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Lifetimes of radioactive nuclei are known to be affected by the level

configurations of their respective atomic shells. Immersing such isotopes in

environments composed of energetic charged particles such as stellar plasmas

can result in β-decay rates orders of magnitude different from those measured

terrestrially. Accurate knowledge of the relation between plasma parameters

and nuclear decay rates are essential for reducing uncertainties in present

nucleosynthesis models, and this is precisely the aim of the PANDORA

experiment. Currently, experimental evidence is available for fully stripped

ions in storage rings alone, but the full effect of a charge state distribution

(CSD) as exists in plasmas is only modeled theoretically. PANDORA aims to be

the first to verify thesemodels bymeasuring the β-decay rates of select isotopes

embedded in electron cyclotron resonance (ECR) plasmas. For this purpose, it is

necessary to consider the spatial inhomogeneity and anisotropy of plasma ion

properties as well as the non-local thermodynamic equilibrium (NLTE) nature of

the system. We present here a 3D ion dynamics model combining a quasi-

stationary particle-in-cell (PIC) code to track the motion of macroparticles in a

pre-simulated electron cloud while simultaneously using a Monte Carlo (MC)

routine to check for relevant reactions describing the ion population kinetics.

The simulation scheme is robust, comprehensive, makes few assumptions

about the state of the plasma, and can be extended to include more

detailed physics. We describe the first results on the 3D variation of CSD of

ions both confined and lost from the ECR trap, as obtained from the application

of the method to light nuclei. The work culminates in some perspectives and

outlooks on code optimization, with a potential to be a powerful tool not only in

the application of ECR plasmas but for fundamental studies of the device itself.
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1 Introduction

Electron cyclotron resonance ion sources (ECRIS) have long

been used as reliable devices supplying ion beams to particle

accelerators with charge states and currents tuned as per

experimental requirements [1]. Their working principle

involves sequential ionization of atoms through collision with

electrons which are energized using resonance heating and

trapped long enough through magnetic confinement. By

varying the frequency of the microwave radiation used for

heating, as well as associated power, magnetic field profile and

gas pressure, the charge state distribution (CSD) of the ions and

output current can be tuned [2].

Coincidentally, the existence of a CSD in the ECR plasma

interior is a doorway to performing in-plasma measurement of

nuclear β-decay rates to emulate astrophysical scenarios. Decay

lifetimes can vary according to the configuration of the surrounding

atomic shell [3, 4] and such a modification has already been

experimentally observed in fully stripped ions circulating in

storage rings [5]. The PANDORA (Plasmas for Astrophysics,

Nuclear Decay Observations, and Radiation for Archaeometry)

facility aims to take this a step further and analyze the CSD-

dependent t1/2 of radioisotopes [6] based on the theory of

perturbed decay rates in stellar environments [7]. For each

standard β− decay—continuum decay (cd), bound-state decay

(bd), electron capture (ec), and continuum capture (cc)—there

exists an associated Q-value which governs the reaction spontaneity.

Q0 � m0
A
ZXN( )c2 −m0

A
Z+1/Z−1YN−1/N+1( )c2 cd, bd, ec( )

m0
A
ZXN( )c2 −m0

A
Z+1/Z−1YN−1/N+1( )c2 +Ke−

f
cc( ){ .

(1)
Here, m0(X)c

2 and m0(Y)c
2 represent, respectively, the rest mass

energy of the parent and daughter system, whileKe−
f
is the kinetic

energy of free electron captured from the continuum. When the

parent atom is ionized or excited, the decay energetics may be

modified as

Qi,j � Q0 + Ep
X,K − Ep

Y,K′( ) + ϵi,j − ϵi′,j′( ) + ΔX − ΔY( ), (2)

where Ep
X,K, E

p
Y,K′ are the energies of the two nuclei in levels K

and K′, ϵi,j; ϵi′,j′ are the atomic energies of the parent (daughter)

system in the i (i′) charge state and j (j′) atomic/ionic level, and

ΔX, ΔY are the contributions of the ionization potential

depression from the surrounding charges. In case of decays

with small Q0 (~keV), the contribution of atomic levels can

be strong enough to open up new decay channels or suppress

existing ones. For any transition K → K′, the decay half-life t1/2
can be related to nuclear properties through the expression.

fK→K′ m( )t1/2 � ln 2( )2π3Z7

g2m5
ec

4|ML m( )
K→K′|2

, (3)

where |MK→K′| is the nuclear matrix element (NME) describing

the coupling between the initial and final nuclear states, fK→K′(m)

is the lepton phase volume, m is the type of decay (allowed,

unique forbidden, or non-unique forbidden) related to the

angular momentum of the transition L(m), and g is the weak

interaction coupling constant. The RHS of Eq. 3 is atom-

independent, making fK→K′ the chief quantity of interest when

investigating the change in t1/2. In the presence of a CSD, and by

extension a level population distribution (LPD), the lepton phase

volume can be calculated as

fp
K→K′ m( ) �

∑
i,j
pi,j ∫Wmax i,j( )

1
W2 − 1( )1/2W Wmax i,j( ) −W( )2

F0S m( ) i, j( )fd i, j( )dW cd( )

∑
i,j
pi,j ∫∞

Wmin i,j( )
W2 − 1( )1/2W Qi,j/mec

2( )2F0S m( ) i, j( )fc i, j( )dW cc( )

∑
i,j
pi,j ∑x i,j( ) σx

π

2
gx orfx[ ]2 Qi,j/mec

2( )S m( )x i,j( ) bc, bd( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
,

(4)

and the modified decay rate λ given as

λ � ln 2
fK→K′ m( )t1/2

∑fp
K→K′ m( ). (5)

The summation in Eq. 5 accounts for the contribution of multiple

decay channels to the overall rate. In Eq. 4, pi,j stands for the

occupation probability of the charge state i and level j, Wmax /

min(i,j) are functions of Qi,j, F0 is the Fermi function, S(m)(i, j) and

S(m)x(i,j) are shape factors associated to the momentum transfer,

fc/d(i, j) are related to the relativistic Fermi–Dirac distribution

function describing the continuum electrons, x(i, j) represents

the electronic levels within the atomic configuration j, σx is the

probability of electron occupation/vacancy in that level and gx/fx
is the maximum of the orbital radial wavefunction evaluated at

the nuclear surface. It is quite evident then that calculating in-

plasma decay rates requires inputs on the LPD and CSD of the

plasma ions, as well as on the electron energy distribution

function. Acquiring such data is a complicated process

because ECR plasmas are inherently anisotropic and non-

homogeneous, host multi-component electron distributions,

and obey non local thermodynamic equilibrium. This calls for

robust simulation tools capable of extracting spatially resolved

information on charged particle properties, and associated

comprehensive diagnostic methods to experimentally

benchmark their results.

