

features were fed into four distinct models. We utilized the

machine learning classifiers including Logistic Regression

(LR), AdaBoost (AB), Support Vector Machines (SVM), and

Random Forest (RF) from the same splits of patients to train and

test on DWI features. All these classifiers were imported from a

Python (version 3.6.5) machine learning library named scikit-

learn (version 20.3). Models were trained with a batch size of 16.

Early stopping was used with the patience parameter set to 50;

finally, each model was allowed a maximum of 500 epochs of

training if it was never stopped early. After 100 training trials, the

model with the best validation accuracy was selected. During

training, a predetermined probability of 0.5 was assigned to the

final sigmoid activation neuron as a threshold for the

classification of kidney lesion. The models were trained to

maximize the accuracy of the model prediction. We split the

training data set into five equally-sized parts, each exhibiting the

same class distribution, and then the five-fold cross-validation

was used to tune hyper-parameters.

The performance of the radiomics classifiers was firstly

compared with that by radiologist diagnosis based on the

DWI imaging data. It was subsequently compared with the

diagnosis of kidney function decline according to the split

renal function (SRF) estimated by DMSA or DTPA. To assess

the performance of the classification, the accuracy (ACC),

sensitivity (SEN), specificity (SPE), positive predictive value

(PPV), negative predictive value (NPV), and the area under

the curve (AUC) of its ROC curve with 95% confidence

interval (95% CI) were calculated as evaluation

(Supplementary Table S2). The classification results were

expressed by the format of mean ± standard deviation (SD)

over repeated runs. The confidence interval was calculated using

the adjusted Wald method. p-values were calculated using a

binomial test. A p-value of 0.05 was considered as the threshold

for significance.

Development, performance of a
clinical–radiomics model

To predict renal deficiency, a bagging classifier combined

the clinical variable with radiomics signature to build an

ensemble model. SPSS modeler (version 8.0, IBM) software

randomly selected 80% of the dataset as the training group and

20% of the data as the test group to verify the trained model.

Firstly, the five classifiers, including logistic regression (LR),

decision tree (C5.0), SVM, neural network (Nnet), and RF

were unutilized separately. To fit the weights of the models

with 5-fold cross validation, we split the data into 5 subsets of

roughly equal size and interactively used 4 subsets for

interfold training and the fifth subset for interfold testing.

We set the parameters as follows to enhance the performance

of each classifier: Boosting was used in the C5.0 algorithm to

improve model accuracy; binomial logistic regression with

backward selection was used in the LR model; the polynomial

function kernel was used as the kernel of the SVM; multilayer

perceptron (MLP) networks were employed in Nnet; the MLP

undersampling balanced training set was aggregated using the

bagging ensemble method; 100 random tree number in RF

model with the max feature included all the features input; the

multi-model approach of ensemble is realized by combining
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the prior models employed. Predictive performance was

assessed using the AUC with 95%CI of its receiver

operating characteristic (ROC AUC) curve and precision

recall curve (PR AUC), SEN, SPE, PPV, NPV, and ACC.

We compared the concordance between the renal deficiency

as assessed by the best classifier in the five machine learning

algorithms and radiological diagnosis of SRF. The DeLong

method was used to compare the AUCs of the machine

learning classifiers. A power calculation was performed to

ensure that the test data set was sufficient to assess the AUC

estimated from the training group.

Statistical analysis

All the statistical analysis was performed using SPSS (version

25.0, IBM, Armonk, New York) and SPSSModeler (version 18.0).

Graph was created using SPSS Modeler and GraphPad prism

8.3.0. To compare the differences in count data, Pearson’s chi-

squared test or Fisher’s exact test were used. Statistical

significance was defined as a p-value of less than 0.05. In the

training set and testing set, the performance of the machine

learning models was assessed with respect to their discrimination

and calibration. The ROC AUC was calculated to assess the

discrimination of the models, while the calibration was evaluated

with the Hosmer-Lemeshow test. Cohen’s kappa value was used

to analyze the concordance between the best classifier and the

radiologist’s assessment of renal anomalies or deficiency. PASS

v18 was used for sample size estimation (2018, NCSS, LLC.

