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Nonlinear thermal response enables flexible heat manipulation and management with
artificial structures. In particular, intrinsic temperature-dependent parameters of
constitutive materials guide the design of self-adaptive thermal metamaterials.
However, the geometrical effect in nonlinear composites has not been adequately
studied, which may limit the potential multiple functionalities and versatile control. Here,
under the effective medium approximation framework, we develop a unified theory for
predicting anisotropic nonlinear equivalent thermal conductivities of elliptical inclusions in
homogeneous media. By means of the derived results, enhancement of value in nonlinear
coefficient can be achieved in a specified direction, based on geometrically anisotropic
configurations and temperature-dependent properties. Quantitative relations between
directional enhancement and inclusive shape factors are given by analytical theory and
verified by numerical simulation. The proposed theoretical methods can be further
extended to arbitrary non-circular configurations of complex structures, and the
directional nonlinearity enhancement effect will facilitate refined heat control, combined
with other nonlinear mechanisms such as spatiotemporal modulation or harmonic
generation.
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thermal conductivity

1 INTRODUCTION

Nonlinearity is one of the fundamental phenomena in nature and human society [1, 2]. By means of
nonlinear mechanisms applied in artificial complex systems, various devices or concepts such as
transistors, lasers, and artificial intelligence were created, leading to the dramatic revolution in
modern science and technology [3–6]. On the other hand, nonlinearity in macro-scale heat transport
systems is lacking study in both theory and applications [7, 8], although its counterpart at micro or
nano scale has been a significant topic of phononics in the last two decades [9–11]. Comparable to
the coupling-induced inharmonic interaction in phonon transfer [12], nonlinearity in macro-scale
heat diffusion is mainly reflected in the intrinsic response to external fields, for example, thermal
conductivity or capacity is varying with temperature [13, 14]. The absence of macroscopic
phenomenological theory (under the Fourier’s law) makes it difficult to handle nonlinear parts
in heat conduction and limits the regulation or management of heat in industrial engineering and
daily life.

Thermal metamaterials have flourished as a promising scheme for manipulating heat since the
proposal of transformation thermotics [15–19]. The range and sensitivity of accessible thermal
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conductivities are thus extended to the level far beyond natural
materials [20–23]. More recently, various design methods have
been generalized from linear to nonlinear systems, in which
thermal parameters are temperature dependent [24–27], and
lead to a broad category of smart or self-adapting thermal
metadevices [28, 29]. In particular, composites of artificial
architectures can result in a larger value on the coefficient of
an effective nonlinear term than building-unit materials, which is
usually called nonlinearity enhancement [8]. This effect in
random [30], periodic [31], and core-shell [32] structures have
been proposed. However, besides the enhanced parameter ranges,
anisotropy in functionality is also a crucial benefit of utilizing
artificial architectures [33–35], allowing several regulating
abilities integrated into a single installation. But the effective
thermal conductivities considered in the above works [30–32] are
all in scalar form, i.e., isotropic. When composites have relatively
strong anisotropy in configuration, such as ellipses inclusions,
effective thermal conductivities will be anisotropic. Then the
nonlinearity enhancement effect may be directional, depending
on the intensity of anisotropy in composite media.

In this work, we aim at designing directional nonlinearity
enhancement in composite thermal media. Directionality can be
induced by elliptical particles embedded in homogeneous media
with identical orientations. We build a two-dimensional
theoretical model for deducing an analytical relation between
directional enhancement and corresponding influencing factors,
including the inclusive area fraction, shape factor, and ratio of
linear part in intrinsic thermal conductivities, and demonstrate
total-factor analyses with numerical methods. Finite-element
simulations verify the designed model and give a visualized
range and level of directional nonlinearity enhancement.
Considering the universality of ellipses for mimicking a
number of geometrical configurations such as clavae or circles
by tuning shape factors, the proposed basic model may be
extended to other anisotropic systems and inspire a broad

category of multifunctional or Janus nonlinear thermal
metadevices.