Over the past years, several research groups have tackled the

aforementioned problem from different angles—a separate

section has been devoted to discussing their methodologies

and subsequent results. The INFN-LNS and LNL groups have

also contributed to ECRIS simulations by developing a self-

consistent model coupling electron dynamics with an EM field

solver to obtain 3D space-resolved maps of electron density and

energy and reproduced some well-known ECRIS phenomena

like the frequency tuning effect and heavy ion charge breeding

[8, 9]. These steady-state electron maps can now be used as a

base to arrive at the complementary, stationary ion maps

containing CSD and LPD of the species of interest as a

function of their position in the plasma. This article is

intended to provide an outline of the 3D coupled ion
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dynamics and population kinetics algorithm developed to

achieve the aforementioned aim.

The contents of the article are divided into eight subsequent

sections as follows: in Section 2, an in-depth review of ECRIS

simulation tools is presented, followed by Section 3 wherein a

brief description of the self-consistent MATLABⓒ-COMSOL

Multiphysicsⓒ simulation scheme used to obtain 3D maps of

electron density and energy is provided. This is extended to cover

the ion dynamics algorithm in Section 4. The important modules

of the algorithm, namely, the particle pusher code, Monte Carlo

(MC) sampling scheme, density scaling methodology, and

electrostatic field evaluation are covered in detail in Sections

5–7 respectively. The complete code flow is detailed in Section 8

while the results of the simulation for a specific plasma

configuration and select operating conditions are shown in

Section 9 and compared with experimental data for

benchmarking. Finally, important takeaways from the

procedure are presented in Section 10, as well as perspectives

for future work.

2 ECR simulation models: A review

Research into ECRIS simulation has been underway since the

early 1990s, with most groups focusing on the dominant

electrons. Heinen and coworkers developed codes to track the

motion of electrons under the effect of the ECR magnetostatic

field with and without collisions and included resonance heating

from single-mode microwaves. They obtained insights into the

3D profiles of electron density and energy and used the results to

explain well-known phenomena such as the afterglow effect, and

established a connection between localization of electron energies

and production of highly charged ions [10, 11]. A similar

approach was also followed by Maunoury et al who used the

TrapCAD code to investigate the properties of lost and confined

electrons and indirectly inferred ion properties [12]. This code

was developed by Vámosi and Biri in the 1990s, with the objective

to calculate and visualize the magnetostatic field of the ECR trap

and follow the paths of charged particles [13]. Analysis of

electron population through relativistic particle-in-cell (PIC)

simulations was also conducted by Dougar-Jabon, Umnov and

Diaz [14] who found specific zones of periodic bounce

oscillations and banana trajectories as well as multiple

electron populations.

The first algorithms aimed at coupling electrons and ions

were developed by Edgell and group, and implemented in

progressively advanced versions of the GEM code. They used

the Fokker–Planck equation with ECR heating to obtain the

electron distribution in phase space and gave it as input to

detailed density and power balance fluid equations that

described the collisional ions. The codes were initially 0D [15]

but later upgraded to model 1D axial transport as well [16] and

successfully predicted the extracted ion CSD. The 1D nature of

the code was, however, quite limiting, and applicable to only the

plasma core from which ion loss is modeled.

Cluggish, Kim, and Zhao later used the 1D GEM code to

open investigations into the effect of pressure and microwave

power on plasma parameters such as total electron density,

energy, and current. They deduced some scaling laws which

were in general agreement with experiments performed on

different ion sources [17]. They realized the importance of

studying the feedback of the plasma on the wave propagation

and absorption and developed a quantitative 1D model and

qualitative 3D model to describe the RF-plasma coupling

based on the hot electron approximation [18]. The idea and

implementation were robust in 1D but lacked completeness in

3D owing to the absence of a full dielectric tensor. Additionally,

both works were centered on the electrons and ion properties

were inferred on a macroscopic scale.

The most rigorous and complete treatment of ECR plasmas

in terms of electrons, ions, and microwaves has been performed

by Mironov and coworkers starting from 2009. In contrast to the

methodologies utilized by other groups, they began by focusing

directly on the ion dynamics using a particle-in-cell Monte Carlo

collision (PIC-MCC) model, taking electron energy distribution

function as isotropic and uniform [19]. They simulated the

motion of macroparticles under a min-B field assuming

collisions, implemented atomic processes such as ionization

and recombination in real time, and took into account the

constant influx of neutrals to replenish extracted charges just

like in a real ECRIS. As a consequence, they obtained a great

degree of match between predicted and measured steady-state

CSD and were able to analyze various aspects of ECRIS operation

such as neutral density gradient and isotope anomaly effect. In

later works, they extended their analysis to include multi-

component, localized electron energy distribution functions

and investigated the ion confinement processes in the plasma

[20] and then applied their algorithms to investigate the behavior

of the device with different working materials [21]. The local

neutrality assumption was dropped by coupling an electron

simulation code NAM-ECRIS(e) with its ion counterpart

NAM-ECRIS(i), effectively modeling electron and ion

evolution simultaneously in the plasma [22]. The final

upgrade came in the form of RF-electron coupling in NAM-

ECRIS(e) using the cold electron approximation on the ECR

surface [23].

The simulation scheme reported in this work is

complementary to the approach of Mironov and group in that

it also aims to investigate ECR plasmas as a whole by

appropriately extending the electron simulation module to the

ions. While their method captures temporal evolution of the

system in real time, we instead focus on developing suitable

models to represent steady-state conditions. It can be argued that

the latter is merely a special case of the former, but it gives us the

advantage to model RF-electron coupling with a high degree of

precision while still capturing the essence of ion dynamics. The
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details of this methodology are presented in the following

sections.

3 Self-consistent electron simulations
under cold electron approximation

The importance of electrons in ECRIS has been well-

established through the numerous works reported in Section

2. Mascali et al also realized the necessity to treat the plasma

chamber as a resonant cavity to improve understanding of both

electron and ion dynamics. They developed a hybrid model

simulating electrons using a PIC code and ions using MC

collisions, taking into account resonance heating from the

standing-wave profile of microwaves in the resonant cavity.

They reproduced the experimental beam shape and predicted

the formation of the plasmoid-halo structure [24]. Some

enhancements to the electron PIC module were later made by

Neri et al who implemented Spitzer collisions and studied the

effect of RF heating on electron confinement [25].

The simplest of ECRIS devices are operated with a peculiar

magnetostatic field profile called the min-B structure as shown in

Figure 1 which enables electron confinement along the axis. The

electrons naturally gyrate about the magnetic field lines at their

cyclotron frequency ωc = e|B|/me where e is the electric charge,

|B| is the field magnitude, and me is the mass of the electron.