Kaysville, Utah, United States. www.ncss.com) and “Tests for

One ROC Curve” function was used to perform the power

calculation.

Results

Participants clinical characteristics

A total of 280 participants were enrolled in this study. There

were 125 cases diagnosedwithCAKUT initially, 140 cases diagnosed

with UTI without CAKUT, 9 with neuroblastoma and 3 cases with

tubulointerstitial lesions. Among the 186 participants with UTI

history, 104 cases with only one episode of UTI, 32 cases with

two episodes of UTI, and 50 cases with more than three episodes of

UTI prior to the MRI/DWI scanning. The characteristics of the

training and testing cohort were summarized in Table 1. There was

no statistically significant difference in the clinical features between

the two cohorts (Pearson test, p > 0.05).

Radiomics signature building and
performance evaluation

Totally, 1,037 radiomics features were retrieved from each

participant’s DWI images. The Lasso feature selection approach

was performed to identify the top ten radiomics features. The

unsupervised clustering of these features was shown as a heat

map (Figure 2). Univariate analysis revealed the top ten features

in Supplementary Table S2. We selected the ten key features in

the training set based on the regression algorithm in the fivefold

cross-validation studies.

Based on the radiomics feature selection methods, the

performance of the radiomics classifiers compared with the

expert evaluation on DWI were presented in Table 2. With a

ROC AUC of 0.765 (95% CI, 0.700–0.831) and ACC of 0.750

(95%CI, 0.734–0.766), the selection method LASSO + RF algorithm

TABLE 1 Clinical characteristics of the patients.

Characteristic Training cohort Test cohort

case number 212 68

Age (years)

Median (interquartile range) 1.6 (0.7, 5.8) 1.5 (0.6, 4.9)

Gender

Male 121 32

Female 91 36

Clinical diagnosis

CAKUT 97 28

Urinary tract infection 139 47

Tubulointerstitial lesions 2 1

Neuroblastoma 5 4

Radiological diagnosis

Rena deficiency identified by DTPA or DMSA 140 (66.0%) 40 (66.0%)

Rena abnormalities identified by DWI 114 (53.8%) 33 (53.8%)

Abbreviation: CAKUT, congenital anomalies of the kidneys and urinary tracts; DMSA, 99mTc-labeled dimercaptosuccinic acid; DTPA, 99mTc-labeled diethylenetriamine pentaacetate; DWI,

diffusion weighted imaging.
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outperformed other classifiers for identifying the kidney lesions. We

examined the classifiers’ predictive performance in patients with

bilateral or unilateral kidney lesions (Figure 3). None of the

classifiers showed a significant better performance in detecting

the bilateral kidney lesions compared with unilateral lesions (p >
0.05, respectively, Table 2; Figure 3).

Furthermore, we tested the efficacy of the classifier for predicting

the renal deficiency as identified by DTPA or DMSA. Similarly, the

selection method LASSO + classifier RF presented the highest ROC

AUC of 0.749 (95% CI, 0.690, 0.808) (Table 3). When we compared

the models’ performance in groups of bilateral and unilateral renal

deficiency, we found that the LASSO + classifier RF in the bilateral

renal deficiency group outperformed the unilateral renal deficiency

group in terms of sensitivity, accuracy and AUC (p < 0.05,

respectively, Table 3; Figure 3).

Development and performance of
prediction models for renal deficiency

Firstly, a multivariate regression analysis was conducted

integrating the radiomics and clinical features such as age,

FIGURE 2
A heatmap shows the radiomic features. Each column and row correspond to one patient and z-score normalized radiomic feature,
respectively.

TABLE 2 Parameters of detecting kidney lesions by radiomics analysis of DWI scanning.

