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Structured light beams such as optical vortices can carry the orbital angular momentum
(OAM) with an unbounded quantum number. Recent years have witnessed a growing
interest in the rotational Doppler effect with vortex light. Here we present an overview on
the technical progress in measuring the rotational Doppler effect associated with OAM.
This includes how a high-order OAM light beam is crucial for realizing high-sensitivity
remote sensing of rotating objects. The basic physical mechanism of rotational Doppler
effect is manifested from both perspectives of the wave property and the conservation law
of energy. Besides, we summarize the extension of the rotational Doppler effect from linear
optics to nonlinear optics, and to quantum realms. Also, we discuss the main challenges
and opportunities of angular remote sensing in a realistic scenario for future applications.
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INTRODUCTION

What would happen when placing a watch at the center of a rotating turntable, and viewed from
above? Obviously, the watch hands will speed up or slow down depending on the rotation direction
of the turntable [1]. If one applies this effect to all rotating vectors, for example to the spatial pattern
of the electric field of any light beam carrying angular momentum [2–4], the additional rotation of
the beam will result in a frequency shift proportional to the rate of rotation of the beam [5, 6]. This is
the direct understanding of the rotational Doppler effect (RDE).

At first, this effect was found related to the circular polarization (CP) of the photon and was called
the angular Doppler effect [7]. When the CP photon interacts with the rotating matter, the
interchanges of rotational kinetic energy will bring a rotational frequency shift of σω to the
photon, where ω is the rotating frequency and σ � ± 1 for the right and left CP state of the
photon. This phenomenon can be observed with manifestations ranging from the quantum world to
satellite-based global positioning systems [8], and also can be observed when the CP light wave
propagates through a gas of synchronously spinning molecules [9]. In 1992, Allen et al. established
that light beams with helical phase-fronts, described by a transverse phase structure of exp(iℓφ), can
carry the orbital angular momentum (OAM) many times greater than the spin angular momentum
of the photon [10], where φ is the azimuthal angle and ℓ is the topological charge. The most typical
beam carrying OAM is the Laguerre–Gaussian (LG) beam [11–13]. Subsequently, people realized
that this kind of helical beam may also introduce an azimuthal Doppler shift which is many times
larger than the angular Doppler effect induced by the CP of the photon [14]. This azimuthal Doppler
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effect differs significantly from the conventional linear Doppler
frequency shift when it is born [7, 15]. The azimuthal Doppler
shift in frequency arises not from linear motion, but rotation [16].
This effect should also not be confused with the Doppler effect
observed for rotating objects due to the object having a linear
velocity with respect to the observer. Unlike the linear Doppler
effect (LDE) which is maximal in the plane of the rotation, the
RDE is maximal in the direction of the angular velocity vector
where the linear Doppler shift is zero [17].

After a simple coaxial superposition between the LG beam and
the Gaussian beam, the RDE frequency shift can be observed
directly due to the beat frequency phenomenon [5]. The
technique of the superposition beam is soon widely used in
RDE observation and OAM recognition [6, 18–20]. Especially,
people can generate any superposition mode and high-order
OAM beam with the development of spatial light modulators
[21]. If the two components of the superposition beam have the
same OAM number but opposite signs, this superposition beam
can be called the phase-conjugated beam which has the self-
interference property and is immune to the influence of the linear
motion [22, 23]. These concepts were soon extended from linear
optics to nonlinear optics and even quantum physics and many
new applications have been derived [24–27].

In the 40 years of development since the concept of angular
Doppler effect was first proposed, the RDE associated with
structured light has established itself as one of the most
interesting topics in structured light sensing applications, with
relevance from spin to orbital angular momentum, from linear
optics to nonlinear optics, even in the quantum optics and
elsewhere. The method of rotational speed measurement based
on the rotational Doppler effect applies to both microscopic
particles and macroscopic objects. In the ongoing research, it
is believed that this effect will bring more surprise to people.

THE BASIC MECHANISM OF ROTATIONAL
DOPPLER EFFECT
The Interpretation From the Wave
Properties
In 1842, the Austrian physicist Christian Doppler proposed that
the wavelength of the radiation of an object will change due to the
relative motion of the wave source and the observer, that is, the
Doppler effect. When the object moves in a certain direction at a
constant speed v , the electromagnetic wave will have a path
difference during the propagation process, so the frequency shift
of the beam received by the observer on the surface of the
object is,

Δf � f0v cos θ
c

(1)

where f0 is the frequency of the wave source, θ is the angle
between the velocity vector and the wave vector, c is the
light speed.

