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The Ne VII line is an intense solar line emitted from the solar transition region

located at 46.5 nm with a temperature of approximately 0.5 MK. The

observation of a Ne VII line is important to deepen the understanding of

solar physics. For observing the Ne VII line at 46.5 nm, we have proposed a

narrowband Sc/Si multilayer that could avoid the other solar emission lines

going to the observatory instrument. In this article, Sc/Si multilayers with a Sc

thickness ratio of 0.35 (conventional design) and 0.65 (narrowband design)

were deposited. The microstructures of both multilayers were measured by

grazing incidence X-ray reflectometry, X-ray diffraction, and transmission

electron microscopy. The results showed that the interdiffusion at the Si-

on-Sc interface was more significant than that at the Sc-on-Si interface in

both multilayer. Compared with the conventional multilayer, the narrowband

multilayer had a thinner Si-on-Sc interface width. The measured reflectivity of

the Sc/Si multilayer with a Sc thickness ratio of 0.65 was 37.9% at 45.5 nmwith a

near-normal incident angle of 4.60°. The bandwidth was 3.68 nm, which is

narrow enough to observe the Ne VII solar line.
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1 Introduction

The solar transition region (TR) is a highly dynamic and nonuniform area between

the chromosphere and corona [1]. Within this region, the temperature rapidly increases

from roughly 0.02 to 0.8 MK, and the collisional and partially ionized plasma transforms

into the less collisional and fully ionized plasma [2]. Emission lines from the TR cover

approximately 40–160 nm in the extreme ultraviolet (EUV) and far ultraviolet (FUV)

regions and contain physical information about the TR. In this spectral range, the imager

and spectrograph are mostly used as observing devices [3–5]. An intense Ne VII emission

line is formed at a temperature of 0.5 MK in the upper TR, which is important for

monitoring solar eruptions [6]. The Ne VII line is located at 46.5 nm, and in order to

realize the observation of this specific emission line, a solar EUV telescope operating at

46.5 nm has been proposed. Because the Ne VII line is surrounded by other solar emission

lines, such as Mg VIII at 43.7 nm and the Ne V line at 48.0/48.3 nm, the EUV telescope

requires a narrow spectral bandpass to avoid the influence of other lines [7]. The EUV
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telescope is designed using a Ritchey–Chrétien structure [8], and

the narrow spectral bandpass for this instrument is achieved by

multilayer mirrors. The telescope requires the bandwidth of

multilayer mirror less than 4 nm to ensure performance, and

the narrowband multilayer mirror can be achieved by optimizing

the multilayer structure.

Sc/Si multilayers show a high reflectivity in the 35–50 nm

wavelength range and have been used for 46.9 nm Ne-like Ar

X-ray tabletop lasers, spectroheliography, and X-ray microscopy

[9–11]. Yulin obtained the asymmetrical interface width as dSc-

on-Si = 2.6 nm and dSi-on-Sc = 1.6 nm using the four-layer model

(Sc/ScSi/Si/ScSi) [12]. At a Sc layer thickness ratio of 0.42 (ΓSc =

dSc/d, where ΓSc represents the thickness ratio of the Sc layer, dSc
represents the thickness of Sc, and d represents the d-spacing of

the multilayer), the sample with a d-spacing of 25.45 nm had the

highest reflectivity of 52% at 45.9 nm, and the bandwidth was

4.4 nm. At a constant d-spacing of 24.50 nm, the sample with

ΓSc = 0.37 had the highest reflectivity. However, the

microstructure of these multilayers with different ΓSc values

has not been investigated. Gautier optimized the thickness of

the top Si layer to 3.2 nm, whereby the reflectivity improved from

37 to 46% at 46 nm [13]. In the Sc/Si multilayer with a Sc ratio of

0.5, an asymmetrical interface was also found. The Si-on-Sc

interlayer thickness was 2.5 nm, which was wider than the Si-

on-Sc interlayer. Zhu indicated that the critical crystalline Sc

layer thickness was about 5.68 nm [14]. However, previous work

has usually focused on improving the reflectivity, and the Sc

thickness ratio was between 0.37 and 0.5. The narrowband Sc/Si

multilayer is important for 46.5 nm line imaging observations.

Increasing the Sc layer thickness ratio is expected to achieve a

narrow bandwidth of the Sc/Si multilayer, which is confirmed in

the Mo/Si multilayer [15].