Depending on the position, the field may be such that ωcmatches

the frequency of the circularly polarized microwave launched

into the plasma, leading to resonance heating. On account of

magnetic and diffusion transport, the distribution of electrons in

the plasma quickly becomes non-homogeneous and anisotropic,

directly affecting the dielectric tensor of the medium and

therefore the EM field profile. As mentioned in Section 2, the

feedback of the plasma to the wave propagation was already

calculated in [18] but using the hot electrons which made it

necessary to replace the dielectric tensor with a constant. Torrisi

et al revisited the subject to perform FEM calculations to deduce

the field profile in magnetized plasmas using the cold electron

approximation instead [26] leading to a more complete yet still

precise formulation of RF-electron coupling since cold electrons

constitute a majority of the plasma.

Based on their algorithm and results, Mascali et al developed

an electron kinetics model to solve the collisional Vlasov–Maxwell

and Fokker–Planck equation using a large number of

representative macroparticles [9]. The idea was to tackle the

wave–plasma coupling in a self-consistent manner by iteratively

calculating the EM field distribution using COMSOLMultiphysicsⓒ

based on the cold tensor approximation in the plasma, and then

pushing the electrons using a particle mover code written in

MATLAB ⓒ according to the Lorentz force including the newly

generated EM field. By constantly accumulating macroparticle

traces in cells of a 3D matrix, they obtained relevant occupation

maps and used them to update the dielectric tensor, repeating all

the steps till self-consistency between the electron maps and the

EM field was achieved. In the end, one obtained 3D space-

resolved maps of electron density and energy corresponding to

the ECR plasma at steady-state, in the form of 3D MATLAB ⓒ

matrices. Figure 2 shows the density and energy maps of

electrons simulated in an Ar plasma operated at frequency

14.28 GHz and power 200 W. These maps will serve as the

source of electron-driven reactions included in the ion dynamics

model described in the following section. The simulation model

is currently being upgraded and the details can be found in [27].

4 Coupled ion dynamics and
population kinetics

The standard approach to model ion population kinetics is to

start from the density balance equation.

dni
dt

� ∑
j≠i

njGji −∑
i≠j

niLij − ni
τi
, (6)

where ni,j are level populations of states i and j, Gji and Lij
represent inter-level gain and loss rates, respectively, and τi is the

characteristic confinement time. On extending Eq. 6 to include

all levels and collision-radiative processes, a rate matrix R can be

constructed and Eq. 6 can be reduced to dn
dt � R · n. Generally, Eq.

FIGURE 1
(A) 3D profile of magnitude of the magnetostatic field superposed with streamlines showing field flow and ECR surface, (B) 1D on-axis field
profile with demarcated ECR zones. The min-B structure of the field can be clearly appreciated.
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6 is further simplified in ECR plasmas by considering only three

important processes—electron collision ionization, charge

exchange through collision with neutrals, and ion transport

[15, 28]. The resultant balance equation is then

dni
dt

� neni−1〈σ ion,i−1→ive〉 − neni〈σ ion,i→i+1ve〉

+ n0ni+1〈σCEX,i+1→ivi〉 − n0ni〈σCEX,i→i−1vi〉 − ni
τ i
,

(7)

where ne is the electron density, ni/i−1/i+1 represents the ion

density in charge state i/i − 1/i + 1, σion is electron collision

ionization cross section, ve is the electron speed, σCEX is charge

exchange cross section, and vi represents the ion collision speed.

Although Eq. 7 is complicated enough in 0D, it is quite

impossible to solve in 3D wherein the densities and energies

of the interacting species vary spatially and particle transport

takes place simultaneously with reactions.

We decided to adapt Eq. 7 to the established electron the PIC

code mentioned in Sec. 3 to calculate steady-state ion maps [29].

The idea was to generateNmacroparticles in the i+ state obtained

from the (i − 1)+ state (first term in Eq. 7) and track their

evolution over a fixed time Tspan discretized into a number of

steps Tstep. At each step, ionization to the (i + 1)+ state and

exchange into the (i − 1)+ state would be evaluated according to

their respective reaction probabilities (second and fourth terms

in Eq. 7), resembling the rate matrix method. Charge exchange to

the (i + 1)+ state (third term in Eq. 7) is ignored in this model. The

remaining unperturbed macroparticles would be moved

according to the equation of motion under the action of the

Lorentz force FL,i = eqi(EDL + vi ×B) and the Langevin formula,

with qi being the charge state of the macroparticle and vi its

velocity. The quantity EDL represents the electrostatic field

arising from the double layer in the plasma whose origin and

importance are discussed in detail in Section 7. During the course

of their motion, the macroparticle tracks would be mapped to a

3D occupation matrix ni in much the same way as for electrons,

until their eventual loss from the plasma (last term in Eq. 7). The

ionized/exchanged particle positions would instead be added to

corresponding ionization/exchange matrices, ni→i+1 and ni→i−1.

At the end of the simulation, the occupation, ionization, and

exchangemaps would be passed to the next charge state as inputs,

and all the steps repeated. The results of each preceding

simulation would be embedded into the successive one. If the

reaction rates are implemented correctly, the confined

macroparticle tracks and relative weight of state calculated

according to reaction-mediated transfer would ultimately lead

to a CSD map consistent with the fixed electron distribution. A

summary of the simulation scheme is shown in Figure 3.

The key elements of this algorithm are the ion transport

model, MC population kinetics, density scaling, and double layer

field calculation. The subsequent sections contain more

comprehensive discussions on these topics. The simulation

scheme was configured for the ATOMKI, Debrecen ECR

plasma trap for the same operating conditions as the electron

maps in Figure 2 (14.25 GHz frequency, 200 W power, and

10–6 mbar pressure) using Ar plasma and thus all discussions

hereafter will take place assuming such a plasma.

5 Particle pusher algorithm: Ion
transport

The motion of charged particles in a plasma is a notoriously

difficult problem to tackle because unlike neutral atoms in a

rarified gas which mostly travel in straight lines before stochastic

collisions, plasma charges are subject to both long-range EM

forces as well as short-range random collisions. The former,

additionally, can arise from both internal as well as external

fields, such as the magnetostatic field applied in ECR plasmas.