For a beam with helical phase, its Poynting vector, and hence
the optical momentum, has an azimuthal component at every

position within the beam. The angle α between the Poynting
vector and the beam axis can be deduced theoretically and
measured experimentally [11, 28, 29], as shown in Figure 1A
[30]. The magnitude of angle α can be written as α � ℓλ/2πr,
where r is the radius from the beam axis to the position of the
photon in the light field and ℓ denotes the topological charge of
the beam, λ represents the wavelength. Light scattered from a
moving surface is Doppler-shifted in frequency that can be
observed both in translation and rotation [31], as is shown in
Figures 1B,C, respectively. When a vortex beam illuminates the
rotating disk on its axis, the angle between the velocity vector of
each scatter and the Poynting vector is α, whose relationship with
θ is α + θ � π/2. Combined with Eq. 1, the rotational Doppler
shift can be can be expressed by Δf � ℓΩ/2π. This is the basic
expression of the RDE frequency shift. A typical form of using
vortex light to obtain the RDE frequency shift is by interfering the
scattered light with a reference light, as shown in Figure 1D. The
RDE frequency shift also can be directly observed by a
superposition state light with two components of opposite
values of ℓ, as illustrated in Figure 1E.

On one hand, the RDE can be seen to have the same origin as
the traditional LDE [32]. On the other hand, there is a significant
difference between the LDE and RDE, namely, RDE frequency
shift is independent of the wave frequency of the detected beam,
such that the RDE can be observed using a white-light source
[33]. Actually, the same RDE frequency shift also can be observed
in the OAM-based radar [34, 35].

Since the light frequency is too high to be detected, like the
conventional laser Doppler velocimetry, the RDE frequency shift
can be observed by the interference phenomenon. As shown in
Figure 1D, through the interference between the scattered beam
and the reference beam, this frequency shift can be observed by
extracting the beat frequency. Besides, when the illuminating light
comprises two helically phased beams with topological charge
± ℓ, their scattering into a common detection mode gives
opposite frequency shifts, and thus yielding an intensity
modulation of doubled frequency of the basic RDE frequency
shift [31].

The above interpretation only considers the rotation of the
object.When the scatter has a compoundmotion of linear motion
and rotation, the particles in the vortex field would experience
both linear and rotational Doppler frequency shift. This can be
understood from the phase change of the vortex field. The
incident radiation wave can be simply written as,

E( �r, t) � E0 exp{ − i[2πft − kz −Φ( �r⊥)]} (2)

where the longitude phase is determined by propagation distance
z and the phase in the cross section is defined by Φ( �r⊥). For the
vortex beam, the transverse phase is given by Φ( �r⊥) � ℓφ, where
φ is the angular coordinates. As shown in Figure 2A, when a
particle with both linear motion and rotational in the vortex field,
it generates a burst of optical echoes which can be expressed
by [37],

i(t) � i0 exp{i[2kz(t) + ℓφ(t)]} (3)
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where z(t) � vzt and φ(t) � Ωt. As a result, the total frequency
shift can be expressed by Δf � 1

2π (2kvz + ℓΩ), appearing as a
combination of the linear and the rotational frequency shift. Such
a characteristics of the vortex light can then be used to detect the
compound motion of the target as shown in Figure 2B.

Furthermore, the above deduction is effective only on the
condition that the beam illuminates on the axis of the rotating
object. When the vortex illuminates the rotating body non-
coaxially as shown in Figure 2C, the RDE behaves differently.

The radius of the vortex light and the radius of each small scatter
on the rotating body under the light field are always the same
when the vortex light illuminate the rotating object on its axis,
while these two radii are unequal when the light illuminates non-
coaxially. Based on the small scatterer model, Qiu et al. deduced
the rotational Doppler shift when there is a small lateral
misalignment or oblique angle between the vortex axis and
rotating axis, respectively [23, 39]. The corresponding RDE
frequency shift is given by,

FIGURE 1 | The wave properties of optical vortex and the measurement of RDE frequency [30] (A) The Poynting vector of the vortex light (B) Translational Doppler
frequency shift and (C) rotational Doppler frequency shift [31] (D) The detection scheme of the rotational Doppler shift with structured light [36] (E) A superposition of
helically phased beams with opposite signs of ℓ incident on a surface rotating at a speed Ω, results in a Doppler shift of the coaxial light.

FIGURE 2 | (A) The production of Doppler effect with structured light [37]. (B)Compoundmotion detection scheme [38]. (C)Rotational Doppler effect at vortex light
oblique incidence [23].
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Δfd � ℓΩ
2π

(1 + d cos θ
r1

) (4)

Δfθ � ℓΩ(sin2θz + cos γ cos2θz)
2π

��������������
1 − (sin γ sin θz)2√ (5)

where d and γ denote the lateral misalignment distance and the
oblique angle, respectively. When the illuminating light is not
coaxial with the rotational axis, the RDE frequency spectrum
would be broadened.