2 THEORY

Let us consider a two-dimensional composite model in which a
large number of ellipse inclusions are randomly distributed in a
host matrix with identical orientation, see Figure 1. We use
subscripts i, m, and e to indicate the parameters of inclusion,
matrix, and effective medium, respectively. Then κi(T) and κm(T)
are denoted to the intrinsic temperature-dependent thermal
conductivities of two constituents, and κe(T) is the effective
thermal conductivity of the composite. For simplification
without loss of generality, intrinsic thermal conductivities are
set to be composed of two parts, namely the linear and nonlinear
components. They can be written in as

κi T( ) � κi0 + χiT
α (1)

and

κm T( ) � κm0 + χmT
β. (2)

The first terms on the right hand of the above two equations
are linear parts (constants), while the second terms are
nonlinear parts. χ is the nonlinear coefficient and T
represents the local temperature. α and β can be assigned as
arbitrary real numbers. It is noted that we consider the weak
nonlinearity effect here, which is common for most solid
crystals within the room temperature range. So κi0 ≫ χiT

α

and κm0 ≫ χmT
β should be satisfied. Naturally, the Taylor

expansion technique is adapted for deriving the analytical
form of κe(T) from κi(T) and κm(T). Executing Taylor
expansion on κe(T) by regarding χiT

α and χmT
β as small

quantities, it can be expected to retain

FIGURE 1 | Schematic of a nonlinear thermal composite. All the ellipse inclusions have the same shapes and orientations (main axes are along the x axis).
Nonlinearity is intensified in the x direction, while it is weakened in the y direction, coming into directional nonlinearity enhancement. Ellipse inclusions are amplified at the
right hand. a and b are the semi-axis length in the x and y direction, respectively.
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κe T( ) � κe0 + η1χiT
α + η2χmT

β + O χiT
α( ) + O χmT

β( ), (3)
where η1χiT

α and η2χmT
β are first-order expansion terms, and

O(χiT
α) and O(χmT

β) are their higher-order expansion terms. By
comparing first-order nonlinear terms of the effective medium
and its components, we can obtain nonlinear gain coefficients. In
our following analyses, we focus on the first-order nonlinear
term, higher-order nonlinear terms are ignored. Eq. 3 implies
that η1 and η2 are dimensionless nonlinear gain coefficients
resulted from composite effects. It can be employed to
evaluate the level of nonlinearity enhancement.

To proceed, we refer to the analytical form describing the
effective thermal conductivity of the composite in the linear case,
which is also known as the generalized Maxwell-Garnett (M&G)
equation [36]. Under the case that the long axes of ellipse
inclusions are along x axis, the nonlinear thermal conductivity
in the x direction is expressed as

κex T( ) � κm T( ) + f κi T( ) − κm T( )( )κm T( )
gx κi T( ) − κm T( )( ) + κm T( )( ) 1 − fgx κi T( )−κm T( )( )

gx κi T( )−κm T( )( )+κm T( )( ), (4)

where f is the area ratio of inclusions to the whole media and gx is the
major-axis shape factor of ellipse inclusions, which is defined exactly
in Ref. [36]. Similarly, the thermal conductivity in the y direction can
be obtained by replacing x with y in Eq. 4. We can see the shape
factor g is the key for constructing anisotropic effective thermal
conductivities because gx and gy are different for κex(T) and κey(T),
respectively. So we can naturally consider that gwill induce divergent
nonlinearity enhancement effects in different directions. Next, we
will deduce the detailed form of effective nonlinear modulation
coefficients. For defining them explicitly, we consider two simplified
cases. One is that nonlinear inclusions embedded in linear matrix,
the other is that linear inclusions embedded in nonlinear matrix.

2.1 Nonlinear Inclusion
When we only consider nonlinearity in inclusions, the thermal
conductivity of matrix will be reduced to its linear part κm0, and
the nonlinear gain coefficient of composite is simply embodied in
η1 in Eq. 3. Now the analytical form of effective thermal
conductivity in Eq. 4 can be written as

κeA T( ) � κm0

+ f κi0 + χiT
α − κm0( )κm0

g κi0 + χiT
α − κm0( ) + κm0( ) 1 − fg κi0+χiTα−κm0( )

g κi0+χiTα−κm0( )+κm0
( ).

(5)
Executing Taylor expansion at κi0 to the first order of χiT

α, we
obtain

κeA T( ) � κm0 + f κi0 − κm0( )κm0

g κi0 − κm0( ) + κm0( ) 1 − fg κi0 − κm0( )
g κi0 − κm0( ) + κm0

( )
+ f

1 − f( )g κi0
κm0

− 1( ) + 1( )2χiT
α + O χiT

α( ).
(6)

Comparing Eq. 6 with Eq. 3, we can see that the zero-order
expansion term is exactly the linear effective thermal conductivity
of composite, and the gain coefficient of first-order term is
derived in a concise form as

ηA � f

1 − f( )g κi0
κm0

− 1( ) + 1( )2. (7)

ηA is related to area fraction f, elliptical shape factor g, and linear-
part conductivity ratio of inclusions and matrix κi0/κm0. In
particular, g has anisotropic nature because of the oriented
arrangement of ellipse inclusions, inducing the expected
directional nonlinearity enhancement.