In this article, we designed the narrowband Sc/Si multilayer

working at 46.5 nm. The narrowband Sc/Si multilayer with ΓSc =
0.65 and the conventional Sc/Si multilayer with ΓSc = 0.35 are

deposited. These multilayers are characterized by different

methods. The microstructures of both multilayers are

measured by grazing incidence X-ray reflectometry (GIXR),

X-ray diffraction (XRD), and transmission electron

microscopy (TEM). The EUV reflectivity is measured by

normal incidence reflectometry.

2 Design of a narrowband Sc/Si multilayer
at 46.5 nm

Taking into account the diffusion in periodic Sc/Si

multilayers, a four-layer structure (Sc/ScSi/Si/ScSi) was set up

for simulation, where ScSi was the diffusion interlayer at the Sc-

on-Si interface and the Si-on-Sc interface. In the design, the

density of the ScSi layers was assumed to be 3.30 g/cm3 [12]. The

interlayer thickness at the Sc-on-Si and Si-on-Sc interfaces was

set to 2.60 and 1.60 nm, respectively [16]. The surface and

interface roughness were set to 0.30 nm. The reflectivity was

computed at a near-normal incidence of 4.60°. To study the

impact of ΓSc on the bandwidth and reflectivity of the Sc/Si

multilayer, the reflectivity curves with different ΓSc values were

calculated by the software IMD [17], as shown in Figure 1.

Figure 1A shows the theoretical reflectivity of Sc/Si multilayers

with a fixed d-spacing of 24.50 nm. With increasing the ratio

from 0.35 to 0.75, the peak position increased from 45.5 nm to a

longer wavelength of 48.9 nm. Meanwhile, the corresponding

bandwidth and reflectivity decreased greatly, that is, the

bandwidth decreased from 5.83 to 3.12 nm and the peak

reflectivity decreased from 39.0 to 16.9%. It was demonstrated

that increasing the Sc thickness ratio could effectively reduce the

bandwidth of a Sc/Si multilayer while the reflectivity would

drop. Figure 1B shows the theoretical reflectivity of Sc/Si

multilayers with a d-spacing of 22.90–25.25 nm and a fixed

working wavelength of 46.5 nm. When ΓSc was 0.65, the

bandwidth decreased to less than 4.0 nm and the peak

reflectivity was 31.8%. Based on these simulations, the Sc/Si

multilayer with a d-spacing of 23.38 nm and ΓSc = 0.65 was

opted to achieve a narrow bandwidth and relatively high

reflectivity. In order to draw comparisons with this

narrowband multilayer design, a conventional Sc/Si multilayer

with ΓSc = 0.35 was designed. Schematics of the designed

multilayer are depicted in Figure 2. Without considering the

interlayer, the number of bilayers was 20.

3 Experiments

According to the designed results, Sc/Si multilayers with

ΓSc = 0.65 and ΓSc = 0.35 were deposited by direct-current

magnetron sputtering. The base pressure was less than 7.0 ×

10−5 Pa. High-purity Ar (99.999%) was used as the sputtering

gas and the Ar pressure was maintained at 0.160 Pa during the

deposition. The layer thickness was confined by varying the

residence time of the substrate as it passed over each

sputtering target. The sputtering power of the Sc and Si

targets was 30 and 80 W, respectively. The multilayers were

deposited on 20 × 20 mm2 super-polished silicon wafers with a

root-mean-square roughness of 0.2 nm.

The structure of the samples was characterized by grazing

incidence X-ray reflectometry (GIXR) with the 2theta-omega

mode using an X-ray diffractometer (Bede, Durham,

United Kingdom). The source was the Cu-Ka line at

0.154 nm. The GIXR measured curves were fitted by the

software IMD using a two-layer model initially. However,

compared with the intensity of the measured Bragg peaks, the

simulated Bragg peaks had a lower intensity. According to

previous literature, the measured curves were fitted with a

four-layer model which took into account the Sc-Si mixtures

at the interface. More information about the details of the

multilayer structure is provided in Section 4.
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Characterization of the crystallinity of multilayers was

performed by X-ray diffraction (XRD, Bruker D8 Advance,

Karlsruhe, GER). The detector scanned from 10° to 68° at a

grazing incidence angle in the 2theta-omega mode. In this mode,

the crystal plane parallel to the multilayer surface can be detected.

The crystal phases can be obtained by matching the angular

positions of the diffraction peaks with the powder diffraction file

(PDF) of the International Center for Diffraction Data (ICDD).