Method ACC (%) SEN ± SD
(%)

SPE ± SD
(%)

PPV ± SD
(%)

NPV ± SD
(%)

AUC (95%CI)

LR 66.79 ± 2.04 70.70 ± 5.46 62.37 ± 2.94 67.48 ± 1.68 66.03 ± 3.17 0.697 (0.671, 0.723)

AB 72.14 ± 0.98 72.77 ± 0.80 71.38 ± 2.64 73.80 ± 1.31 70.32 ± 1.40 0.718 (0.666, 0.771)

SVM 73.57 ± 2.33 77.78 ± 3.58 68.74 ± 2.37 73.83 ± 3.01 73.26 ± 2.03 0.733 (0.697, 0.769)

RF 75.00 ± 1.26 76.82 ± 3.24 72.92 ± 3.11 75.86 ± 2.12 74.11 ± 1.44 0.765 (0.700, 0.831)

Detecting bilateral kidney lesions

LR 65.25 ± 3.49 70.66 ± 11.14 69.06 ± 2.92 63.18 ± 5.88 75.52 ± 8.88 0.697 (0.616, 0.777)

AB 71.59 ± 3.84 73.90 ± 11.35 73.14 ± 11.86 68.42 ± 6.02 78.1 ± 10.12 0.736 (0.659,0.813)

SVM 70.16 ± 2.67 73.00 ± 4.96 74.56 ± 3.31 68.26 ± 7.49 78.48 ± 3.32 0.736 (0.659, 0.813)

RF 73.62 ± 2.79 77.20 ± 12.88 72.86 ± 3.68 68.34 ± 2.18 80.52 ± 11.31 0.744 (0.668, 0.821)

Detecting unilateral kidney lesions

LR 66.23 ± 4.55 71.72 ± 12.22 62.40 ± 2.94 51.54 ± 5.95 80.00 ± 7.71 0.667 (0.591, 0.743)

AB 72.94 ± 4.23 73.86 ± 9.51 71.40 ± 2.65 59.14 ± 3.73 82.98 ± 6.60 0.726 (0.653, 0.798)

SVM 74.59 ± 3.00 82.50 ± 4.75 69.18 ± 3.14 60.06 ± 6.56 87.68 ± 2.24 0.760 (0.693, 0.828)

RF 75.89 ± 3.21 79.34 ± 7.68 72.94 ± 3.11 62.32 ± 2.57 86.16%5.96 0.759 (0.690, 0.828)

Abbreviation: AB, AdaBoost; ACC, the accuracy; AUC, area under the curve; DMSA, 99mTc-labeled dimercaptosuccinic acid; DTPA, 99mTc-labeled diethylenetriamine pentaacetate; DWI,

Diffusion weighted imaging; LR, logistic regression; NPV, negative predictive value; PPV, positive predictive value; RF, random forest; SVM, support vector machines; SD, standard

deviation; SEN, sensitivity; SPE, specificity.
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FIGURE 3
Box plot distributions of sensitivity (SEN), specificity (SPE), positive predictive value (PPV) and negative predictive value (NPV) under radiomics
models for the prediction of bilateral or unilateral kidney lesions. The four machine learning classifiers including Logistic Regression (LR), AdaBoost
(AB), Support Vector Machines (SVM) and Random Forest (RF) from the same splits of patients to train and test on DWI features.

TABLE 3 Parameters of detecting renal function decline identified by DTPA or DMSA.

Method ACC ± SD
(%)

SEN ± SD
(%)

SPE ± SD
(%)

PPV ± SD
(%)

NPV ± SD
(%)

AUC (95%CI)

LR 67.87 ± 3.79 67.8 ± 5.99 68.02 ± 2.10 67.48 ± 1.68 54.06 ± 7.86 0.666 (0.602, 0.730)

AB 68.21 ± 6.23 65.84 ± 4.28 71.90 ± 10.66 73.80 ± 1.31 54.46 ± 7.19 0.721 (0.660, 0.782)

SVM 71.79 ± 3.19 71.16 ± 4.33 73.46 ± 4.26 73.83 ± 3.01 58.46 ± 6.47 0.734 (0.673, 0.794)

RF 68.93 ± 2.99 67.34 ± 4.30 71.66 ± 3.34 75.86 ± 2.12 54.82 ± 8.88 0.749 (0.690, 0.808)