The result of these forces is that ions and electrons in plasma

gyrate along magnetic field lines while being simultaneously

subject to continuous and infinitesimal perturbations in their

trajectory on account of internal EM fields [30] while also getting

randomly kicked due to head-on collisions with fellow

constituents. The PIC simulations for electrons as described in

Section 3 already addressed this complexity, allowing direct

FIGURE 2
(A) 3D profile of simulated electron density (in m−3) and, (B) electron energy (in eV).
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adaptation to the ion dynamics scheme. In the presence of

electric and magnetic fields, the equations of motion of a

charged particle can be analytically written as

dr
dt

� v, (8)

m
dv
dt

� q E + v × B( ), (9)

where r and v are the position and velocity of the particle,

respectively, q is the charge, m is the mass, E and B are the

electric and magnetic field, respectively, and the RHS of Eq. 9 is

the Lorentz force. Numerical implementation of the same has

been traditionally performed with the Boris method [31] which

solves the particle motion in a leapfrog manner and breaks down

the acceleration into a number of steps.

rn+1 − rn

Tstep
� vn+1/2, (10)

u− � γvn+1/2 + q

2m
En+1Tstep, (11)

θ � qTstep

mγ
|Bn+1|, (12)

t � tan
θ

2
b, (13)

u′ � u− + u− × t, (14)
u+ � u− + 1

2 + |t|2 u′ × t( ), (15)

vn+3/2 � 1
γ

u+ + q

2m
En+1Tstep( ). (16)

Here, γ � [1 − (|v|2/c2)]−1/2 denotes the known Lorentz factor, n

is the index tracking the leapfrog procedure, b = Bn+1/|Bn+1| is the

unit vector of the magnetostatic field, and Tstep is the discrete time

interval. To save on computational time, most groups apply Eq.

13 in the “small θ” limit such that the tangent is replaced by its

argument. Although this is a good approximation, the gyrophase

error tends to accumulate if the number of iterations is large,

which is precisely the case here. As such, a modified form of the

Boris solver was used for the ion transport which is analytically

exact and relatively time-saving [32]. According to the

formalism, Eqs 13–15 were replaced with a rotation matrix

Rrot such that

u+ � Rrotu
−, (17)

and Rrot is defined as

Rrot �
cos θ + b2x 1 − cos θ( ) bxby 1 − cos θ( ) + bz sin θ bzbx 1 − cos θ( ) − by sin θ

bxby 1 − cos θ( ) − bz sin θ cos θ + b2y 1 − cos θ( ) bybz 1 − cos θ( ) + bx sin θ

bxbz 1 − cos θ( ) + by sin θ bybz 1 − cos θ( ) − bx sin θ cos θ + b2z 1 − cos θ( )
⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

(18)

The evolution of phase space of a test particle in a plasma due

to long- and short-range collisions is usually modeled by the

Fokker–Planck equation and simplified using the formalism of

McDonald and Rosenbluth [33]. Further reduction is made

possible by assuming the species of interest as test particles

moving through a field composed of other plasma

constituents. The previously mentioned procedure yields two

important quantities at the end—friction frequency ]s and

diffusion coefficients D‖, D⊥ which, respectively, correspond to

the continuous drag force motion and the head-on collisions. The

PIC electron simulations adapted the Fokker–Planck equation to

macroparticle formalism by using ]s, D‖, and D⊥, in the Langevin

equation which is identical to the former to first order accuracy in

FIGURE 3
(A) Flowchart portraying the various inputs, outputs and steps in the simulation of a single charge state i+. ION,OCC, andCEX refer to ionization,
occupation, and charge exchange matrices, respectively. (B) Overall network of simulation schemes showing flow of data between successive
charge states. Ar0+ represents neutral Ar atoms since the simulations were run for such plasmas.
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Tstep. The theory has been rigorously discussed in [34]. Taking, at

any point in time, a surrounding total plasma density ns with

particle mass ms, atomic number Z′ , and most probable thermal

speed as cs, the friction and diffusion coefficients are obtained as

D‖ � 〈v2‖〉 � AD

|vn+1/2|G
|vn+1/2|
cs

( ), (19)

D⊥ � 〈v2⊥〉 � AD

|vn+1/2| Φ |vn+1/2|
cs

( ) − G
|vn+1/2|
cs

( ){ }, (20)

]s � 1 + m

ms
( )AD

c3s

G |vn+1/2 |
cs

( )
|vn+1/2 |

cs

, (21)

where

AD � ZZ′( )2e4ns lnΛ
2πϵ20m2

, (22)

Φ(x) is the error function and G(x) = [Φ(x) − Φ′(x)]/2x2. Z
represents the atomic number of the test particle while ln λ is the

Coulomb logarithm. Using these coefficients, contributions to

velocity of the test particles were calculated as

vfric � ]svn+1/2Tstep, (23)
vrand � P‖N 0, D‖( ) + P⊥N 0, D⊥( ), (24)

whereN(0,D‖),N(0,D⊥) indicate random sampling from a normal

distribution with mean 0 and standard deviation as given by

the diffusion coefficients, while P‖, P⊥ are projection matrices

mapping the parallel and perpendicular components to the basis

vector of the velocity. The final expression to advance the velocity

was then

vn+3/2 � 1
γ

u+ + q

2m
En+1Tstep( ) + vfric + vrand. (25)

The motion of ions in the plasma was fully realized through Eqs.

10–12, 17, and 25.

6 Generalized Monte Carlo routine:
Population kinetics

The density and temperatures of ECR plasmas are such that

the various constituents of the system obey non local

thermodynamic equilibrium, meaning ion LPD and CSD

cannot be described analytically using the Boltzmann and

Saha equations, respectively. Instead, one needs to apply the

general collision–radiative model using the rate matrix

formalism as described in Eq. 6, and take into account a

multitude of reactions and levels to construct the differential

equation. The model accuracy is directly correlated with the

amount of physics considered because of the following reasons.

1) The reaction rates govern the percentage transfer of

macroparticles within charge states and ionic levels thus

defining the relative weights of each charge in the

overall CSD

2) The ion transport and occupation map rely on the self-

generated plasma density ns (Section 5) and consequently,

on the weights of the various charge states.

As such, while one may be limited by the availability of data

on reaction cross sections or atomic levels, it is nevertheless a

good idea to develop a generalized algorithm to model the

population kinetics which can be later expanded to include as

many levels and reactions as needed. This is particularly

important not just for modeling the CSD and LPD in the

plasma, but also for the β-decay model in [7].

In keeping with the simplified balance equation in Eq. 7,

electron collision ionization and charge exchange after collision

with neutral Ar atoms were the only reactions considered. The

analytical formula for single ionization i → i + 1 is given as

σ ion,i→i+1 � 10−17

IiEe
∑6
n�1

An 1 − Ii
Ee

( )n

+ B ln
Ee

Ii
( )⎡⎣ ⎤⎦, (26)

where σion,i→i+1 is the ionization cross section in m2, Ii and Ee are

the ionization energies of the charge state indexed by i and

electron collision energy (in eV), respectively, and An, B are the

fitting coefficients which vary with i. The expression, as well as

the values of the coefficients, is detailed in [35].

The charge exchange cross section for the transition i→ i − 1

was taken from the works of Müller and Salzborn [36] and

given as

σCEX,i→i−1 � Aiα I0( )β, (27)
where σCEX is the exchange cross section in m2; A, α, and β are fit

coefficients; and I0 is the ionization energy of the 0+ → 1+

transition of Ar which acts as the “target” in this reaction.