The average grain size perpendicular to the crystal phase

direction was deduced by the Scherrer equation [18]:

D � κλ

Bcos(θ),

where D is the average grain size, κ is a dimensionless shape

factor with a value of 0.89, λ is the wavelength of 0.154 nm, B is

the full width at half maximum of the diffraction peak, and θ is

the angular position of the diffraction peak.

In order to verify these results obtained by GIXR and

XRD, the microstructures of multilayers were also

investigated by transmission electron microscopy (TEM)

using an FEI Talos F200X instrument (FEI, Hillsboro, OR,

United States). It was equipped with a scanning TEM

imaging with a nanoprobe for elemental contrast and an

energy dispersive X-ray (EDX) spectrometer for elemental

mapping. Selected area electron diffraction (SAED)

measurements were used to characterize the crystallization

of the multilayer. The profile of the layers along the growth

direction was obtained by reading the gray value of the high-

resolution TEM image using the software Digital

Micrograph [19].

The EUV reflectivity of the Sc/Si multilayer with ΓSc =

0.65 was measured by Optics Beamline PM-1 at the BESSY-II

facility. For the reflectivity measurement, the normal incidence

monochromator was equipped with a grating of gl = 150 L/mm,

and the beam stability was better than 0.1% [20]. The

measurement was performed at an energy range of

22.3–33.5 eV (37.0–55.6 nm) and at a near-normal incidence

angle of 4.60°.

FIGURE 1
Theoretical reflectivity of the Sc/Si multilayers with different ΓSc values at a fixed d-spacing (A) and a fixed working wavelength of 46.5 nm (B).

FIGURE 2
Schematic of the Sc/Si multilayer structures with ΓSc =
0.35 and ΓSc = 0.65.
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4 Experimental results and discussion

4.1 Grazing incidence X-ray reflectometry
analyses of Sc/Si multilayers

The measured and fitted GIXR curves of Sc/Si multilayers

with ΓSc = 0.35 and ΓSc = 0.65 are shown in Figure 3. The

measured curves were fitted with a two-layer model, but the fitted

curves could not fit nicely with the measured curves and did not

present details of the interfaces. According to previous studies,

Sc-Si mixtures would be formed at the interface of Sc/Si

multilayers, which were considered as ScSi compounds. Thus,

ScSi interlayers were added to the fitted model as the four-layer

model (Sc/ScSi/Si/ScSi). The theoretical reflectivity peaks and

intensities were in good agreement with the experimental

reflectivity. At a grazing angle range from 0.4° to 1.0°, there

was a little deviation between the measured and fitted curves.

This was mainly caused by surface oxidation and contamination.

This deviation will not affect the fitted thickness value of the

interlayer. Table 1 presents the fitted structure of Sc/Si

multilayers, including oxidation of the silicon surface layer. It

clearly exhibits the interlayer asymmetry in both Sc/Si

multilayers. For the Sc/Si multilayer with ΓSc = 0.35 and a

d-spacing of 24.86 nm, the Si-on-Sc interlayer thickness was

2.96 nm, while the Sc-on-Si interlayer thickness was smaller at

1.30 nm. For the Sc/Si multilayer with ΓSc = 0.65 and a d-spacing

of 23.26 nm, the Si-on-Sc interface thickness was 2.73 nm, while

the Sc-on-Si interface thickness was 1.41 nm. In both multilayers,

FIGURE 3
Measured GIXR and fitted results of Sc/Si multilayers with
ΓSc = 0.35 (A) and ΓSc = 0.65 (B).

TABLE 1 Sc/Si multilayer fitted parameters deduced from GIXR measurements.

Ratio Layers Thickness/nm Roughness/nm Ratio Layers Thickness/nm Roughness/nm

ΓSc = 0.35 SiO2 1.60 0.48 ΓSc = 0.65 SiO2 1.65 0.45

. . . . . . . . . . . . . . . . . .

Si 14.61 0.22 Si 6.86 0.22

ScSi 2.96 0.49 ScSi 2.73 0.40

Sc 5.99 0.38 Sc 12.26 0.35

ScSi 1.30 0.30 ScSi 1.41 0.37

. . . . . . . . . . . . . . . . . .

FIGURE 4
Measured XRD and fitted curves of Sc/Si multilayers with ΓSc =
0.35 (A) and ΓSc = 0.65 (B).
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interdiffusion at the Si-on-Sc interface was wider than that at the

Sc-on-Si interface. Interlayer asymmetry may be related to the

crystallization of the Sc layers.

