
Application of reinforcement
learning in the LHC tune
feedback

Leander Grech1*, Gianluca Valentino1, Diogo Alves2 and
Simon Hirlaender3

1Department of Communication and Computer Engineering, University of Malta, Msida, Malta, 2CERN,
Geneva, Switzerland, 3Department of Artificial Intelligence and Human Interfaces, University of
Salzburg, Salzburg, Austria

The Beam-Based Feedback System (BBFS) was primarily responsible for

correcting the beam energy, orbit and tune in the CERN Large Hadron

Collider (LHC). A major code renovation of the BBFS was planned and

carried out during the LHC Long Shutdown 2 (LS2). This work consists of an

explorative study to solve a beam-based control problem, the tune feedback

(QFB), utilising state-of-the-art Reinforcement Learning (RL). A simulation

environment was created to mimic the operation of the QFB. A series of RL

agents were trained, and the best-performing agents were then subjected to a

set of well-designed tests. The original feedback controller used in the QFBwas

reimplemented to compare the performance of the classical approach to the

performance of selected RL agents in the test scenarios. Results from the

simulated environment show that the RL agent performance can exceed the

controller-based paradigm.

KEYWORDS

LHC, beam-based controller, tune feedback, reinforcement learning, cern

1 Introduction

The LHC is the largest synchrotron built to date and its sheer scale meant that it was

the first particle accelerator of its type to require automatic beam-based feedback systems

to control key beam parameters [1]. The Beam-Based Feedback System (BBFS)

implemented these feedback systems and was developed prior to the LHC start-up in

2008. Throughout the years, operator experience has dictated which functionality to keep,

add and remove from the BBFS [2].

The BBFS comprised several subsystems, each responsible for controlling a specific

beam parameter or machine parameter. One of the most critical parameters to control is

the tune (Q). Q is defined as the number of transverse oscillations a particle performs in

one revolution around the LHC. Ideally the value of the tune is an irrational number so

that the location of the transverse oscillations do not occur in the same longitudinal

locations in the LHC. The Tune Feedback (QFB) system was the BBFS subsystem

responsible for controlling the tune.

OPEN ACCESS

EDITED BY

Robert Garnett,
Los Alamos National Laboratory (DOE),
United States

REVIEWED BY

Christine Darve,
European Spallation Source, Sweden
Baoxi Han,
Oak Ridge National Laboratory (DOE),
United States

*CORRESPONDENCE

Leander Grech,
leander.grech.14@um.edu.mt

SPECIALTY SECTION

This article was submitted to High-
Energy and Astroparticle Physics,
a section of the journal
Frontiers in Physics

RECEIVED 26 April 2022
ACCEPTED 25 July 2022
PUBLISHED 07 September 2022

CITATION

Grech L, Valentino G, Alves D and
Hirlaender S (2022), Application of
reinforcement learning in the LHC
tune feedback.
Front. Phys. 10:929064.
doi: 10.3389/fphy.2022.929064

COPYRIGHT

© 2022 Grech, Valentino, Alves and
Hirlaender. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Technology and Code
PUBLISHED 07 September 2022
DOI 10.3389/fphy.2022.929064

https://www.frontiersin.org/articles/10.3389/fphy.2022.929064/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.929064/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.929064/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.929064&domain=pdf&date_stamp=2022-09-07
mailto:leander.grech.14@um.edu.mt
https://doi.org/10.3389/fphy.2022.929064
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.929064

TheQFB requires a constantly updated estimate of the value of

the tunes in the horizontal and vertical planes of both beams in the

LHC. The estimation of the tune was performed by the Base-Band

Tune (BBQ) system [3]. Each plane in every beam was handled

independently through a set of tuning quadrupoles of type MQT,

to adjust the magnetic beam envelope. The QFB operated on the

assumption that the effect of a changing quadrupolar magnetic

field on the tune of the beam can be modelled by linear beam

optics. These optics came in the form of a 2D matrix and were

obtained by beam optics design programs such as Methodical

Accelerator Design (MAD-X) developed by CERN [4].

The QFB on one beam relies on a Tune Response Matrix

(QRM), which is a 16 × 2 matrix modelling the change in the

vertical and horizontal tunes due to a change in the deflections of

16 (de)focusing tuning quadrupoles of type MQT. Therefore, a

vector containing the delta quadrupole deflections, ΔδQ
�→

is

multiplied by the QRM:

ΔδQ
�→ · QRM � Δ �Q

where Δ �Q is the modelled change in tune due to ΔδQ
�→

being

applied to the quadrupoles. Singular Value Decomposition

(SVD) is used to calculate the pseudo-inverse of the QRM

(QPI). A Proportional-Integral (PI) controller then uses QPI to

calculate the corrections, ΔδQ
�→

, for an optimal response:

Δ �Q · QPI()u � ΔδQ
�→

From the first operation of the QFB, it was observed that

erroneous tune estimates from the BBQ system were causing

unstable behaviour. To avoid an indeterministic response, a

stability metric is used within the QFB to switch off the feedback

controller in the presence of excess instability in the tune estimates.

This work is an explorative study on the application of

Reinforcement Learning (RL) in the QFB. Since this work was

carried out during LHC LS2, a simulation environment called

QFBEnv was developed to mimic the operation of the QFB in the

LHC. Several tests were designed to probe the robustness of the

trained agents and the PI controller to external noise and non-

stochastic environments. The results from these tests were used

to evaluate the performance of the best trained RL agents.

This paper is organised as follows: Section 2 provides a

mathematical formalism of RL and an overview of the RL

algorithms used in this work. Section 3 describes the design of

the RL environment, which mimics the QFB in operation in the

LHC. Section 4 describes the training of each algorithm. Finally,

Section 5 describes the evaluation of best-trained agents and

compares their performance with the standard PI control used in

the QFB.