The values of the fit coefficients are taken as A = 1.43 × 10–17,

α = 1.17, and β = 2.76.

In order to reconcile the rate matrix formalism with

macroparticles in a PIC algorithm, the reaction rate was

replaced with the reaction frequency ] calculated for the

processes under consideration as

]ion � neσ ion,i→i+1ve, (28)
]CEX � n0σCEX,i→i−1vi, (29)

where ne and n0 are the electron and neutral ion density,

respectively, and ve and vi are the electron and ion collision

velocity in CM frame of reference, respectively. Naturally, the

higher the frequency, the more the probability of the reaction

taking place in a given time interval. The interplay of collisional

ionization and charge exchange in the context of ECR plasma

ion population kinetics is shown in Figure 4. Exchange cross

sections are independent of the ion energy below 25 keV/u

(which is orders of magnitude higher than ECR ion energies) so

the cross sections are reported in Figure 4A for each charge state
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following Eq. 27. The ionization cross sections are, instead,

reported for a range of electron energies well into 100 keV, and

it can be clearly seen that the values decrease with the increasing

charge state and always remain below the exchange cross

sections. On the other hand, converting σ into ], it can be

seen that high ne and Ee initially drive up the reaction frequency

for low-charge states (Figure 4B) but are soon overtaken by

exchange reactions with the intersection charge state depending

on the pressure of gas in the system. This is an important point

because it implies that highly charged ions are shuffled into

lower states, leading to an overall decrease in the mean charge of

the plasma.

The main task at hand was to develop a MC routine that

would allow expressing CEX, ionization or the lack of any

reaction thereof as unique and mutually exclusive outcomes of

a single “effective” collision marked by a summed reaction

frequency ]tot = ]ion + ]CEX, so as to simplify and generalize

the sampling procedure. The formalism was akin to modeling

absorption by a material composed of two absorbers of

coefficients, namely, μ1 and μ2. The transmission probability

through such an element would be simply T � e−(μ1+μ2)x and the

corresponding probability distribution function would then be

pabs � (μ1 + μ2)e−(μ1+μ2)x. Hence in our case the probability

distribution function is taken as

ptot t( ) � ]tote−]tott, (30)
and thus in a given time interval Tstep, the probabilities associated

with no reaction and some reaction are

�Ptot Tstep( ) � ∫∞

Tstep

]tote−]tottdt � e−]totTstep , (31)

Ptot Tstep( ) � ∫Tstep

0
]tote−]tottdt � 1 − e−]totTstep . (32)

Furthermore, the probabilities associated with ionization and

CEX were derived from Ptot(Tstep) as

Ptot Tstep( ) � 1 − e−]totTstep � ]ion + ]CEX
]tot

1 − e−]totTstep( )
� ]ion
]tot

1 − e−]totTstep( ) + ]CEX
]tot

1 − e−]totTstep( )
� Pion Tstep( ) + PCEX Tstep( )

. (33)

This new formalism mapped the continuous probability

distribution function to a discrete probability distribution with

three outcomes which sum to 1 as expected. By sampling a single

random number r ∈ [0, 1], a decision was made between

ionization, CEX, and nothing as

• Ionization if 0 < = r < Pion
• CEX if Pion < = r < (Pion + PCEX)

• Nothing if (Pion + PCEX) < = r < 1

The method is general in the sense that more the number of

reactions considered, the more would be ]tot and thus the smaller

the probability of nothing happening. Meanwhile, the probability

of individual reactions would vary depending on the weight ]X
]tot
.

The method eliminated the need to implement sequential or

conditional probabilities and allowed interpreting all possible

outcomes, whether mutually exclusive or not originally, as

“effectively” exclusive through integration into a single

collision event.

The procedure is not without its demerits. As much as it

simplifies the sampling, the reactions are not truly mutually

exclusive. The source of each reaction is different physical

systems and there is no rule that both reactions may not

occur simultaneously or in rapid succession. The correct

approach would be to devise a joint probability distribution

function for a sequential application of the reaction

probabilities which would require use of multiple sampling

variables and/or more involved techniques such as Markov

chains. The approximation proposed here can eliminate the

problem of simultaneity as long as Tstep is small enough such

FIGURE 4
(A) Single ionization cross section as a function of electron collision energy for three different charge states of Ar ions (top) and charge exchange
cross section for different charge states taking ion temperature kBT = 0.5 eV (bottom) and (B) frequency of ionization under most optimum electron
conditions and frequency of exchange for two different gas pressures as a function of charge state. The shaded area denotes the charge state after
which CEX dominates over ionization, effectively lowering the plasma CSD.

Frontiers in Physics frontiersin.org08

Mishra et al. 10.3389/fphy.2022.932448

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.932448


that only one reaction may occur in that period. Even if the actual

reactions are independent, this would enforce mutual exclusivity

within the chosen interval. Coincidentally, this is precisely what

one performs in a rate matrix algorithm—choose a time step Δt
small enough that the populations of involved species changes

slowly. This reduces the chances of cross-talk and hence errors in

the final results. Numerically, this accounts for the discretization

error when solving a differential equation. In our model, mutual

exclusivity is naturally enforced because Tstep is fixed to 10
–10 s as

a conservatively small percentage of the Larmor gyration time

(~ 10−6 s) and characteristic reaction times in Figure 4 are 2–3

orders of magnitude higher.

7 Convergent density scaling and
double layer field

As already mentioned in Sections 3, 4, the trajectories of

macroparticles were used to update a 3D matrix that served as an

occupation or accumulation map representative of the true

physical density. For ions, devising a robust scaling procedure

was of utmost importance because charge states were sequentially

simulated and the relative weights of all preceding occupation

maps were constantly changing. The objective was to allow the

dynamic weights to converge to the real steady-state value and

thus correctly reproduce the plasma CSD. For this, it was

essential that the ion transport, and consequently the

occupation maps, be modeled accurately.

Unlike in electron simulations, the ions moved in a self-

generated field and thus the transport coefficients were only

as precise as the total scaled density ns. This interdependence

between scaling and transport implied that a rapid and

correct convergence of the weights of the various charge

states could only occur if the occupation maps were scaled

regularly enough. It was, thus, decided to extract the

occupation maps at specific intervals before Tspan was

reached, denoted by the checkpoints τp in Section 4. This

helped avoid over/underestimation of the contribution of the

various charge states toward ns while remaining relatively fast

to execute. Initially, it was decided to set τp as 10% of the

effective confinement time τd given as the inverse sum of

characteristic diffusion and magnetic confinement times [37]

but this greatly increased the number of extraction points. As

such for the sake of this preliminary study, it was decided to

set four checkpoints at τp as 1%, 10%, 70%, and 100%Tspan for

each charge simulation.