4.2 X-ray diffraction analyses of Sc/Si
multilayers

Figure 4 shows the diffraction curves of the Sc/Si multilayers

obtained by XRD in symmetrical reflection mode. The angular

positions and the bandwidths of diffraction peaks were determined

by fitting the peaks with a Gaussian profile. According to the PDF

reference, the two peaks identified at diffraction angles of

approximately 34.01° and 35.65° correspond to the Sc (002) and

(101) crystal planes of a hexagonal close-packed structure,

respectively. These crystal phases were also proposed by Zubarev

[21]. Compared with the Sc/Si multilayer with ΓSc = 0.35, the

diffraction peaks of the Sc/Si multilayer with ΓSc = 0.65 were

narrower, and the intensity was increased. It was also clearly

observed that the crystallization of Sc (101) was stronger than

that of Sc (002). According to the Scherrer formula, the average

grain size of the crystal phases was calculated. For the Sc/Si

multilayer with ΓSc = 0.35, the average grain sizes perpendicular

to the Sc (002) and (101) crystal phases were 5.9 and 5.5 nm, which

were close to the Sc layer thickness. For the Sc/Si multilayer with

ΓSc = 0.65, the average grain sizes perpendicular to the Sc (002) and

(101) crystal planes were increased to 7.6 and 8.6 nm, respectively.

When the sputtered Si atoms were deposited on the crystalline

Sc layer during the deposition, the crystal grains provided some

diffusion channels and formed a thicker interlayer at the Si-on-Sc

interface with Sc atoms [22]. When the sputtered Sc atoms were

deposited on the amorphous Si layer, the underneath Si layer

diffused into the growing Sc layer and formed another interlayer

at the Sc-on-Si interface, which was thinner than that at the Si-on-Sc

interface. Because the Sc layer was crystallized, while the Si layer was

amorphous, the diffusion activities of Sc and Si atoms were different,

which made the asymmetric interlayer at different interfaces.

4.3 Transmission electron microscopy
analyses of Sc/Si multilayers

The microstructures of the Sc/Si multilayers with ΓSc =

0.35 and ΓSc = 0.65 were measured by TEM and SAED; the

FIGURE 5
Bright-field TEM and SAED images of Sc/Si multilayers with ΓSc = 0.35 (A–C) and ΓSc = 0.65 (D–F).
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measurements are shown in Figures 5A–F. Figures 5A and D are

the bright-field TEM images and directly show the multilayer

structure. The light and dark areas represent Si and Sc layers. A

great number of grains obviously formed in the Sc layers. It was

indicated that the Sc layers were partly crystallized. The thin gray

area between the Sc and Si layers is Sc-Si mixtures, which can be

observed more clearly in the high-resolution TEM images.

Through Digital Micrograph software analysis, the d-spacings

of the Sc/Si multilayer with ΓSc = 0.35 and ΓSc = 0.65 were

24.83 and 23.13 nm. This was almost consistent with the GIXR

results. The bright-field high-resolution TEM images are shown

in Figures 5B and E. The distribution of the Sc-Si mixtures and

the different crystal orientations in the Sc layers are clearly

observed. The average gray-value profile of the Sc/Si

multilayers for one period was obtained from the same area later.

The selected area electron diffraction (SAED) images are

shown in Figures 5C and F. The bright diffraction spots were

both aimed at Sc crystal phases. The Si layer and interlayers were

in the amorphous phase. For the Sc/Si multilayer with ΓSc = 0.35,

there were diffraction spots in the longitudinal direction, which

corresponded to the Sc (002) and (101) crystal planes. For the Sc/

Si multilayer with ΓSc = 0.65, the diffraction spots were brighter.

It was illustrated that the crystallization of Sc (101) and (002)

crystal phases was enhanced, and most of the Sc grains grew

along the direction of the multilayer growth.

The average gray-value profiles of the Sc/Si multilayers

obtained near the middle of the multilayer are shown in

Figure 6. The Y axis represents the average reading gray values

along the growing direction of the multilayer. The X axis

represents the observed position along the direction of the

multilayer growth, and 20% of the peak and valley difference in

the selected area was defined as the interface width [23]. The peak

value was chosen from the Si layer near the edge, and the valley

value was chosen from the internal Sc layer. The purple arrows

marked the selected peak and valley values in Figure 6. At the top

of the gray-scale curve was the selected area in the TEM images in

Figures 5B and E, which were rotated by 90°. For the Sc/Si

multilayer with ΓSc = 0.35, the thickness of the interlayer at the

Si-on-Sc and Sc-on-Si interfaces was approximately 3.00 and

1.51 nm, respectively. For the Sc/Si multilayer with ΓSc = 0.65,

the thickness of the interlayer at the Si-on-Sc and Sc-on-Si

interfaces was approximately 2.67 and 1.35 nm, respectively.