Detecting bilateral renal function decline

LR 68.40 ± 6.26 69.63 ± 12.01 67.70 ± 2.66 60.41 ± 8.81 75.51 ± 8.90 0.686 (0.604, 0.767)

AB 72.41 ± 7.25 73.14 ± 11.90 71.67 ± 10.60 65.55 ± 7.44 78.00 ± 10.11 0.725 (0.646, 0.803)

SVM 72.66 ± 3.4.95 71.97 ± 5.88 73.18 ± 4.61 65.47 ± 10.71 78.47 ± 3.31 0.725 (0.646, 0.803)

RF 73.25 ± 3.49 76.82 ± 13.06 71.42 ± 3.20 65.81 ± 3.69 80.52 ± 11.31 0.734 (0.656, 0.811)

Detecting unilateral renal function decline

LR 67.2 ± 4.80 66.97 ± 9.84 68.01 ± 2.09 69.06 ± 5.40 65.48 ± 11.02 0.670 (0.596, 0.744)

AB 66.98 ± 9.78 62.45 ± 11.45 71.9 ± 10.64 71.33 ± 3.87 63.46 ± 16.60 0.672 (0.599, 0.746)

SVM 71.84 ± 3.35 71.11 ± 7.47 73.46 ± 4.27 73.96 ± 6.79 69.81 ± 9.83 0.718 (0.648, 0.789)

RF 67.00 ± 5.02 62.71 ± 8.59 71.66 ± 3.36 70.48 ± 3.98 63.70 ± 11.34 0.672 (0.598, 0.746)

Abbreviation: AB, AdaBoost; ACC, the accuracy; AUC, area under the curve; DMSA, 99mTc-labeled dimercaptosuccinic acid; DTPA, 99mTc-labeled diethylenetriamine pentaacetate; DWI,

diffusion weighted imaging; LR, logistic regression; NPV, negative predictive value; PPV, positive predictive value; RF, Random Forest; SVM, support vector machines; SD, standard

deviation; SEN, sensitivity; SPE, specificity.
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TABLE 4 Results from 5-fold cross-validation of predictions renal deficiency.

Training
modality

ACC ±
SD (%)

ROC AUC
(95%CI)

PR AUC
(95%CI)

SEN ±
SD (%)

SPE ±
SD (%)

PPV ±
SD (%)

NPV ±
SD (%)

Cohen’s
kappa
value

p-value
by Hosmer-
Lemeshow
test

LR 72.17 ± 7.82 0.664 (0.895, 0.965) 0.753 (0.674, 0.817) 71.43 ± 11.09 26.67 ± 14.12 64.71 ± 9.78 33.33 ± 21.36 0.112 0.387

C5 84.91 ± 4.55 0.855 (0.801, 0.900) 0.903 (0.842, 0.942) 68.00 ± 9.81 53.85 ± 18.58 70 ± 5.99 45 ± 9.16 0.185 0.594

Nnet 92.92 ± 13.21 0.694 (0.628, 0.756) 0.781 (0.705,0.842) 64.52 ± 15.52 38.89 ± 13.52 66.67 ± 17.8 35.29 ± 9.21 0.001 0.136

RF 62.50 ± 2.27 0.926 (0.882, 0.957) 0.949 (0.898–0.975) 68.97 ± 4.33 50 ± 8.65 68.97 ± 5.32 45.45 ± 6.74 0.184 0.785

SVM 87.74 ± 11.04 0.863 (0.810, 0.907) 0.894 (0.831, 0.935) 73.91 ± 14.35 45.45 ± 8.85 66.67 ± 7.43 40 ± 12.4 0.039 0.723

Ensemble 93.40 ± 2.62 0.937 (0.895, 0.965) 0.958 (0.908, 0.981) 92.31 ± 2.83 80 ± 11.79 89.19 ± 6.86 85.71 ± 9.12 0.751 0

Training
modality

ACC ±
SD (%)

ROC AUC
(95%CI)

PR AUC
(95%CI)

SEN ±
SD (%)

SPE ±
SD (%)

PPV ±
SD (%)

NPV ±
SD (%)