2 Reinforcement Learning

Figure 1 shows a top-level view of the essential components

and their interactions within an RL framework. The various

signals between the agent and environment are labelled in

notation used in RL nomenclature. st and at refer to the state

of the environment and the action chosen at time t. rt refers to the

reward being given to the agent for the action taken at time t − 1,

hence rt+1 is defined as the reward given to the agent for choosing

action at when in state st.

The RL problem can bemodelled by a finiteMarkov Decision

Process (MDP) which is defined by a (st, at, rt, st+1) tuple. A set of

tuples of size H constitute an episode, where the initial state is

drawn from the initial state distribution, s0 ~ p0. The reward is a

scalar representing the goodness of the last action performed on

the environment. The ultimate goal of any RL algorithm is to

maximise the expected discounted cumulative future reward, or

return (G), obtained by the agent:

Gt ≜ Ea~πθ ,s~p st+1 |st ,at() ∑H−t

i�t
γir si, ai()

where πθ is known as the policy, which maps the states to the

actions and is parameterised by vector θ. p (st+1|st, at) is the

transition distribution of the environment. γ is called the

discount factor (γ ≤ 1, e.g., 0.99) and its role is to control the

importance of future rewards in the calculation of the value for a

particular state. RL nomenclature defines the value function as a

measure of the total expected future rewards the agent can expect

when starting in some state, s [5].

Figure 2 shows a non-exhaustive taxonomy of the various RL

algorithms found in the literature. RL can be split into two main

classes: Model-Free (MF) and Model-Based (MB) algorithms. As

the name implies, MF RL is the study of algorithms that do not

require a model to be learned and solely depend on the

relationship among the actions, states and rewards obtained

on every interaction. On the other hand, MB RL is the study

of algorithms that either has access to the full dynamics model,

e.g., AlphaGo [6], or require that a model of the environment is

FIGURE 1
Top-level view of the interaction between the Agent and the
Environment.

Frontiers in Physics frontiersin.org02

Grech et al. 10.3389/fphy.2022.929064

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.929064

learned alongside the agent, e.g., Model-Ensemble Trust-Region

Policy Optimization (ME-TRPO) [7].

The first RL algorithm considered in this work is Normalized

Advantage Functions (NAF), which was introduced in [8] and is

based on Deep Q Networks (DQN) and Duelling DQN (DDQN)

to solve continuous tasks, e.g., robotic arm control. These types of

algorithms update a policy that did not necessarily create the

trajectory; hence they are called off-policy methods.

Unlike DQN, NAF contains a network with three output

streams: 1) Value function estimate, V̂(s); 2) Advantage estimate

Â(s, a); 3) Policy μ(s), where:

Q s, a; θ() ≜ V s; θ() + A s, a; θ() (1)

By taking the argmax over the actions in the Advantage, the

agent learns the optimal Q-value. NAF differs from standard

Q-learning methods since A is explicitly parameterised as a

quadratic function of non-linear features of the state:

A s, a; θ() � −1
2

a − μ s; θ()()uP s; θ() a − μ s; θ()()
P s, θ() ≜ L s; θ()L s; θ()u

(2)

where L is a lower-triangular matrix with an exponentiated

diagonal, constructed from the second output stream of the

network. By Eq. 2, p is a state-dependent, positive-definite

square matrix. The third output stream of the network is μ(s;

θ), which is the action that maximises the Q-function in Eq. 1

when the following loss is minimised:

L � 1
N

∑
i

yi − Q si, ai; θ()()2
with:

yi � ri + γV′ si+1; θ′()
V′(·; θ′) denotes the target network which is a separate

network, updated slower than the main network, V (·; θ) by

using Polyak averaging on their parameters:

θ′ ← τθ + 1 − τ()θ′

where τ is set to a small number, e.g., 0.005. Hirlaender et al.

introduced NAF2 in [9], which adds clipped smoothing noise to

the actions, a technique also used in the Twin-Delayed Deep

Deterministic Policy Gradient (TD3) algorithm to stabilise the

policy training [10].

The second algorithm is Proximal Policy Optimization

(PPO) introduced in [11], which is primarily based on the

Policy Gradient (PG) method. PG methods use trajectory

rollouts created by taking actions from the most recent policy

trained by the agent on the environment; hence they are called

on-policy methods. The most common form of the PG objective

is written as:

J PG θ() � Êt,at~πθ st(),st+1~ p ·|st ,at() logπθ at|st()Ât[]
The expectation symbol Ê denotes the empirical average over

a batch of rollouts denoted by t, actions at sampled from πθ(·),
which is a stochastic policy. Ât is an estimate of the Advantage,

which is a measure of how good at is compared to the average

action possible at time t. Differentiating J PG with respect to the

network parameters, θ, obtains the PG estimate, ĝ:

ĝ � Êt ▽θ logπθ at|st()Ât[]
The gradient estimate is used in gradient ascent to maximise

the objective J PG. It was also shown in [11] that performing

multiple optimisation steps using the same trajectory leads to

destructively large policy updates that no longer converge to an

optimal policy. Trust Region Policy Optimization (TRPO)

introduced a solution by constraining the maximisation of

J PG by:

Êt DKL πθold · |st(), πθ · |st()[][] ≤ σ (3)

where σ ∈ R, e.g., 0.01, θold is the policy parameters before the

policy update and θ after the update. One drawback of TRPO is

FIGURE 2
A non-exhaustive taxonomy of RL algorithms.