Density scaling also allowed adding the electrostatic field

arising from the double layer potential into the ion transport

model. At a steady state, ECR plasmas separate into an

electron-rich ellipsoidal shell in the interior called the

plasmoid and a rarified zone surrounding it called the halo.

The boundary between them is the ECR surface containing

fewer, but hotter, electrons than the plasmoid. Electrons

diffusing out of the plasmoid are reflected back inside while

ions continue entering the halo—this creates a space–charge

separation. A layer of positive ions forms just outside the

electron layer and the potential generated from the double

layer balances the flow of charges to maintain global neutrality.

The existence of the double layer and subsequent potential dip

has been a matter of debate, with some experiments even

pointing to its absence [38]. Even the first results from

Mironov et al inferred the same [19] but later models

confirmed their existence [22]. The double layer has been

theoretically modeled by Mascali et al [37, 39] and even

experimentally verified by Takahashi, Kaneko, and

Hatakeyama [40]. Thus, a dedicated electrostatic model was

developed in COMSOL Multiphysics ⓒ to calculate ϕDL and

EDL (as mentioned in Section 4) from the charge imbalance

ρΔ = ρtot − ρe using the Poisson equation, where ρtot is the total

positive charge density evaluated using the scaled ion

occupation maps. The effect of the electrostatic field EDL is

shown in Figure 5 where the ratio of ion and electron

accumulation within a region of interest (ROI) defined deep

in the plasmoid is plotted for regular intervals. The ROI was

chosen as the space between two ellipsoidal surfaces in the

plasma interior. If the electrostatic field worked as expected, the

ratio of scaled ion density and electron density Ni/ne would

converge to a constant value so that the charge flows would be

equalized. Although this has not been fully achieved yet, the

higher values in the presence of the field in Figure 5B point to

the confining action.

The scaling procedure was based on global charge neutrality

which posited that the total number of positive and negative

charges in the plasma would be the same, even if there existed

localized charge pockets. The simple and straightforward

expression to convert any general occupation map ni into the

corresponding number density map Ni is

∮
V
nedV � Kiqi∮

V
nidV, (34)

Ni � Kini, (35)
where qi is the charge state of the ion, Ki is the scaling factor, and

the integrals represent volume integration. However at any

checkpoint τp, there would be the additional presence of the

ionizationmap ni→i+1 and pre-simulated occupation maps n1, . . . ,

ni−1. Eqs 34, 35 were thus modified to account for ni→i+1 and ni−1
through coefficients representing the degree of ionization and

exchange, respectively, and for other preceding occupation

maps through weights emulating successive ionization from one

charge state to the next. These are collectively referred to as transfer

coefficients hereafter. As an example, at checkpoint τp for 1
+ ions,

density scaling was implemented as

∮
V
nedV � K1 1 − k1→2( )∮

V
n1dV + 2k1→2∮

V
n1→2dV[ ], (36)

N1 � K1 1 − k1→2( )n1, (37)
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where k1→2 � ∮
V
n1→2dV

N and N is the initial number of

macroparticles. The term in parenthesis indicates that the

contribution of 1+ to the overall positive charge in the plasma

was reduced by k1→2 because this amount of macroparticles was

ionized to the next charge state. As another example, at τp for the

3+ simulations, density scaling resembled.

∮
V
nedV�K3 1−k1→2 +2k1→2k2→1 +k1→2k2→3k3→2( )∮

V
n1dV+[

2k1→2 1−k2→3 −k2→1 +k2→3k3→2( )∮
V
n2dV+

3k1→2k2→3 1−k3→4 −k3→2( )∮
V
n3dV+

4k1→2k2→3k3→4∮
V
n3→4dV]

,

(38)
N1 � K3 1 − k1→2 + 2k1→2k2→1 + k1→2k2→3k3→2( )n1, (39)

N2 � K3k1→2 1 − k2→3 − k2→1 + k2→3k3→2( )n2, (40)
N3 � K3k1→2k2→3 1 − k3→4 − k3→2( )n3, (41)

where k1→2 � ∮
V
n1→2dV

N , k2→3 � ∮
V
n2→3dV

N , k2→1 � ∮
V
n2→1dV

N ,

k3→4 � ∮
V
n3→4dV

N , k3→2 � ∮
V
n3→2dV

N and N still represents the

number of macroparticles. By regularly extracting simulated

occupation and ionization maps and dynamically updating the

transfer coefficients in the charge neutrality expressions Eqs.

36, 38, convergence toward true CSD was ensured.

Additionally, keeping track of the transfer coefficients

allowed simulating the same number of macropartices for

each charge state while accurately gauging their contribution

to the total positive charge, avoiding errors from low statistical

counts in the process. The charge density was calculated from

the number density as ρi = eqiNi whereas the total plasma

density for friction and diffusion coefficients was ns = ∑iNi.

Once ρi was obtained, it was used to calculate the imbalance

ρΔ = ρtot − ρe = ∑iρi and passed to the electrostatic solver to

evaluate 3D maps of double layer potential ϕDL. The raw ϕDL
maps were peak normalized and scaled with a reasonable

potential of 5 V [39] and the field components were re-evaluated

using the gradient of the scalar field to obtain EDL. These were

passed back to MATLAB ⓒ to perform the ion transport until the

next extraction checkpoint.

8 Description of code flow

Based on the discussion in the preceding sections, the

detailed algorithm is presented below for the first two charge

states and can be extrapolated similarly for the remaining.

8.1 1+ → 2+

• Initialization

– Generate N = 106 macroparticles distributed throughout

the plasma simulation domain. The initial positions

would follow a pre-generated ionization map n0→1

while the velocities would be generated according a

Maxwell distribution of temperature kBTi.

– Use the electron density map ρe and energy density map

Ee to calculate the ionization frequency for each plasma

cell according to the expression ]ion = ρeσion,1→2ve.

Calculate plasma-averaged collision time 〈τion〉 and

set the total simulation time Tspan = 10〈τion〉 during

which full ionization of the particles would be achieved.

– Define the magnetostatic field B configuration. Initialize

occupation n1 and ionization n1→2 maps to 0 with same

dimensions as the plasma simulation domain (59 × 59 ×

211, 1 mm−3 cell volume). Also, initialize the lost particle

map to 0. Set iteration step time Tstep = 10–10 s to increase

precision. The value can be optimized later for more

efficient computation.

– Set an estimate for the checkpoint τp at which the double

layer field E should be evaluated. The importance of τp
and evaluation method is discussed in Section 7.

• Evaluation

FIGURE 5
(A) Space between two centered and skewed ellipsoids in the plasmoid where ratio Ni/ne was calculated as and (B) Ni/ne in said space as
evaluated at regular intervals with and without double layer EDL field.

