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Laser-induced periodic surface structures (LIPSSs) are a universal phenomenon that can
be observed on a variety of materials, including metals, semiconductors, and dielectrics,
upon irradiation with ultrafast laser pulses. It has found various potential applications in the
fields of optics, biologics, and mechatronics due to its efficient and flexible fabrication
process and subwavelength quasi-periodic property. However, LIPSSs face the challenge
of uniformity control because the formation of micro-/nanostructures induced by ultrafast
laser is a complex process involving multiple interacting factors, including laser energy
deposition, phase change, light scattering, and instantaneous local changes of material
properties and their feedback mechanisms. Recently, there has been some significant
progress regarding the control of LIPSS uniformity. In this work, we review recent
experimental and methodological advances on this topic from three aspects: 1) laser-
inducedmodified-LIPSS, 2) feedback mechanism of LIPSS formation, and 3) ultrafast laser
pulse shaping. This review can stimulate further investigations into the uniformity control of
LIPSSs to support and accelerate the industrial applications of uniform LIPSSs.

Keywords: laser-induced periodic surface structures, ultrafast laser, uniformity control, laser-inducedmodification,
pulse shaping

INTRODUCTION

Due to ultrashort irradiation periods and ultra-high intensities, ultrafast laser pulses have unique
processing advantages such as high processing accuracy, high processing flexibility, and strong
material adaptability compared with long laser pulses [1, 2]. Ultrafast laser pulse technology has
become one of the promising methods for surface micro/nano structure fabrication [3]. Laser-
induced periodic surface structures (LIPSSs) are a universal phenomenon upon irradiation with
linearly polarized ultrafast laser pulses, which were first observed by Birnbaum in 1965 [4]. While
LIPSS technology is an efficient and flexible method for the fabrication of subwavelength periodic
surface structures, the formation of LIPSS is quite a complex process, and the mechanism has not yet
been determined. Currently, the widely accepted definition arises from the interaction between an
incident ultrafast laser beam and surface electromagnetic waves scattered by rough surfaces and may
involve the excitation and propagation of surface plasmon polaritons (SPPs) [5–7]. Huang et al.
believed that these periodic structures with periods smaller than the incident wavelength were
formed by the interference of the initially excited surface plasmons (SPs) with the incident
femtosecond laser and the subsequent grating-assisted SP/laser coupling [8].

After decades of research and discovery, LIPSS investigation has developed into a scientific
evergreen [9]. LIPSS technology has been realized on various metals, semiconductors, dielectrics, and
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polymer films [10–13], and has found plenty of potential
applications in the fields of optics, biologics, and mechatronics
[9]. Yu et al. [14] proved the potential of LIPSS applied in the field
of tribology, and Bonse et al. [15] demonstrated that the
coefficient of friction of LIPSS-treated titanium surfaces was
reduced by more than two times. Sugioka et al. proposed a
novel fabrication of LIPSS inside 3D glass microfluidic
channels and realized the application for real-time surface-
enhanced Raman spectroscopy (SERS) [16]. Yin et al. utilized
the ultrafast laser-induced formation of LIPSS on the surface of a
stainless steel mesh to modulate the surface wettability and
achieved the preparation of superhydrophilic and underwater
superoleophobic structures, which have been applied to oil–water
separation [17]. Jalil et al. reported the preparation of
nanostructure-covered LIPSS on metal surfaces by ultrafast
laser direct writing, which created broadband optical absorbers
and selective solar absorbers [18].

Submicron gratings, as one of the most important diffractive
optical elements, are favored by researchers because of their
outstanding capability of precisely controlling the dispersion
and steering characteristics of light [19–21]. LIPSS technology
can flexibly fabricate periodically arranged structures with a
submicron period, providing a powerful non-contact
processing technology for the preparation of surface gratings
on various materials [10, 22–25]. Vorobyev et al. reported the
creation of various colors on a metal surface by LIPSS technology
[10]. Dusser et al. systematically studied the LIPSS morphological
changes and their corresponding color gamut properties induced
by ultrafast laser pulses with different linear polarizations and
realized complex coloring designs on stainless steel surfaces [22].

However, LIPSS technology still faces severe challenges in
uniformity control [26, 27], limiting its wide application such as
in the field of optics. Laser energy deposition is first absorbed by
the electronic system of the irradiated materials, then the
deposited energy is transferred to the lattice system, which
subsequently induces various thermal effects, possibly
hydrodynamic or chemical effects, etc. The effect of ultrafast
pulses and the instantaneous local property changes of materials
are dynamic processes of mutual feedback, which greatly increase
the difficulty of controlling the formation of structures in a
reliable way. In conventional LIPSS technologies, periodic
structures always arise from the distributed light field caused
by the large number of debris and surface defects during laser
ablation, making it difficult to ensure long-range uniformity in
larger-area preparation. Up to now, there have been a series of
studies on the uniformity control of LIPSS. In this work, we
review recent experimental advances on this issue from the
perspectives of laser-induced modified-LIPSS, the feedback
mechanism of LIPSS formation, and ultrafast laser pulse shaping.