Frontiers in Physics frontiersin.org03

Grech et al. 10.3389/fphy.2022.929064

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.929064

its implementation complexity. PPO uses a similar approach to

TRPO, however, instead of constraining the policy to satisfy Eq.

3, PPO introduces a clipped policy objective with a penalty

proportional to the KL-divergence between the old and new

policy:

rt ≜
πθ

πθold

(4)

J CLIP θ() �
Êt min rt θ()Ât, clip rt θ(), 1 − ϵ, 1 + ϵ()Ât()[] (5)

J CLIP is easier to implement and executes faster than TRPO.

Experiments done in [11] also show that PPO and TRPO obtain a

similar performance over many types of environments1.

The most noticeable difference between off-policy and on-

policy methods mentioned so far is the two types of policies used;

deterministic and stochastic, respectively. NAF2 has a

deterministic policy, which means that the agent will always

choose the same action for one state. For each state, the stochastic

policy of PPO provides an action distribution that can be

sampled for the next action2.

More RL algorithms were attempted, and their training and

evaluation can be found in the Supplementary Material. The Soft

Actor-Critic (SAC) algorithm combines the use of stochastic

policies and the off-policy method by introducing the concept of

entropy maximisation to RL [12]. Anchored-Ensemble DYNA-

style (AE-DYNA) is an MBRL algorithm that internally relies on

a SAC agent to optimise a policy in an uncertainty-aware world

model [9].

3 Environment

The QFB uses two QRM per beam and each QRM is set up by

default to contain six outputs: the horizontal and vertical tune,

the horizontal and vertical chromaticity, and the real and

imaginary components of the coupling coefficient. To separate

the QFB from the coupling and chromaticity control, the QRM is

truncated to have only two outputs; the tunes. The tune control

sequence occurs at 12.5 Hz and a predefined sequence of steps is

performed where: 1) the tune error, Δ �Q, is obtained by

subtracting the current tune estimate and the reference tune;

2) the tune error is clipped to ≈ 56Hz1; 3) a velocity form

Proportional-Integral (PI) controller is applied by using ΔQt
�→

and ΔQt−1
���→

, where t denotes the time step; 4) the PI output is

multiplied by the pseudo-inverse matrix of QRM (Tune Pseudo-

Inverse (QPI) computed by Singular Value Decomposition) to

obtain a set of residual quadrupole currents; 5) the currents are

multiplied by -1; 6) the currents are globally scaled by a factor k ≤
1 to accommodate the slew rate of the quadrupoles; 7) finally the

corrections are sent to the quadrupole power converters viaUDP

packets.

An OpenAI Gym environment [13] was set up to mimic the

response of the LHC to a varying quadrupolar magnetic field.

This environment will hereon be referred to as QFBEnv. QFBEnv

has two continuous states as output and uses 16 bounded

continuous actions as input. The states and actions were

normalised to the range [− 1, 1]. The normalised state-space

represented a range of [−25 Hz, 25 Hz] of tune error.

QFBEnv implicitly implemented current slew rate limiting

since the actions were clipped to the range [-1,1]. A saturated

action in QFBEnv is the maximum change in a quadrupolar field

strength that the magnets can supply in the next time step. The

normalised action space represented the fraction of the total

allowable current rate in the magnets. Every step was also

assumed to occur every 80 ms, which corresponds to the QFB

controller frequency of 12.5 Hz. Therefore a normalised action of

one on a magnet with a maximum current rate of 0.5 A s−1 is

equivalent to a current change of 0.5 × 0.08 = 40 mA.

In addition, the PI controller used by the QFB was also re-

implemented as a particular method within QFBEnv. This was done

to provide a reference for the performance of a trained agent. The

proportional, Kp, and integral, Ki, gains of the PI controller were set

to low values by default as a conservative measure during

initialisation of the QFB. To ensure a fair comparison, the PI

controller was tuned using the Ziegler-Nichols method [14]: 1)

Ki was set to zero; 2) Kp was increased until state oscillations were

observed; 3) the latest value of Kp was halved; 4) Ki was increased

until state oscillations were observed; 5) Ki was halved. The final

gains for the PI controller implemented in QFBEnv were Kp = 1,000

and Ki = 2000.

The PI controller was implemented with the global slew rate

limiting. As an example, consider a quadrupole magnet, M, with

a slew rate of 0.5 A s−1. If a current change at 1 A s−1 is requested

for the next time step, all of the outputs of the PI controller are

scaled by a factor k = 0.5 to accommodateM. The global factor k

can be decreased if another magnet requires k < 0.5 to

accommodate its respective slew rate. QFBEnv does not

enforce the global scaling scheme by default, therefore any

action within the [− 1, 1] bounds are applied to the

environment within the next time step.

QFBEnv implemented two important functionalities: 1) the

reset function and; 2) the step function. The reset function is the

entry point to a new episode, whereby a new initial state,

(ΔQHor.,0, ΔQVer.,0), is generated and returned to the agent.

The step function is responsible for accepting an action,

following the transition dynamics of the environment and

then returning a tuple containing: 1) the next state; 2) the

reward and; 3) a Boolean flag to indicate episode termination.

The reward was chosen to be the negative average quadratic of

the state, as shown in Eq. 6.

1 As implemented in the QFB; 0.01 × Fs
2 where the sampling frequency,

Fs, of the BBQ system is equal to the LHC revolution frequency,
11 245.55 Hz.