For quantitatively depicting physical pictures of directional
nonlinearity enhancement, we show the variation of
dependent variable ηA with its several independent variables
in Figure 2. ηA is along the vertical axis, while κi0/κm0 and f are
in the horizontal plane. A to I in Figure 2 demonstrate their
relations under different g. We use five different colors to
distinguish value regions of ηA, see the bottom color bar. The
red region represents nonlinearity enhancement (ηA > 1). It is
noted that for two-dimensional elliptical-inclusion composite,
the sum of g in x and y directions is 1. So A and I, B and H, C
and G, D and F in Figure 2 are four pairs of counterparts for
the anisotropic nonlinear response, with four varieties of
aspect ratio in inclusions. Here, nonlinearity enhancement
is achieved when g > 0.5 (corresponding to Figures 2F–I),
while there is no enhancement in another direction
(corresponding to Figures 2A–D) simultaneously. If g goes
to 0.5, the inclusions become circular, and the gain coefficient
is then non-directional or isotropic, echoing with the results in
Ref. [30].

2.2 Nonlinear Matrix
Then we consider that linear inclusions are embedded in a
nonlinear matrix. In this case, effective thermal conductivity is

κeB T( ) � κm0 + χmT
β

+ f κi0 − κm0 − χmT
β( ) κm0 + χmT

β( )
g κi0 − κm0 − χmT

β( ) + κm0 + χmT
β( ) 1 − fg κi0 − κm0 − χmT

β( )
g κi0 − κm0 − χmT

β( ) + κm0 + χmT
β

⎛⎝ ⎞⎠.

(8)

Similar to the method in above subsection, after executing Taylor
expansion at κm0, Eq. 8 can be transformed to

κeB T( ) � κm0 + f κi0 − κm0( )κm0

g κi0 − κm0( ) + κm0( ) 1 − fg κi0 − κm0( )
g κi0 − κm0( ) + κm0

( )

+1 +
f 1 − f( )g κi0

κm0
− 1( )2

+ 1( )
1 − f( )g κi0

κm0
− 1( ) + 1( )2 χmT

β + O χmT
β( ).

(9)
Then, we obtain the gain coefficient of the first expansion term as
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ηB � 1 +
f 1 − f( )g κi0

κm0
− 1( )2 + 1( )

1 − f( )g κi0
κm0

− 1( ) + 1( )2 . (10)

We can see that ηB are related regarding area fraction f, shape
factor g, and thermal conductivity ratio κi0/κm0, similar to ηA.

We also demonstrate the variation of ηB with its three
independent variables in Figure 3. We can see nonlinearity
enhancement is achieved regardless of shape factor g. But their
values are different. In detail, ηB in orthometric directions
show distinct enhancement, which can be read from A and I, B
and H, C and G, D and F in Figure 3. This result is

distinguished from the isotropic composite as Figure 3E
shows.

3NUMERICAL SIMULATIONVERIFICATION

To check our theory, we perform finite-element simulations
solving the heat conduction equation with the commercial
software COMSOL Multiphysics (www.comsol.com). The
whole composite media is constructed as a square with a
side length of 10 cm. A total of 400 ellipse particles are

FIGURE 2 | Values of η for nonlinear inclusions and linear matrix. Each subplot shows how η varies with f and κi0/κm0 given a different value of g from 0.1 to 0.9. In
particular, the surface when η > 1 is plotted in red.
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randomly embedded in the matrix. Each particle has a semi-
axis length a in the x direction (see Figure 1), and the thermal
bias ΔT = 1 K is also applied in this direction with the hot
(cold) source at 301 K (300 K). For different cases, we take
κi0 = 4 W m−1 K−1 and change the ratio κi0/κm0. To generate a
weak nonlinearity, the nonlinear coefficient for the nonlinear
material is set as 10–4 W m−1 K−2. The effective nonlinear
coefficient is calculated by comparing the effective
conductivities when the thermal bias exists or is absent. In
addition, the temperature in the effective nonlinear thermal
conductivity is set as the average temperature over the
inclusions, which is approximately equal to 300.5 K.

First, to show the (directional) nonlinearity enhancement by
nonlinear inclusions and linear matrix, we give the simulated η
with the theoretical results in Figure 4. According to Figure 2, we
take g = 0.8 here to see the effect of nonlinearity enhancement in
Figure 4A. For plots in different colors, we take κi0/κm0 = 0.1, 1/3,
1, 3, and 10, respectively. The data for the scatter plot are the
average value of simulations using three different random
position sets for the inclusions. The trend of the scatter plots
basically agrees with the theoretical value. When κi0/κm0 = 0.1, we
can see obvious nonlinearity enhancement when f ≥ 0.2. In
addition, η is greater than the theoretical value when f is not
small. This deviation comes from the overly simplistic

FIGURE 3 | Same as Figure 2, but for linear inclusions and nonlinear matrix.