Frontiers in Physics frontiersin.org10

Mishra et al. 10.3389/fphy.2022.932448

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.932448


– Check for occurrence of ionization at each cell according

to ]ion. If the macroparticle is ionized, map to ionization

matrix n1→2. More details are given in Sec. 6.

– Apply the equation of motion to the remaining 1+

particles and update the position and velocity vectors.

Check if the new position exceeds the plasma

dimensions–if yes, update the lost particle matrix

otherwise map the positions to the occupation

map. The exact transport equations can be found in

Section 5.

• Check extraction

– If checkpoint τp is reached, scale the occupation map n1
obtained so far to appropriate density ρ1 and use the

charge imbalance map ρΔ = ρtot − ρe = ρ1 − ρe as input to

COMSOL Multiphysics ⓒ to calculate the double layer

potential ϕDL and the corresponding field EDL. Also,

calculate the total plasma density Ns and mean charge

〈Z〉. More details on the methodology are presented in

Section 7.

– Give EDL as input back to MATLAB ⓒ and re-trace the

motion of the 1+ macroparticles in presence of all fields.

Update the occupation map n1. Repeat from evaluation.

• Check termination

– If all particles are lost or Tspan is reached, save n1 and

n1→2 and final electrostatic field map EDL.

8.2 2+ → 3+

• Initialization

– Generate N = 106 macroparticles distributed in position

according to n1→2. Velocities remain Maxwellian with

temperature kBTi.

– Use n1→2 and n1 to calculate the total plasma density ns
and mean charge 〈Z〉. At this point, the contribution of

1+ would be maximum. The methodology for calculation

of Ns is given in Section 7.

– Use ρe and Ee to calculate the ionization frequency for

each plasma cell ]ion = ρeσion,2→3ve. Calculate cell-

averaged collision time 〈τion〉 and set the total

simulation time Tspan = 10〈τion〉. Also, calculate the

frequency of a single electron exchange with neutrals

in each plasma cell, using the expression ]CEX =

ρ0σCEX,2→1vi. Save the total reaction frequency map as

]tot = ]ion + ]CEX.
– Define the magnetostatic field B configuration. Initialize

occupation n2, ionization n2→3, and charge exchange

(CEX) n2→1 maps to 0. Initialize lost particle map to

0. Set iteration step time Tstep = 10–10 s.

– Set a reasonable estimate for checkpoint τp at which

density scaling and EDL evaluation should be performed.

More details are presented in Section 7.

• Evaluation

– Check for occurrence of reaction at each cell according to

]tot. If the macroparticle is ionized, map to ionization

matrix n1→2 and if it is exchanged, map to CEX matrix

n2→1. More details are presented in Section 6.

– Apply the equation of motion to the remaining 2+

particles and update the position and velocity vectors.

Check if the new position exceeds the plasma

dimensions–if yes, update the lost particle matrix

otherwise map the positions to the occupation

map. The exact transport equations can be found in

Section 5.

• Check extraction

– If checkpoint τp is reached, scale the occupation maps n1
and n2 to appropriate density maps ρ1 and ρ2,

respectively, and pass the charge imbalance map ρΔ =

ρtot − ρe = ρ1 + ρ2 − ρe as input to COMSOL

Multiphysicsⓒ to calculate ϕDL and EDL. Also,

calculate updated ns and 〈Z〉—the contribution of 2+

would gradually increase. More details on the

methodology are presented in Section 7.

– Give EDL as input back to MATLAB ⓒ and re-trace the

motion of the 2+ macroparticles in presence of all fields.

Update the occupation map n2. Repeat from evaluation.

• Check termination

– If all particles are lost or Tspan is reached, save n2, n2→3,

n2→1, and final electrostatic field map EDL.

9 Results and discussion

The results obtained from the application of the algorithm to

the ATOMKI plasma trap configuration are presented in this

section. A total ofN = 106 macroparticles were simulated for each

charge state, using the magnetostatic field profile of Figure 1 and

reaction cross sections from Eqs 26, 27. To be consistent with the

electron maps, the simulation domain was taken as the 3Dmatrix

of size 59 × 59 × 211 mm3, divided into cells of size 1 mm3 each.

All ionization, occupation, and exchange maps were set to the

same dimensions.

Figure 6 shows the distribution probability of the initial

positions of the macroparticles along the X, Y, and Z axes for

three different charge states. Since the initial positions were

generated according to the ionization maps of the preceding

charge state as mentioned in Section 4, and the plots are

representative of the local energy content in the plasma. The

initial positions of high charge states are peaked on the axis

because this is where the more energetic electrons with sufficient

ionizing power are located. The energy distribution along the axis

is more uniform, as can be evinced from the near identical

distributions in Figure 6C.

A comparison of the initial and final positions of the

macroparticles along the Cartesian axes is shown in Figure 7

for two charge states, namely, 2+ and 5+. The initial distributions
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follow the same trend as in Figure 6 but the final positions are

starkly different, particularly for the Y and Z axes. On their

journey through the plasma, the macroparticles tend to exit the

plasmoid along the magnetic field lines and those that are not lost

remain aggregated near the ECR surface, marked by the sharp

peaks in Figures 7B,C. The peaks are obscured in Figure 7A

because the X-axis does not pass through any magnetic poles and

the position histograms are projections from neighboring

hexapole axes.

Moving on to the ion density profiles, a 3D map of regions

with highest occupancy of various charge states is shown in

Figure 8. Highly charged ions such as 6+ and 7+ tend to be

FIGURE 6
Normalized distribution of initial (A) X, (B) Y, and (C) Z coordinates of macroparticles for charge states 1+, 4+ and 7+.

FIGURE 7
Normalized distribution of initial and final (A) X, (B) Y, and (C) Z coordinates of macroparticles for charge states 2+ and 5+.

FIGURE 8
Region of peak occupancy of various charge states at the end of simulations until 7+ in a (A) sliced view and (B) X–Y projection view. The
localization of high charge states near the axis is clearly visible.
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localized near the axis rather than in the halo or on the ECR

surface, whereas 1+–4+ are the opposite. The same is shown in

Figure 9 where the 1D profile of the density of 1+, 4+, and 7+ along

the coordinate axes is shown. Although these plots cannot be

directly compared with results from other ECRIS simulations since

the plasma configurations differ, the general trend of Figures 6, 7, 9

can be inferred from [20, 22] where the authors show tracks of Ar

1+ and 8+ in the plasma—the former (low charge) get regularly

ionized in the near-axis region and leave traces around the plasma

core leading to a spaced-out distribution while the latter (high

charge) remain localized axially.