2 Initialised randomly and set constant throughout one episode.

Frontiers in Physics frontiersin.org04

Grech et al. 10.3389/fphy.2022.929064

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.929064

rt+1 � −1
n
∑n
i

s i()
t+1()2 (6)

Since the goal of any RL agent is to maximise the reward, a

perfectly trained agent would thus have a policy which reduces

the tune error to zero. It is also important to note that the

gradient of quadratic reward increases, the farther the state is

from the optimal point. This reflects the importance of

controlling a larger tune error with respect to a smaller error

in the QFB, e.g., if ΔQH≫ΔQV >Goal, the agent would put more

importance on the correction of ΔQH. From trial and error, this

shape of reward was observed to produce more stable training.

An episode is defined as starting from the first state

initialisation until a terminal state is reached. A baseline

optimal episode length was obtained by running

1,000 episodes using the PI controller. The measured average

optimal episode length was ≈ 28 ± 6 steps. The maximum

allowable episode length in QFBEnv was chosen to be

70 steps long, approximately double the maximum optimal

episode length observed. Successful early termination in

QFBEnv is defined as the latest five rewards being above a

threshold. The threshold value of QFBEnv was chosen as a

maximum tune error in both planes of 1 Hz. This is

equivalent to 1
25 � 0.04 in normalised state space and the

threshold reward can be obtained from Eq. 6:

rthresh � −1
2

0.042 + 0.042() � −0.0016

Thus, a terminal state could be reached either by a successful

early termination or after 70 steps were made without success.

The successful early termination represents a real operational

scenario, since the QFB is typically switched off manually when

the measured tunes are close to their respective reference values.

It also allows for more examples of the state below the threshold

to be experienced by the RL agents, which leads to better learning

close to the threshold boundary.

4 Training

Table 1 tabulates information about the types of RL

algorithms which were trained on QFBEnv. The two

algorithms which obtained the best performing policies were

NAF2 and PPO. The training process of SAC, TD3 and AE-

DYNA can be found in the Supplementary Material.

During the training of the Model-Free (MF) agents, two

callback functions were used: Callback A was called every

1,000 training steps to save the network parameters of the

most recent agents to disk and; Callback B was called every

100 training steps to evaluate and log the performance of the

most recent agent. The performance of the most recent agent was

evaluated on a separate instance of QFBEnv in Callback B.

Twenty episodes were played in sequence using the most

recent agent to choose the actions. The training metrics were

the average episode length, average undiscounted episode return

and the average success rate. These values were logged with

Tensorboard [15] and are used in the remaining part of this

section to describe the training process of each algorithm.

SAC and TD3 required the most hyperparameter tuning to

obtain a satisfactory result. NAF2 and PPO were less susceptible

to hyperparameter tuning. AE-DYNA was more complex to set

up correctly and also required some network adjustments in

order for it to learn a successful policy on QFBEnv. The evolution

of the agent throughout the training process was analysed off-line

and the various policies trained by the different RL algorithms

were re-loaded and compared.

All the agents used the same network architecture for their

policies. The final architecture was chosen through a grid-search

as an artificial Neural Network (NN) with two hidden layers

having 50 nodes each and using the Rectified Linear Unit (ReLU)

activation function. This network architecture was also used for

the value function networks of the off-policy agents.

In on-line training on the QFB, the worst case episode length

is 70 steps and every step is taken at a rate of 12.5 Hz. Therefore

the maximum time of one episode on the QFB is:

70 steps
12.5Hz

� 5.6 s. (7)

At episode termination, the actuators controlled by the action

of the agent would, at worst, need to be re-adjusted to their initial

settings at the start of the episode, e.g. set to reference current.

The worst-case scenario occurs when an action is saturated

TABLE 1 The RL algorithms attempted in this work along with their
type of policies andwhether they train a worldmodel: Model-Free
(MF) or Model-Based (MB).

Algorithm On-policy Off-policy MF MB

NAF2 ✓ ✓
PPO ✓ ✓
SAC ✓ ✓
TD3 ✓ ✓
AE-DYNA ✓ ✓ ✓

TABLE 2 Hyperparameters used for NAF2.

Name Value

learning rate 0.001

γ 0.9999

batch size 100

buffer size 5,000

qσ 0.02

qclip 0.05

τ 0.001

Frontiers in Physics frontiersin.org05

Grech et al. 10.3389/fphy.2022.929064

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.929064

throughout the episodes. The worst-case re-adjustment time for

one episode is thus equal to Eq. 7, 5.6s. Each RL algorithm trained

in this work is attempted five times with different random seeds.

An estimate of the real on-line training time on the LHC is also

provided, which considers the worst case re-adjustment time for

all the actuators. To achieve this, all training time estimates

obtained from off-line environments were doubled to obtain the

worst-case training time in an on-line environment.

Table 2 tabulates the hyperparameters that obtained the best

NAF2 agent in this work. The discount factor, γ and the time

constant for the Polyak averaging of the main and target

networks, τ were set to the values listed in [9]. qσ set up the

standard deviation of the action smoothing noise applied at each

step in QFBEnv when acquiring data. qclip clipped the action

smoothing noise to a range [− qclip, qclip]. qσ and qclip were chosen

by trial and error. In addition to the smoothing noise, a decaying

action noise was also applied during training. The following noise

function was used:

ai ≔ ai + N 0, 1()×max 1 − epidx
40

, 0()
where ai denotes the i

th action, N (0, 1) is a standard Gaussian,

and epidx is current episode number. Therefore, the action noise

decays linearly to zero after 40 episodes. Note that the choice to

decay the action noise relative to the number of episodes was

arbitrary. The action noise can be made to decay relative to the

number of steps taken so far during training.