The asymmetrical interlayers were close to the fitted values of

the GIXR results. The diffusion of Si atoms was easier along the

grain boundaries of the Sc layer when Si atoms were deposited on

it. Thus, the Si-on-Sc interlayer thickness was wider than the Sc-

FIGURE 6
Gray-value profiles of Sc/Si multilayers with ΓSc = 0.35 (A) and ΓSc = 0.65 (B) derived from the selected area in the TEM images in Figures 5B and E
(rotated by 90°).
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on-Si interlayer thickness. In addition to the asymmetrical

interlayer, it was also found that the Si-on-Sc interlayer

thickness decreased from 3.00 to 2.67 nm when ΓSc increased to

0.65. This wasmainly caused by the crystallization enhancement of

the Sc layer. With the increase of the Sc layer thickness, the

crystallization of Sc increased and the defect in the Sc layer

decreased, which inhibited the diffusion of Si atoms.

Energy dispersive X-ray (EDX) spectroscopy was performed

to study the depth distribution of chemical elements heavier than

carbon [24]. Figure 7 shows the depth distribution of chemical

elements of both Sc/Si multilayers. It obviously presents a

periodic oscillation of the concentration of each element. The

asymmetrical distribution of Si shown in Figure 7A is evidence of

interfacial diffusion, but not concrete diffusion, due to the

resolution. There was a small amount of O and Ar detected in

both multilayers. This can be explained by Sc possessing active

chemical properties, and it would react with the only remaining

O during the deposition. Ar atoms were probably incorporated

from the sputtering gas. Gautier also found that Ar impurities

mainly existed in the Si layers through a Rutherford

backscattering test [13]. The existence of Ar and O was one of

the reasons affecting the reduced reflectivity.

4.4 Sc/Si reflectivity measurement by
synchrotron radiation

The optical performance of the Sc/Si multilayer with ΓSc =
0.65 was performed by Optics Beamline PM-1 at the BESSY-II

facility. We used the four-layer model with the parameters

obtained from GIXR to calculate the reflectivity curve at a near-

normal incidence angle of 4.60°. Figure 8 shows the measured

reflectivity of the Sc/Si multilayer in comparison with the

theoretical reflectivity. The experimental peak reflectivity was

37.9% at 45.5 nm with a 3.68 nm bandwidth at a near-normal

incidence angle of 4.60°. The theoretical peak reflectivity of the

Sc/Si multilayer with ΓSc = 0.35 was 40.1% based on the fitted

structure. To the best of our knowledge, this is the narrowest

measured bandwidth of Sc/Si multilayers obtained so far.

FIGURE 7
Depth distribution of the chemical elements of Sc/Si multilayers with ΓSc = 0.35 (A) and ΓSc = 0.65 (B). Sc/Si reflectivity measurement by
synchrotron radiation.

FIGURE 8
EUV reflectivity of the Sc/Si multilayer with ΓSc = 0.65.
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However, there were differences between the measured and

theoretical reflectivity. The wavelength of the measured peak

reflectivity of the narrowband Sc/Si multilayer was 45.5 nm

instead of 46.5 nm. This difference was due to uncertainties in

the interlayer optical constants used in the calculation. These

parameters might change in multilayers, especially in

interlayers. The change in optical constant will affect the

peak position of the reflectivity curve [25].

5 Conclusion

We studied the structure properties of the Sc/Si multilayer

with ΓSc = 0.35 and ΓSc = 0.65 and further characterized the

optical performance of the Sc/Si multilayer with ΓSc = 0.65. The

GIXR measurement showed that the Sc-on-Si interlayer

thickness was almost unchanged (~1.4 nm), whereas the Si-

on-Sc interlayer thickness decreased from 3.0 to 2.7 nm when

ΓSc increased from 0.35 to 0.65. XRDmeasurements revealed that

the Sc crystal phases were mainly Sc (002) and (101). This was

consistent with SAED measurements. At the Si-on-Sc interface,

the diffusion between Sc and Si was reduced by the increasing

crystallization of Sc. In the EUV measurement, the peak

reflectivity of the multilayer with ΓSc = 0.65 was 37.9% at

45.5 nm. The bandwidth was 3.68 nm, achieving the current

narrowband requirement for observation.
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