Cohen’s
kappa
value

p-value
by Hosmer-Lemeshow
test

LR 77.94 ± 16.7 0.748 (0.628, 0.846) 0.748 (0.593–0.859) 80.00 ± 15.19 40 ± 31.42 70 ± 20.68 50 ± 18.23 0.223 0.547

C5 79.41 ± 13.3 0.788 (0.671, 0.877) 0.801 (0.649–0.897) 66.67 ± 12.74 60 ± 20.33 75 ± 17.9 57.14 ± 24.99 0.131 0.581

Nnet 66.18 ± 14.26 0.643 (0.517, 0.755) 0.682 (0.524–0.807) 66.67 ± 14.51 42.22 ± 24.97 66.67 ± 18.97 40.00 ± 36.36 0.139 0.493

RF 55.88 ± 17.27 0.539 (0.414, 0.661) 0.613 (0.456–0.749) 66.67 ± 15.99 40 ± 32.67 62.5 ± 21.07 37.50 ± 12.88 0.052 0.934

SVM 77.94 ± 18.36 0.879 (0.777, 0.945) 0.882 (0.741–0.951) 81.82 ± 15.71 50 ± 37.12 85.71 ± 16.36 33.33 ± 33.32 0.013 0.579

Ensemble 80.88 ± 4.2 0.784 (0.667, 0.875) 0.779 (0.625–0.881) 91.67 ± 7.11 65.15 ± 2.13 77.5 ± 7.25 93.75 ± 23.66 0.996 0.133

Abbreviation: ACC, the accuracy; AUC, area under the curve; C5, decision tree of C5.0; LR, logistic regression; Nnet, neural networks; NPV, negative predictive value; PPV, positive predictive value; PR AUC, area under precision-recall curve; RF, random

forest; ROC AUC, area under receiver operating characteristic curve; SVM, support vector machines; SD, standard deviation; SEN, sensitivity; SPE, specificity; 95% CI, 95% confidence interval.
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gender and UTI episodes. The VIFs of the three potential

predictors ranged from 1.07 to 1.63, indicating that

multicollinearity was not present (Supplementary Figure S1).

We also applied the five machine learning models to predict renal

deficiency detected by DMSA or DTPA based on clinical features

of gender, age, UTI episodes and selected DWI-radiomics

features. The performance of the six models in the training

and test sets are presented in Table 4 and Figure 4. Confusion

matrices and reliability curves of all models in the training and

test sets were displayed in Figure 5 and Supplementary Figure S2.

The ROC AUCs in the trained model for LG, C5.0, Nnet, RF, and

SVM were 0.664 (95%CI, 0.895–0.965), 0.855 (95%CI,

0.801–0.900), 0.694 (95%CI, 0.628–0.756), 0.926 (95%CI,

0.882–0.957), 0.863 (95%CI, 0.810–0.907), respectively.

Application of the five machine learning algorithms in the test

cohort yield high AUCs of SVM and RF with 0.926 (95%CI,

0.882–0.957), 0.879 (95%CI, 0.777–0.945), respectively.

An ensemble model was built by combining the five prior

machine learning models including LR, C5.0, RF, Nnet, and

SVM. The performance was compared with the other

independent machine learning algorithms in predicting renal

deficiency (Table 4). The ensemble model had the advantage of a

high-test accuracy (80.88% ± 4.2%) and sensitivity (91.67% ±

7.11%). In the training set, the ensemble model achieved a ROC

AUC of 0.937 (95%CI, 0.895–0.965), while in the testing set, it

had a ROC AUC of 0.784 (95%CI, 0.667–0.875). Strong

concordance between the ensemble model and renal

deficiency identified by DMSA/DTPA was presented with a

Cohen’s kappa value of 0.906. Good consistency was also

observed between the ensemble prediction model and the

renal deficiency in the test set with nonsignificant p values

(0.133) derived from the Hosmer-Lemeshow test.

Based on the AUC of the ensemble model in the training set

and testing set, we set the AUC0 = 0.937, the AUC1 = 0.784, α =

0.05, false positive rate limited: 0.01–0.20 for power calculation.