Figure 3 shows the training performance statistics of the

NAF2 agents. Figure 3A shows that the episode length decreases

below 20 after 20000 steps. Figure 3C shows that the success rate

goes to 100% after 20000 steps as well. From Figure 3B it can be

seen that the average undiscounted return of the NAF2 agents

was higher at the end of training. This shows a monotonic

improvement in performance, regardless of the Min-Max

bounds of NAF2 shown in Figures 3A,C. Partially solved

episodes explain the large Min-Max boundaries. The policy

manages to increase the reward in these episodes until a local

minimum is reached without satisfying the successful early

termination criterion. However, slight improvements in the

policy push the states closer to the threshold, subsequently

increasing the return.

Successful policies using NAF2 were relatively sample-

efficient to train when compared to other algorithms

attempted. The monotonic improvement shown in Figure 3B

implies that a successful agent can be expected relatively early in

terms of training steps taken on the environment. Some agents

FIGURE 3
Performance statistics of NAF2 and PPO agents during training. The hyperparameters used are tabulated in Table 2 and Table 3, respectively. (A)
Median episode length; (B)Median undiscounted episode return and; (C)Median success rate, of five agents initialised with different random seeds,
per algorithm.

Frontiers in Physics frontiersin.org06

Grech et al. 10.3389/fphy.2022.929064

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.929064

during the training performed well, with an average episode

length of 20 steps after approximately 20,000 steps. In real LHC

operation on the QFB, the worst-case training time of

20,000 steps is calculated by:

20, 000 steps
12.5Hz

× 2≈ 53min

The hyperparameters shown in Table 3 are the salient

parameters of the Proximal Policy Optimization (PPO)

algorithm as implemented in Stable Baselines. Note that ϵ is

the clipping parameter from Eq. 5. PPO proved to be the easiest

algorithm to apply to QFBEnv in terms of hyperparameter tuning

and usage. Figure 3A shows that PPO converges below an episode

length of 20 after around 20000 training steps. A solution that

drops the episode length to below ten steps is found after

approximately 40000 steps. This remains stable until

catastrophic forgetting of the policy occurs after 80000 steps.

Figure 3C also shows that some agents expected a 100% success

rate between 20000 and 80000 steps. Figure 3B illustrates that the

episode return for PPO is not guaranteed to be monotonically

improving. The best median performance of PPO was reached at

approximately 86000 steps and obtained an undiscounted

episode return of -4. All the metrics in Figure 3 shows that

the PPO performance starts to degrade beyond this training step.

The catastrophic forgetting of the policy, however, did not

occur quickly. At around 90000 steps, the expected episode

length had increased to 20 steps again. A callback function

can easily halt training if the policy starts forgetting and

freezing the network parameters to obtain the best performing

agent. This predictability is essential if the agent training occurs

in the real LHC operation. Similarly to NAF2, approximately

20000 steps are required to learn a good policy which is

equivalent to a worst-case on-line training time of 53 min.

5 Evaluation

This section evaluates the behaviour of the best policies

obtained by each RL algorithm in corner cases of QFBEnv.

These evaluations were performed by loading the network

parameters of the agent with the best performance and

recording its interactions with QFBEnv over multiple

episodes. To ensure a fair comparison, a reference trajectory

was created for each episode by using the actions from the PI

controller and the same initial state. The PI controller was also

subjected to the same tests, e.g., Gaussian noise was added to the

action calculated by the PI controller in Figure 4B.

5.1 Effect of Gaussian noise

QFBEnv implements a deterministic model and actions

passed through the step function are deterministic by default.

However, by adding Gaussian noise to the action chosen by

the policy, stochasticity can be introduced externally to

QFBEnv. By subjecting each agent to a stochastic

environment, the general robustness of each agent can be

empirically verified. During this test, the initial state per

episode was ensured to be sufficiently randomised to show

more coverage of the state-action space.

The evolution of the episode trajectories are shown in sets of

three evaluation episodes, e.g., Figure 4A. The state plots

correspond to the evolution of ΔQH and ΔQV in time of the

RL agents (top blue plots) and PI controller (top cyan plots),

respectively. Green and red markers denote the start and end of

each episode, respectively. A boundary (dashed green ellipse) is

also drawn to indicate the success threshold state. The action

plots correspond to the evolution of the 16 actions in time of the

RL agents (bottom red plots) and PI controller (bottom magenta

plots), respectively, until a terminal state is reached. Each set is

obtained by applying Gaussian action noise with a zero mean and

a standard deviation equal to 10%, 25%, and 50% of half the

action range ([0,1]), respectively.

Figure 4A shows three episodes obtained with a deterministic

NAF2 policy where it converges to an optimal state in

approximately ten steps, while the PI controller takes

approximately 25 steps until successful termination. However,

it can be seen that the action chosen by the NAF2 policy at each

terminal state is a non-zero vector. Ideally, the magnitudes of the

actions are inversely proportional to the reward in Eq. 6, e.g., the

PI actions of Figure 4A. This implies that NAF2 converged to a

sub-optimal policy. Figures 4B–D show that the NAF2 policy

satisfies the early termination criterion in each episode. The

longest episode can be observed in Figure 4D to be approximately

20 steps long. Moreover, Episode #1 of Figure 4D shows that the

PI controller failed to satisfy the successful early termination

criterion. This indicates that the best agent trained by

NAF2 performs better than the PI controller in a stochastic

QFBEnv.

Figure 5A shows three episodes obtained by applying the

actions sampled from the PPO stochastic policy,

deterministically to QFBEnv, i.e., no noise applied. Similarly

to NAF2, PPO converges to the optimal state. Furthermore,

the actions of PPO start to converge back to zero at the end of the

episode, which implies that PPO learned an optimal policy.

Figures 5B–D show that the agent satisfies the early

termination criterion in each scenario. PPO also shows a

TABLE 3 Hyperparameters used for PPO.