LASER-INDUCED MODIFIED-LIPSS

In view of the issue about LIPSS uniformity control, a series of
studies have been reported. For instance, Ardron et al. utilized
linear pre-polished samples to regularize the morphology of
LIPSS [28] and Harzic et al. reported an approach to improve

the uniformity of LIPSS by using a nanojoule-femtosecond laser
at a high repetition rate [29]. However, these methods were all
performed under the conventional ablation regime, and the
formation of LIPSS is always accompanied by the generation
of a large number of debris and surface defects, which greatly
affects the uniform excitation/propagation of subsequent SPPs,
resulting in non-uniform periodic structures with numerous
visible bifurcations [30]. Upon the irradiation of ultrafast laser
pulses, the electron temperature and the lattice temperature of the
material are in a strong non-equilibrium state, so that the kinetics
of the phase transition may lead to a new phenomenon, that is,
laser-induced modification. This phenomenon has been realized
and applied in various scenarios, such as laser-induced single-
crystal silicon [31, 32], Ge2Sb2Te5 [33], MoS2 [34] phase change,
and laser-induced reduction of graphene oxide [35]. Based on the
above revelations, Puerto et al. reported a regular grating
structure preparation in silicon by taking advantage of laser-
induced amorphization of crystalline silicon and LIPSS
technology [36]. As demonstrated in Figure 1A, the fabricated
structures consist of alternating amorphous-crystalline silicon
stripes without any visible inhomogeneous cross-linked structure.
When the incident laser fluence is higher than the melting
threshold of crystalline silicon but lower than its ablation
threshold, localized melting occurs under ultrafast laser pulse
irradiation. Then liquid phase silicon overheats, and rapidly
solidifies into an amorphous phase thin layer [37, 38]. Raman
spectroscopic analysis confirmed the existence of laser-induced
amorphous silicon, and the maximum thickness of the
amorphous phase layer was around 60 nm [39]. Similarly, Zou
et al. exploited ultrafast laser pulse for direct writing on graphene
oxide (GO) films and successfully produced uniform
subwavelength rGO-LIPSS (Figure 1B) [40]. The authors
believe that the ultrafast laser-induced nonthermal or thermal
photoreduction effects play a crucial role in the uniform
formation of LIPSS [40, 41].

In addition, on the basis of modified-LIPSS technology, Huang
et al. innovatively proposed a chemical etching–assisted ultrafast
laser modification method to further promote the uniformity
control of LIPSS [30]. As illustrated in Figure 1C, this method
combines the advantages of modified-LIPSS with the specialty of
great difference in chemical activity between amorphous and
crystalline phase of silicon [42]. First, by precisely manipulating
the laser-material interaction process, alternating amorphous-
crystalline stripes are created by ultrafast laser scanning over
silicon substrates; second, assisted by further chemical etching,
the amorphous-stripes act as fine etch stops to prepare the
uniform structures. The fabricated structures by this chemical
etching–assisted ultrafast laser modification method are
periodically and regularly distributed, and there is no visible
crosslinking (Figures 1Ciii,iv). Compared with the conventional
ablation LIPSS (Figures 1Cv,vi), the uniformity of the grating
structures is significantly improved [30]. Meanwhile, researchers
from the same group extended the laser focusing mode from
point to line, further expanding the applicability of the chemical
etching–assisted ultrafast laser modification method, and long-
range uniformity in larger-area preparation of periodic surface
structures is achieved (Figures 1Di–iv) [43]. The incomplete
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statistics show that the structures fabricated by this technology
achieve optimal long-range uniformity compared to the reported
LIPSS, which gains a minimum divergence of structure-
orientation angles (<5°) [44]. Additionally, the etching time at
different positions of the sample can be continuously and
accurately controlled by a carefully designed etching process in
which the laser-treated samples are gradually and uniformly
immersed in the KOH etching solution. Then, periodic surface
structures with continuous gradient changes in morphology are
prepared in crystalline silicon. Benefiting from the uniformity
and topographic features of the grating, the diffraction efficiency

of the designed structure exhibits a continuous near-linear
variation with the irradiation position, which will be widely
used in optical sensing (Figures 1Dv-viii).