The results revealed that when the target power was 0.80, the

sample sizes of the test sets were 60 or 50, respectively. Therefore,

the test sets were sufficient to evaluate the AUC calculated from

the training data.

Discussion

In this retrospective study, we illustrated that radiomic

features of DWI appear to be reliable imaging indicators of

renal lesions. A machine leaning approach integrated DWI-

radiomics features and clinical variables was applied to predict

renal deficiency with good performance.

There have been a few studies employing radiomics

models as computer assisted diagnostic tools for renal

deficits using DWI scanning [3]. The detection of renal

parenchymal lesions by MRI or DWI scanning in children

with CAKUT is very time consuming. It requires experienced

and mature radiologists to avoid misdiagnosis. Radiomics

texture analysis can provide quantitative information that is

normally invisible to the naked eyes of a radiologist. Texture

analysis approaches describe inter-relationships between the

pixels and the gray-level frequencies within an image that

cannot be sensed visually to quantify the variability of the

distribution of pixels and their spatial arrangement. Owing to

fibrosis as the hallmark of renal damage and the heterogeneity

of the renal parenchyma, texture analysis on medical images

of kidneys may be a useful predictor of renal lesions or

deficiencies. Our findings confirmed the feasibility and

FIGURE 4
The performance of the models for the prediction of renal deficiency diagnosed by DMSA/DTPA. The Receiver operating characteristic (ROC)
curves of the different models were presented across the training and test cohort. Logistic regression (LR), decision tree (C5.0), SVM, neural network
(Nnet), Random Forest (RF) RF and ensemble models were unutilized separately.
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efficacy of radiomics classifiers to detect renal parenchymal

lesions by DWI scanning. Instead of estimating radiomics

with region-based segmentation of kidneys, we manually

established the square areas in the bilateral kidneys and

applied the radiomics over the entire region. For each

scenario, manually establishing the ROI took only 5–10 s.

After training and cross-validating the four common

machine learning classifiers based on renal DWI images, we

illustrated that the LASSO + RF algorithm performed best

with a high AUC and ACC compared to expert evaluation on

renal DWI in children. RF is a well-known machine learning

algorithm for classification tasks that has an inherent

resistance to overfitting. It builds multiple decision trees

using random data points from the dataset and enhances

the final prediction performance [12]. In this study, we

applied stratified 5-fold cross-validation, which randomly

split all the data into five parts and then held out 20% of

the testing data, repeated five times. It might be difficult to

identify the bilateral diffuse lesions in the kidneys without

contralateral comparison by the naked eye. We found that the

radiomics models had comparable accuracy and AUC for

identification of kidney lesions by DWI when comparing

the unilateral and bilateral lesions group. Hence, radiomics

classifiers combined with machine learning techniques have

been shown to be a useful complementary tool for clinicians,

particularly in the early detection of renal lesions in

childhood.

The split renal function can be used to measure the renal

function through renal scintigraphy, such as DMSA and

DTPA. DMSA and DTPA are regarded as the “gold

standards” for diagnosing renal insufficiency in children

due to their excellent diagnostic sensitivity [10, 11].

However, the procedure of DMSA or DTPA is invasive and

involves radiation exposure. MRI/DWI outperformed DMSA/

DTPA in terms of safety without the need for contrast agent

injection. Calculating GFR with dynamic contrast-enhanced

MRI in children, especially infants, is more challenging than

in adults because of the faster inherent respiratory and cardiac

motion [13]. It is essential to improve the accuracy of MRI/

DWI in the diagnosis of renal deficiency. In the current study,

FIGURE 5
Confusion matrices for all models across the training and test cohort. Logistic regression (LR), decision tree (C5.0), SVM, neural network (Nnet),
Random Forest (RF) RF and ensemble models were unutilized separately.
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the LASSO + classifier RF or SVM models not only had the

prediction accuracy of 68.9%–71.8% for renal deficiency

identified by DTPA or DMSA, but they also performed

better in bilateral kidney deficiency than in unilateral

kidney deficiency. Even when the split renal function shows

normal variation of 50%/50%–44%/56% (one kidney

compared with the other), radiomics models may help to

overcome the misdiagnosis of bilateral renal deficiency.