Name Value

learning rate 0.00025

γ 0.99

ϵ 0.2

Frontiers in Physics frontiersin.org07

Grech et al. 10.3389/fphy.2022.929064

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.929064

wider range of episode lengths as the action noise is increased; the

episode lengths in Figure 5D vary more than for NAF2 in

Figure 4D. Therefore, this test indicates that the policy

obtained by NAF2 is slightly more robust to action noise

than PPO.

The action noise was also varied with a finer interval to aid

with the analysis of the best agents under its effect and more

statistics were taken on the performance of the agents and the PI

controller e.g., Figure 6A. For each action noise value on the

x-axis, 1,000 episodes were executed and used to obtain the

statistics shown in the respective figures. These plots illustrate

more information on the distribution of key measurements

linked with the performance of the agents (in blue) and the

PI controller (in red). In particular, the distributions of the

following measurements are presented: 1) Episode length (one

scalar per episode); 2) Distance of the terminal state from the

optimal state of [ΔQH = 0, ΔQV = 0], calculated by Eq. 8 and is

referred to as Distance To Optimal (DTO) (one scalar per

episode);

DTO �
�����������
ΔQ2

H + ΔQ2
V

√
(8)

and c) Concatenated values of the last actions applied in the

episode before termination, be it successful or otherwise (array of

size 16 per episode).

Table 4 tabulates the episode length statistics collected from

1,000 episodes, for the values of Gaussian action noise considered

in the episode evaluation plots. As illustrated in Figure 6, the

mean and the standard deviation of the episode lengths obtained

by the NAF2 agent in Figure 6A and by the PPO agent in

Figure 6B, outperformed those of the PI controller. Furthermore,

the upper bound of the PI controller episode lengths reaches

70 steps at approximately 25% action noise; this indicates that the

PI controller starts to fail to successfully terminate episodes at

this point. This corresponds with the results shown in Figure 7

where at approximately 25% action noise, the upper bound of the

DTO of the PI controller moves past the Goal threshold set

within the QFBEnv (green dashed line). Both the NAF2 agent in

Figure 7A and the PPO agent in Figure 7B maintain an upper

bound DTO below the threshold until approximately 45% action

noise.

Figure 8 illustrates the statistics of the last action chosen in

each episode. Figure 8A exposes the weakness of the

FIGURE 4
Episodes from the best NAF2 agent and the PI controller with the same initial states and with a varying additive Gaussian action noise with zero
mean and standard deviation as a percentage of the half action space [0, 1]. (A) 0%, (B) 10%, (C) 25%, and (D) 50% Gaussian action noise.

Frontiers in Physics frontiersin.org08

Grech et al. 10.3389/fphy.2022.929064

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.929064

NAF2 agent, where it can be observed that the values of the

last actions are unpredictable even without action noise, i.e., at

0% action noise, the PI controller actions are below

±0.05 while the NAF2 action value distribution populates

most of the action range. These results signify that

NAF2 has trained a policy which outperforms the PI

controller in a noisy environment, albeit the policy is sub-

optimal.

FIGURE 5
Episodes from the best PPO agent and the PI controller with the same initial states and with a varying additive Gaussian action noise with zero
mean and standard deviation as a percentage of the half action space [0, 1]. (A) 0%, (B) 10%, (C) 25%, and (D) 50% Gaussian action noise.

FIGURE 6
Effect of action noise on the episode length due to varying action noise on (A) the best NAF2 agent, (B) the best PPO agent and the PI controller.

Frontiers in Physics frontiersin.org09

Grech et al. 10.3389/fphy.2022.929064

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.929064

Figure 8B illustrates that the PPO policy chooses last actions

which behave similarly to the PI controller in the presence of

Gaussian action noise. At 0% action noise, the distribution of the

PPO last action values are slightly larger than those of the PI

controller. However, as the action noise is increased the

distribution widths of both PPO and the PI controller

increase at the same rate. This consolidates what was observed

in Figure 5, where the last action values are dispersed with respect

to the amplitude of the action noise applied. This concludes that

PPO successfully trained a policy on QFBEnv which is also the

closest to the optimal policy. LATEX.

5.2 Effect of actuator failure

In this test, the performance of the best policies trained in this

work was analysed in the presence of magnet failures. For each

episode shown in this section, an action was chosen at random at

a predetermined step in the episode. For the remaining steps until

a terminal state, the action chosen was set to -1 to simulate a cool-

down of the magnet after a circuit failure. The corresponding

action obtained by the PI controller was set to the same value.

While this test is not a perfect representation of magnet failures

in the LHC, it is a worst-case scenario that tests the performance

of the policies and PI controller in unseen and unideal

conditions.

For each policy, two scenarios with three episodes each are

shown. In the first scenario, one actuator fails on step 1; in the

TABLE 4 The statistics (mean ± std.) for the episode length obtained by
the best RL agents trained in Section 4 and PI controller with
respect to the amplitude of Gaussian action noise.

Action noise 0% 10% 25% 50%

NAF2 9.06 ± 1.35 9.16 ± 1.41 9.82 ± 1.91 17.89 ± 9.24

PPO 8.80 ± 1.28 8.89 ± 1.32 9.77 ± 2.11 20.69 ± 12.60

PI controller 20.05 ± 3.78 20.41 ± 3.99 24.81 ± 7.47 53.32 ± 18.37

FIGURE 7
Effect of action noise on the distance to the optimal point at the end of the episode due to varying action noise on (A) the best NAF2 agent, (A)
the best PPO agent and the PI controller.

FIGURE 8
Effect of action noise on the last action used in the episode due to varying action noise on (A) the best NAF2 agent, (B) the best PPO agent and
the PI controller.