Frontiers in Physics | www.frontiersin.org July 2022 | Volume 10 | Article 9248905

Wang and Dai Directional Nonlinearity Enhancement

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


assumption that the M&G theory only considers the dipole effect.
In Figure 4B, we compare η with different g values while κi0/κm0

is fixed. The plots of g = 0.9 and g = 0.1 (or g = 0.7 and g = 0.3) tell
that the directional nonlinearity enhancement do exists. Then, we
give similar results for linear inclusions and nonlinear matrix in
Figure 5. We can see the condition of κi0/κm0 for nonlinearity
enhancement is different from the case in Figure 4. Anyway, we
can observe (directional) nonlinearity enhancement as well.

4 DISCUSSION AND CONCLUSION

Hereto, we have demonstrated the directional nonlinearity
enhancement in anisotropic thermal media. Different from the
previously-studied isotropic structures, non-circular
configurations introduce directionality into effective nonlinear
thermal conductivity, inducing different effective nonlinear
coefficients in orthometric directions. In particular, the case
that nonlinear inclusions embedded in linear matrix leads to a
one-way nonlinearity enhancement. This is inaccessible in
isotropic media which results in omnidirectional nonlinearity
reduction. Thanks to the shape factor g, we can achieve both
nonlinearity enhancement and directionality in this case.
Another condition we study above is those linear inclusions
embedded in a nonlinear matrix. It also benefited from the

shape factor g that the degrees of enhancement are
distinguished in different directions. When g = 0.5, our results
accord with the circular particle dispersing in isotropic media.
The proposed theoretical models and simulation methods can
also be extended to higher-order nonlinearity, which may be
expected to design flexible thermal multistability or higher heat
harmonic wave generation. Taking advantage of anisotropy in
configuration, directional nonlinearity enhancement can be
utilized for constructing multifunctional nonlinear metadevices.

We should point out that we discuss weak nonlinearity cases in
this work so that Taylor expansion can be employed, which is
common in naturally-occuring solid crystals. We take first-order
nonlinear terms and ignore high-order terms to clearly
demonstrate the proposed methods and effects. The Taylor
expansion method is universal for arbitrary order nonlinear
terms, and high-order terms may be taken into consideration
in some wave-like heat transfer cases. It is noted that the gain
coefficient we discussed in this work has an upper limit. It
depends on the intrinsic composite structures. Elliptical
particles diffusing in a matrix naturally introduce this
confinement of about 2.8. However, if we consider other
models (for example, core-shell or diamond-shaped structure)
[33, 37], the upper limits will be different. Another limitation that
should be pointed out is that we employM&G theory for deriving
nonlinear effective thermal conductivities, It fits well with actual
situations at the dilution limit. However, if the area fraction is

FIGURE 4 | How η varies with f for nonlinear inclusions and linear matrix.
The scatter plots represent the numerical results for f = 0.1, 0.2, 0.3, 0.4, and
0.5, while the solid lines show the theoretical values. (A) g is 0.8 while κi0/κm0

takes different values. (B) κi0/κm0 is 0.1 while g takes different values.

FIGURE 5 | Same as Figure 4, but for linear inclusions and nonlinear
matrix. In addition, to show directional nonlinearity enhancement, κi0/κm0

takes 3 in (B).
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large enough, simulation results will deviate from theoretical
predictions. We suggest that the Rayleigh method applies to
correcting the deviation between practical issues and physical
models [31].

In summary, we propose an anisotropic thermal composite
model for realizing directional nonlinearity enhancement. On
basis of the regulation with geometrical configuration,
coefficients of nonlinear terms in thermal conductivities
can be enhanced in the expected directions, compared with
isotropic constituent materials. By directly executing Taylor
expansion on effective nonlinear thermal conductivities, we
give analytical forms of nonlinearity enhancement, which is
related to shape factors, linear conductivities, and area ratio of
constituents. Numerical results echo the theoretical
prediction and indicate the conditions for achieving
directional enhancement. Moreover, we point out some
limitations of our models and suggest several measures for
promoting the level of directionality and enhancement. Our
results may not only provide a theoretical framework for
constructing directional thermal nonlinearity enhancement
but also enlighten multifunctional or Janus thermal
metadevice design.
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