FEEDBACK MECHANISM OF LIPSS
FORMATION

As mentioned above, ultrafast laser-induced LIPSS formation is
a complex process involving mutual feedback mechanisms.
Wang et al. have proved the relationship between the laser-

FIGURE 1 | Laser-induced modified-LIPSS. (A) Femtosecond laser-induced high-precision amorphous-crystalline nanogratings in silicon [36, 39]. (B) Uniform
fabrication of subwavelength grating structures on GO thin films by femtosecond laser-induced reduction of GO [40]. (C) Highly homogeneous LIPSS on silicon via
chemical etching–assisted femtosecond laser modification [30]. (D) Long-range uniform periodic surface structures realized by amodified regime cylindrically focused on
femtosecond laser processing [43].
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FIGURE 2 | The feedback mechanism of LIPSS formation and ultrafast laser pulse shaping. (A,B) Growth of metal-oxide periodic nanostructures with long-range
uniformity by exploiting positive non-local feedback to initiate and negative local feedback to regulate [46]. (C,D) Regularizing the generation of subwavelength gratings
on SOI by the feedback mechanisms of sample structural properties [50]. (E,F) A highly uniform LIPSS was fabricated on silicon based on temporally shaped
femtosecond laser pulses [67].
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induced plasma layer and the formation of ultrafast laser-
induced subwavelength and deep-subwavelength structures
on silicon [45]. The study by Han et al. found that the
grating structure formed by the pre-pulse would facilitate the
SPPs’ coupling and directional scattering effects, thereby
enhancing the anisotropic characteristics of the subsequent
structure [11]. Recently, Öktem et al. proposed a new
mentality based on nonlinear feedback mechanisms and
realized the preparation of LIPSS with long-range uniformity
on titanium surfaces [46]. The method tightly regulates the
formation of nanostructures induced by ultrashort pulses by
carefully exploiting feedback mechanisms, which can be
summarized in the following steps: 1) An ultrafast laser beam
with a peak intensity close to the ablation threshold of titanium
is focused on the titanium surface, which is scattered by the
existing nanostructures or any surface defects. The interference
of the scattered field with the incident field results in the
variation of the laser intensity near the scattered points. 2)
At points where the laser energy exceeds the ablation threshold,
titanium reacts rapidly with O2 in the air and forms titanium
dioxide (TiO2). As shown in Figure 2A, the first two steps
constitute a positive feedback loop, and as the nanostructure
grows, so does its scattering power. 3) The growth mechanism of
TiO2 also possesses an imbedded negative feedback loop. As
TiO2 grows on top of the titanium, the penetration of O2

through the oxide layer decreases exponentially. Based on
this new mentality, various periodic nanostructures with
long-range uniformity have been successfully fabricated on
titanium. Figure 2Bi presents a photograph of
nanostructures covering a 3-mm2 area, consisting of the
highly uniform TiO2 nanogratings shown in Figure 2Bii. As
demonstrated in Figures 2Biii,iv, a mesh structure is generated
on titanium by two scans of orthogonally polarized laser beams,
and a regular array of nanocircles is obtained using circularly
polarized light. Moreover, Dostovalov et al. successfully
fabricated regular periodic structures on metal thin films
(such as titanium films and chromium films) by using a
similar method [47, 48].

On the other hand, researchers regulated laser-processed
structures by carefully exploiting feedback mechanisms of
sample material/structural properties. Feng et al. utilized the
feedback mechanism of the thin gold film coat on silicon
surfaces for the laser processing, which enhances interfacial
electron–phonon coupling to form a high and uniform
electron density, and suppresses the impact of defects on the
silicon, thereby achieving a uniform and stable LIPSS fabrication
[49]. Recently, Huang et al. deeply analyzed the structural
characteristics of silicon-on-insulator (SOI) and exploited the
feedback mechanism of the intermediate buried oxide layer (SiO2

layer) of the SOI on the laser-induced phase change process to
regulate the generation of subwavelength gratings [50]. For a bulk
Si wafer, the multi-pulse–induced incubation heat [51, 52]
quickly transfers inside the substrate because of the high
thermal conductivity of Si, balancing the local surface
temperature of the initial structure between melting and
vaporization. As demonstrated in Figure 2C, the generated
LIPSS structures on the bulk Si were subject to the mechanism

of melt flow, in accordance with the results from Tsibidis et al.
[53], where the bendings and uneven cross-linkings obviously
result from the long-term melt disturbance.