Frontiers in Physics frontiersin.org10

Grech et al. 10.3389/fphy.2022.929064

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.929064

second scenario, three actuators fail on steps 1, 2, and 3,

respectively. All the plots shown in this test also show an

episode trajectory obtained by repeating the episode with the

same initial conditions and all actions functioning. The episode

trajectories affected by the actuator failures use × as a marker,

while the episodes using all actions use▲ as a marker. It was also

found that a maximum episode length of 70 obtained large state

deviations for certain scenarios. To aid the analysis of the results,

the maximum episode length was set to 20.

The evaluation episodes from the best NAF2 agent with one

actuator failure are shown in Figure 9A. It can be observed that

the PI controller already diverges from the threshold boundary

and fails on all episodes. NAF2 succeeds in terminating 1
3 of the

episodes in under 20 steps. At three actuator failures in Figure 9B,

the terminal state achieved by NAF2 is within four times the

value of the threshold, while the PI controller terminal state shifts

farther from the optimal point.3

Similarly to NAF2, PPO performs better than the PI

controller in all scenarios of actuator failures in Figure 9C

and Figure 9D. The effect of an increasing number of actuator

failures on the best PPO policy is also evident in the action

plots of the PPO actuator failure tests. These figures, along

with bottom plots of Figure 5A, show that when all actions are

used, the actions decay the closest to zero at the end of the

episode. They also show that the actions still decay during

actuator failures. However, the actions remain separated by a

range proportional to the number of actuators that failed

during the episode. This observation suggests that the PPO

policy has successfully generalised the optimal policy trained

on one environment to another environment with slightly

different model dynamics.

5.3 Effect of incorrect tune estimation

This test subjects the best agents to the effects of 50 Hz

noise harmonics on the BBQ system. A similar procedure to

the previous test is followed, where the best agent trained by

each respective RL algorithm is loaded and is used to produce

evaluation episodes. The only difference in this test is that

after each step in the environment, the state is intercepted

and a perturbation is added, which simulates the effect of

FIGURE 9
Episodes from the best RL agents and the PI controller under the effect of different number of actuator failures.(A)NAF2 agent with one actuator
failure, (B) NAF2 with three actuator failures, (C) PPO agent with one actuator failure, (D) PPO agent with three actuator failures.

3 U is a uniform distribution.

Frontiers in Physics frontiersin.org11

Grech et al. 10.3389/fphy.2022.929064

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.929064

FIGURE 10
Effect of inaccurate tune estimation on the best NAF2 agent.

FIGURE 11
Effect of inaccurate tune estimation on the best PPO agent.

Frontiers in Physics frontiersin.org12

Grech et al. 10.3389/fphy.2022.929064

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.929064

50 Hz noise harmonic-induced perturbations within the

state.

These perturbations were obtained by the following steps:

1) The state, ΔQ, was added to a random frequency, fr
2; 2) The

realistic second-order system spectrum simulation procedure

in [16] was performed for a spectrum with a resonance

frequency, ftrue
res � fr + ΔQ and damping factor

ζ ~ 10U(−2.5,−1.8) 3; 3) The BQ algorithm is used to obtain

perturbed tune estimates [16]. All the plots shown in this

section also show black dashed lines which mark the locations

of the horizontal and vertical 50 Hz harmonics in normalised

state space.

Figure 10 and Figure 11 show three episodes obtained by the

best NAF2 and PPO policies, respectively, when the state is

perturbed by 50 Hz noise harmonics. It can be observed that the

states of the policies (dark blue) appear to be concentrated

around an intersection of a horizontal and vertical 50 Hz

noise harmonics, which is closest to the optimal point of the

state space. On the other hand, the PI controller states sometimes

extend up to three 50 Hz harmonics from the optimal point. This

observation suggests that even without the tune estimation

renovation discussed in [16, 17], it is possible to train

NAF2 and PPO agents to maintain the tune error as close as

possible to the optimal point.

5.4 Summary

When taking into consideration the algorithms shown in

the Supplementary Material, NAF2 and PPO trained the best

two policies. However, AE-DYNA-SAC was the most sample

efficient and also obtained a policy that is stable in low action

noise. The policies trained by TD3 and SAC were sometimes

successful. However, their performance was significantly

worse than NAF2 and PPO. On the other hand, the best

SAC-TFL agent trained an adequate policy that works well

on QFBEnv.

6 Conclusion and future work

This work explored the potential use of RL on one of the

LHC beam-based feedback controller sub-systems, the QFB. An

RL environment called QFBEnv was designed to mimic the QFB

in real operation in the LHC. The original implementation of

the QFB PI controller was re-implemented to serve as a

reference agent to the trained RL agents.

A total of five RL algorithms were selected from literature

and trained on QFBEnv. A series of evaluation tests were

performed to assess the performance of the best two agents

against the standard controller paradigm. These tests were

designed to capture the performance of the agents during

corner cases. PPO and NAF2 obtained a high performance in

each test. Slightly better generalisation was also observed

during the actuator failure tests. The training and

evaluation of the other RL algorithms attempted in this

work are in the Supplementary Material. It was not easy to

tune the hyperparameters of TD3 even in the most

straightforward deterministic cases, while depending on the

implementation, the SAC algorithm could learn a good policy.

Finally, AE-DYNA-SAC was the most sample efficient agent

attempted, and the performance of the best policy trained was

comparable to that of the PI controller.

Our studies showed that RL agents could generalise the

environment dynamics and outperform the standard control

paradigm in specific situations which commonly occur during

accelerator operation.