Further study at 3-T field strength MRI in children will

provide more high-quality radiological information to

conduct quantitative analysis of renal function.

To further improve the diagnostic accuracy and sensitivity

for predicting renal deficiency, we applied models combined the

radiomics features with clinical variables when compared to

calculation of split renal function by DMSA or DTPA. Ideally,

a deep learning model would be used as a risk stratification tool to

assist clinicians and patients in detecting early changes in renal

function. To this purpose, the most essential statistic is

sensitivity, because higher sensitivity, means that more

children will receive an early diagnosis of renal damage or

insufficiency. In addition to the radiomics signature, we

involved the clinical variables such as age, gender and UTI

episodes in machine learning models. This is in accordance

with the viewpoint that UTI in childhood is associated with

long-term outcome of renal function decline [14].

Compared with previous machine-learning studies, our

work has several differences. First, we chose DWI that offers

more information on renal parenchymal changes than simple

attenuation differences measured in Hounsfield units on CT.

Our machine learning algorithms retrieved radiomic features

and improved the accuracy for clinical utilization. Second, to

the best of our knowledge, this is the first study focusing on the

role of DWI-based radiomics in children with CAKUT [15,

16]. All available normal or abnormal findings in kidneys from

children who underwent MRI/DWI and DMSA/DTPA were

included in our cohort. Most of the previous studies, on the

other hand, only covered oncology or a limited number of

CKD cases. Third, we employed clinical-radiomics fused data-

based modalities to compare the prediction accuracy to

radiologist diagnosis based on DMSA or DTPA. An

ensemble model combining multiple machine learning

models was transformed into the most optimal model in

renal deficiency prediction with a high-test accuracy (ACC,

80.9%) and sensitivity (91.7%) after 5-fold cross-validation.

Our cross-validation findings achieved a test AUC of 0.78 and

a test PR AUC of 0.78 on average across all folds, confirming

the model-building process.

There were several limitations to this study. First,

overfitting a machine learning model is easy, especially

when training with small amounts of data. Although the

test accuracy reported for the best model was 80.9%,

generalization is questionable due to the small cohort size

and the lack of external validation. Despite the fact that we

included 280 cases in our cohort, which is more than any prior

machine learning works on CAKUT or CKD [3], algorithm

development might benefit from a larger patient cohort,

especially given the variability of image capture settings

among institutions. Second, manual set for ROI was

performed by students and radiologists reading the DWI

images. On CT or MRI, automatic segmentation based on

deep learning has been successfully established with

equivalent accuracy to expert segmentation in kidneys [5,

17, 18]. Due to the small volume in children’s kidneys, it is

difficult to tell the kidneys apart from other organs in the body

which may have comparable intensity, especially in CAKUT.

We use the rectangle ROI to locate the bilateral kidneys which

takes 5–10 s which can be substituted by automatic kidney

segmentation in future. And time saving analysis should be

performed when deployed into the clinical routine. In our

initial exploration of the DWI-radiomics, the ROI selection is

based on experience. In the future work, we can compare

different choices of ROI, including manual sketching or

automatic segmentation of the planar ROI, twelve-layer

concentric objects (TLCO) [19], and three-dimensional

volumes-of-interest (VOIs) [20], to see the difference in

classification results. It may also provide novel sights on

perinephric changes. Third, as a single-center retrospective

study, it might result in a potential selection bias. The

diagnostic performance of DWI-based radiomic model

needs further study in multi-centers. Fourth, this study is

based on DWI-derived radiomics combined with clinical

features to predict renal deficiency. Multiparametric MRI-

derived radiomics with united model based on T1WI, T2WI

and ADC sequences may provide more successful prediction

model for CAKUT. Future study on multiparametric MRI-

derived radiomics will be conducted.

In conclusion, we established a machine learning model

using the DWI-radiomics and clinical features to predict renal

lesions and deficiency with high accuracy and sensitivity

comparable with DMSA/DTPA-based diagnosis. If further

validated, the algorithm can contribute to the early

detection of renal lesions and predict renal deficiency in

CAKUT.
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