However, for an SOI wafer, the SiO2 layer of SOI plays a
critical role in the formation of surface structures. Since the
intermediate SiO2 layer possesses high thermal insulation, a
feedback mechanism is constituted for the laser-induced
incubation heat. The non-local nature of the feedback
seriously prevents the incubation heat from spreading into the
underneath silicon substrate, resulting in the accumulation of a
large amount of heat in the top thin device layer of the SOI,
reaching the vaporization temperature threshold. Then, uniform
structures are generated on the top Si device layer of SOI as a
result of direct local vaporization of the material instead of long-
term melt flow. As shown in Figure 2D, highly uniform
subwavelength gratings are flexibly prepared on SOI based on
exploiting the feedback mechanisms to regulate the formation of
structures. Furthermore, periodic surface structures with high
uniformity achieve superior structure coloring, and a large-area
cross-scale “peace dove” pattern was flexibly prepared on an SOI
wafer, which exhibits a vivid and distinguishable structural color
under indoor lighting [50].

ULTRAFAST LASER PULSE SHAPING

Under single femtosecond laser beam irradiation conditions,
researchers have made efforts to manipulate the characteristics
of LIPSS by varying the incident laser parameters (such as
wavelength, energy fluence, pulse number, and polarization
state) [54–57]. However, the adjusting ability appears to be
limited because the formation of LIPSS is essentially
determined by the transient properties of the irradiated
material [58]. Temporal pulse shaping enables the generation
of sub-pulses with ultrashort pulse delays (typically tens of
femtoseconds to tens of picoseconds) so that the localized
transient material properties can be under control. Ultrafast
imaging results show that a transient metallic state can be
generated on the material surface within a few tens of ps after
femtosecond pulse irradiation and that a transient LIPSS
structure has begun to form [59]. Therefore, the formation
process of LIPSS can be further regulated by the temporal
pulse-shaping method [8]. Several studies have investigated
LIPSS formation by using delayed femtosecond double pulses
with crossed or parallel polarizations and obtained some
interesting results [60, 61]; for example, by controlling the
pulse delay to tune the grating period [62], enabling the
processing of ring-shaped LIPSS structures [63] and realizing
the preparation of large-area 2Dmetal photonic crystal structures
on tungsten surfaces [64].

Recently, ultrafast laser pulse shaping technologies have been
used to control the uniformity of LIPSS. Jalil et al. employed a
double temporally delayed femtosecond laser beam to adjust the
propagation length of excited SPPs to improve LIPSS uniformity
[65]. Lei et al. reported the fabrication of uniform subwavelength
grating structures on metallic glass by a double-pulse
femtosecond laser with nondegenerate directions of the linear
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polarizations [66]. Additionally, Zhang et al. fabricated a highly
regular LIPSS on a silicon wafer by femtosecond laser pulse trains
(Figure 2E) with a pulse delay of 16.2 ps and half in a symmetric
energy distribution ratio of 0.09:0.13:0.21:0.69 [67]. Figure 2F
shows the top-view SEM images (i–ii), cross-sectional SEM
images (iii), and the corresponding 2D-FFT image (iv) of the
fabricated LIPSS structure, clearly demonstrating that each ripple
of the structure is completely straight and uniform, with a small
fluctuation of period. The authors suggest that the underlying
mechanism for the formation of highly uniform LIPSS is that,
first, temporally shaped femtosecond laser pulse can enhance the
excitation of the SPPs and periodic energy deposition [8, 59].
Second, the residual thermal effect on the ablation spot is greatly
reduced due to the “ablation cooling” effect [68]. Besides, the
ejected plume and debris from the previous sub-pulse are further
excited by the subsequent sub-pulses, and the debris will be
further ionized and vaporized into aerosol, avoiding the
deposition of the ejected debris [69]. This ultrafast laser
pulse–shaping technology will potentially be extended to other
materials as a general process for the fabrication of large-area
uniform LIPSS.

CONCLUSION

In summary, LIPSS shows immense potential for applications in
various fields such as optics, biologics, andmechatronics by virtue
of its efficient and flexible fabrication process and subwavelength

periodic property. However, the formation of LIPSS is
determined by the parameters of the incident femtosecond
laser, the material properties, and the feedback mechanism of
laser-material interaction, which makes the fabrication of LIPSS
with high uniformity difficult and greatly limits its application. In
this article, recent experimental and methodological advances in
LIPSS uniformity control are reviewed and summarized into
three aspects: laser-induced modified-LIPSS, feedback
mechanism of LIPSS formation, and ultrafast laser pulse
shaping, which are discussed separately. The review can
provide a reference guide for the research on the preparation
of highly uniform LIPSS and will promote the industrial
application prospects of LIPSS. In future work, a general
process for the preparation of LIPSS with high uniformity on
various materials should be further developed.
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