Future work will concentrate on more sample efficient RL

algorithms, e.g., Model-Based Policy Optimization (MBPO)

[18] since the real operation is restricted by the beam time. By

addressing robustness and sample efficiency when training on

simulations, it will be possible to design an RL agent that can

be feasibly trained on the QFB during the LHC Run 3. As was

shown in this work, this would allow for more reliable tune

control even in situations where the standard controller is not

applicable.

Data availability statement

The raw data supporting the conclusions of this article

will be made available by the authors, without undue

reservation.

Author contributions

LG and GV contributed to the conception and design of the

study. LG contributed to the implementation, logging and

plotting of results. All authors contributed to the manuscript

revision.

Funding

Project DeepREL financed by the Malta Council

for Science and Technology, for and on

behalf of the Foundation for Science and

Technology, through the FUSION: R&I Research Excellence

Programme.

2 Initialised randomly and set constant throughout one episode.

3 U is a uniform distribution.

Frontiers in Physics frontiersin.org13

Grech et al. 10.3389/fphy.2022.929064

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.929064

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this

article can be found online at: https://www.frontiersin.org/

articles/10.3389/fphy.2022.929064/full#supplementary-

material

References

1. Steinhagen RJ. LHC beam stability and feedback control-orbit and energy. Ph.D.
thesis. Aachen, Germany: RWTH Aachen U (2007).

2. Grech L, Valentino G, Alves D, Calia A, Hostettler M, Wenninger J, Jackson S.
Proceedings of the 18th international conference on accelerator and large
experimental Physics control systems (ICALEPCS 2021) (2021).

3. Gasior M, Jones R. Proceedings of 7th European workshop on beam diagnostics
and instrumentation for particle accelerators (DIPAC 2005) (2005). p. 4.

4. MAD - methodical accelerator design (2019). p. 2019–626. Accessed.

5. Sutton RS, Barto AG. Reinforcement learning - an introduction, adaptive
computation and machine learning. Cambridge, MA, USA: The MIT Press (2018).

6. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, et al.
Mastering the game of Go with deep neural networks and tree search.Nature (2016)
529:484–9. doi:10.1038/nature16961

7. Kurutach T, Clavera I, Duan Y, Tamar A, Abbeel P. Model-Ensemble Trust-
Region policy optimization (2018). arXiv:1802.10592 [cs.LG].

8. Gu S, Lillicrap T, Sutskever I, Levine S. International conference on machine
learning (2016). p. 2829–38.

9. Hirlaender S, Bruchon N. Model-free and bayesian ensembling model-based
deep reinforcement learning for particle accelerator control demonstrated on the
FERMI FEL (2020). arXiv:2012.09737 [cs.LG].

10. Fujimoto S, van Hoof H,Meger D. Addressing function approximation error in
Actor-Critic methods (2018). arXiv:1802.09477 [cs.AI].

11. Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O. Proximal policy
optimization algorithms (2017). arXiv:1707.06347 [cs.LG].

12. Haarnoja T, Zhou A, Abbeel P, Levine S. Soft Actor-Critic: Off-Policy
maximum entropy deep reinforcement learning with a stochastic actor (2018).
arXiv:1801.01290 [cs.LG].

13. Brockman G, Cheung V, Pettersson L, Schneider J, Schulman J, Tang J, et al.
Openai gym (2016) 1606:01540.

14. Ziegler JG, Nichols NB. J Dyn Syst Meas Control (1942) 115:220.

15. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. 12th USENIX
symposium on operating systems design and implementation (OSDI 16). Savannah,
GA: USENIX Association (2016). p. 265–83.

16. Grech L, Valentino G, Alves D, Gasior M, Jackson S, Jones R, et al.
Proceedings of the 9th international beam instrumentation conference (IBIC
2020 (2020).

17. Grech L, Valentino G, Alves D. A machine learning approach for the
tune estimation in the LHC. Information (2021) 12:197. doi:10.3390/
info12050197

18. Janner M, Fu J, Zhang M, Levine S. In: H Wallach, H Larochelle, A Beygelzimer,
F d Alché-Buc, E Fox, R Garnett, editors. Advances in neural information processing
systems, Vol. 32. Red Hook, NY, USA: Curran Associates, Inc. (2019).

19. Achiam J. Spinning up in deep reinforcement learning (2018).

20. Dhariwal P, Hesse C, Klimov O, Nichol A, Plappert M, Radford A, et al.
Openai baselines (2017).

21. Hill A, Raffin A, Ernestus M, Gleave A, Kanervisto A, Traore R, et al. Stable
baselines (2018). Available from: https://github.com/hill-a/stable-baselines
(Accessed Septermber, 2021).

22. Hirländer S. MathPhysSim/FERMI_RL_Paper. Preprint release (2020).

23. Addressing function approximation error in actor-critic methods (2018). arXiv:
1802.09477 [cs.AI].

24. Pearce T, Anastassacos N, Zaki M, Neely A. Bayesian inference with anchored
ensembles of neural networks, and application to exploration in reinforcement
learning (2018). arXiv:1805.11324 [stat.ML].

Frontiers in Physics frontiersin.org14

Grech et al. 10.3389/fphy.2022.929064

https://www.frontiersin.org/articles/10.3389/fphy.2022.929064/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphy.2022.929064/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphy.2022.929064/full#supplementary-material
https://doi.org/10.1038/nature16961
https://doi.org/10.3390/info12050197
https://doi.org/10.3390/info12050197
https://github.com/hill-a/stable-baselines
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.929064

	Application of reinforcement learning in the LHC tune feedback
	1 Introduction
	2 Reinforcement Learning
	3 Environment
	4 Training
	5 Evaluation
	5.1 Effect of Gaussian noise
	5.2 Effect of actuator failure
	5.3 Effect of incorrect tune estimation
	5.4 Summary

	6 Conclusion and future work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