These peak occupancy maps can be correlated with the

spatial distribution maps of the lost particles in Figure 10

where more diffused ions such as 4+ appear to be spread out

while other charges leave finer tracks. Also, as with Figure 8B,

Figure 10B shows that higher charge states remain stagnated near

the axis are lost from a smaller region. A similar behavior has

been reported in [22].

In order to benchmark the simulations, the charge state

dependent current extracted from the plasma during an

experimental run at ATOMKI [41] was compared with that

from the simulated density map. Figure 11A shows the

experimental beam current as a function of the charge to

mass ratio of the ions— Ar1+ correspond to m/q = 40, Ar2+

tom/q = 20, and so on. The current under each peak Ii until Ar
7+

was added to obtain the total current for every charge. To

calculate the simulated current distribution, the mean density

inside the region of potential dip 〈Ni〉 (Figure 12) was

considered and converted to current using the following

expression.

Ii � κ
2L( )S
2

〈Ni〉qie
τ i

, (42)

where κ is the transmission factor, L is the semi-plasma length, S

is the area of the extraction hole, and τi is the confinement time.

Given the high plasma density and existence of the potential dip,

τi was calculated as

1
τ i
� 1
τES,i

+ 1
τd,i

, (43)

τES,i � R

$$
π

√
L

vi
exp

qie〈ϕDL〉
kBTi

( ), (44)

FIGURE 9
Density profiles of 1+, 4+, and 7+ along the (A) X-axis at Y = 0, Z = 0, (B) Y-axis at X = 0, Z = 0, and (C) Z-axis at X = 0, Y = 0.

FIGURE 10
Scatter plots of macroparticles lost from the simulation domain in an (A) isometric view and (B) X–Y projection view for charge states 1+, 4+, and
7+. The downward pointed tri-star corresponds to the extraction side at Z = 0.09 m and matches the profile in Figure 8B.
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τd,i � 7.1 × 10−20Lqi lnΛ
$$
A

√ neZeff

kBT
3/2
i E

, (45)

where τES,i is the electrostatic confinement time arising from the

double layer, τd,i is the ambipolar diffusion time connected to the

space–charge field along the magnetostatic field lines [38], R =

Bmax/Bmin is the mirror ratio, 〈ϕDL〉 is the average potential

inside the dip, kTi is the ion temperature, lnΛ is the Coulomb

logarithm, Zeff � ∑Niq2i /ne is the effective charge density of the

plasma, and E is the ambipolar diffusion field. Taking 〈ϕDL〉
slightly smaller than what is directly calculated from the potential

map, E ~ kTi, L = 0.105 m according to the chamber design and

aperture diameter 18 mm, the current extracted from the plasma

was calculated. Figure 11B shows the comparison between the

experimental and simulated data. It can be seen that the general

relation between the current and charge state is well reproduced,

FIGURE 11
(A) Experimental spectrum of ion current as a function of the mass–charge ratio and (B) comparison of experimental vs. simulated extracted
current data until 6+. The blue (red) dotted line and axis correspond to the experimental (simulated) data. Simulations for higher charge states are still
underway and will feed into 7+ state, hence it is not shown.

FIGURE 12
Norm of EDL calculated at the end of simulation runs for 2+, 5+, and 7+ along the (A) X-axis at Y = 0, Z = 0, (B) Y-axis at X = 0, Z = 0 , and (C) Z-axis
at X = 0, Y = 0, and (D) 3D map of ϕDL showing the potential dip confining the ions.
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as is the absolute magnitude. This match is not obtained without

considering the electrostatic confinement model, and while this

does not solve the debate about the existence of the double layer

by itself, it at least confirms the equivalence between the particle

transport strategy and the resultant current. There is, however, an

inversion in trends for 2+ and 3+ which may be partly due to the

ion recycling effect [42] but more probably due to an

oversimplified implementation of Eq. 6. The match is

expected to improve when the simulation of all other charge

states is completed, and when a more rigorous charge exchange

model is implemented to account for interactions between all

ions and not just neutrals.

As a final remark, the profile of |EDL| calculated by COMSOL

Multiphysicsⓒ at the end of 2+, 5+, and 7+ simulations is shown in

Figure 12, as is the potential map obtained at the end of 7+ run.

The formation of the potential dip is noticeable and in keeping

with the results of [22]. The convergence of the field profiles at

the ECR layer after successive evaluations is clear, while the

introduction of smaller peaks in the near-axis region is indicative

of the localization of highly charged ions. A full comprehensive

analysis of the electrostatic field behavior is still underway and

will be a topic of discussion in future work.

10 Conclusion and future
perspectives

A novel simulation scheme for modeling ion dynamics together

with population kinetics in a space-resolved manner has been

reported. The novelty does not arise from any breakthrough

made in ECRIS simulations—as discussed in Section 2 numerous

toolkits already exist to study the system—but from the adaptability

of the technique which allows direct application to PANDORA. The

algorithm has been developed in such a way as to exploit a pre-

existing RF-electron coupling module and extend it to emulate the

steady-state distribution of ions without starting from the scratch.

The method simultaneously solves the CR-model to generate 3D

space-resolved maps of level population and CSD consistent with

steady-state electron maps. The scheme is general, makes few

assumptions about the state of the plasma and can be extended

to include reactions that populate ionic levels to generate the LPD

needed in Eq. 4.

The algorithm presented earlier is still quite basic and needs

improvement on several counts. For one, as already mentioned in

Section 6, the effective mutual exclusivity approach only works as

long as Tstep is small enough to neglect simultaneous reactions.

Even though this is true when considering only ionization and

exchange, the approximation is expected to break down when

increasing the number of reactions to include collisional

excitation and spontaneous emission. The sampling procedure

in such a case would inevitably require use of joint probability

distributions invoking complex methods such as Markov chains.

The development of such a model is underway. The

implementation is also deficient in that the neutrals were

considered uniformly distributed in the plasma chamber

according to a fixed pressure, but this is not necessarily true

because under stationary conditions the plasma core is almost

devoid of neutral atoms due to ionization. The algorithm can,

however, be very easily corrected for this effect, and the next

version of the code will be free of this assumption.

Beyond this, as reported in Sec. 9, the precise self-consistent

evaluation of |EDL| is still ongoing because while the spatial

profile seems to converge after sequential runs, the magnitude of

the raw ϕDL maps as extracted from the electrostatic solver

remain too high and need to be scaled for implementing in

the particle pusher code. The procedure is similar to what

Mironov and group have reported in [22] but their overall

approach is more physically intuitive because the double layer

formation in their model is a natural artifact of equalization of

electron and ion diffusion flux. In future work, we aim to

implement a similar calculation to directly evaluate correct

field potentials. With these modifications in place, the

algorithm may turn out to be a useful tool for not only

fundamental research in the working of ECR plasmas but for

applied research as well, similar to those needed for PANDORA.
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