The Energy Transfer in RDE
It is also instructive to understand the RDE from the conservation
laws of energy and angular momentum when photons interact
with the medium. For a rotating particle, the rotational kinetic
energy due to the rotational motion can be expressed as,

E � L2

2I
(6)

where L is the angular momentum of the particle and its
magnitude is given by L � IΩ (Ω � v/r), I is the momentum
of inertia whose value can be expressed by I � mr2.

In the case of rotation, a system composed of rotating particles
and the photons obeys the kinetic energy conversion, namely
[7, 40],

L2
1

2I
+ E1 � L2

2

2I
+ E2 + h(] + Δ]) (7)

where L1 and L2 represent the angular momentum that the
rotating particle has before and after interacting with the
beam, respectively. E1 and E2 represent the intermediate
electric energy of atoms or molecules that the particle receives
and emits before and after the action of the detection light; ]
represents the frequency of the scattered light at different times
when the particle is stationary, and Δ] represents the angular
Doppler frequency shift of the scattered photons due to the
rotation of the particle.

During the emission or absorption of photons by atoms, the
energy transfer can be expressed by E1 − E2 � h]. Combined with
Eq. 7 we have,

hΔ] � L2
1 − L2

2

2I
� (L1 − L2)(L1 + L2)

2I
� ΔL

I
(L1 + L2

2
) (8)

For the systems interacted by beams and rotating particles,
there is also a momentum conservation relationship,

La + L ′
a � Lb + L ′

b (9)
whereL ′

a andL ′
b represent the angular momentum carried by the

photons before and after the beam interacts with the rotating
particle, respectively. La and Lb denote the angular momentum
carried by the rotating particle. For the linearly polarized vortex
beam, the magnitude of the angular momentum is ℓZ. Therefore,
the momentum transformation of the photons can be
expressed as,

L ′
b − L ′

a � (ℓb − ℓa)Z (10)

where ℓa and ℓb are the topological charge of the incident vortex
light and the scatter light to be detected, respectively.

By combining Eqs 8–10, we can obtain the RDE frequency
shift as,

Δ] � (ℓb − ℓa)Ω/2π (11)
If the scattered light to be detected is in the fundamental

Gaussian mode, i.e., ℓb � 0, the above formula becomes exactly
the same as that of the RDE frequency shift, namely, Δ] � ℓΩ/2π.
Note that the LGmodes form a complete and orthogonal basis for
paraxial light beams. Therefore, the RDE frequency shift can also
be observed by detecting the high-order OAM mode of the
scattered light. When the scattered light is not in the
fundamental mode, the RDE frequency shift can be calculated
according to Eq. 11. The magnitude of the frequency shift is
determined by the rotational speed and the OAM mode
difference between the incident and the scattered light [41].

In the nonlinear regime, the perspective of energy and
momentum conservation also can be used to interpret the
origin of RDE. When the circularly polarized beam passes
through a spinning nonlinear optical crystal with three-fold
rotational symmetry, the beam would experience a Doppler
shift of three times that of the optical crystal [24].
Furthermore, based on the mirror symmetry for
electromagnetic interactions, the RDE frequency shift can be
doubled through cascading two rotational Doppler processes
[25]. This cascaded RDE can also be understood according to
the law of conservation of momentum.

The magnitude of the frequency shift is proportional to both
the topological charge and the rotational speed, as can be directly
seen from the RDE formula. In order to ensure the frequency shift
can be measured, this scheme is more available for measuring
objects rotating at high speed rather than low speed [42]. On the
other hand, the RDE frequency is also proportional to the
topological charge of the illuminating beam; therefore, the
detection sensitivity can be increased by using higher-order
OAM beams. Up to now, a myriad of approaches have been
developed for the generation of higher-order OAM beams,
demonstrating up to ℓ � 100 by using a metasurface OAM
laser [43], up to ℓ � 600 by using a spatial light modulator
[44], and as high as ℓ ≈ 10000 with a spiral phase mirror [45].

APPLICATION OF ROTATIONAL DOPPLER
EFFECT

RDE in the Rotational Motion Detection
Since Allen et al. proposed their inspiring scheme of the detection
of a spinning object by using light’s orbital angular momentum,
there have been massive relevant research literatures in this area.
In addition to the rotational speed, other rotation parameters
such as rotating direction and acceleration rate have been
measured as well. Since the beat frequency effect can only
provide the magnitude of the frequency shift without the
direction information [46], the acquisition of the rotation
direction becomes a tricky problem. Rosales-Guzman et al.
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devised a scheme to impart an additional rotation on the
illuminating vortex beam, which can give a reference to
identify the rotation direction [47]. By employing dual-
frequency vortex light, as shown in Figure 3A, Li et al.
transform the Doppler signals from the low-frequency domain
to the medium-frequency domain, and thus distinguishing the
rotational direction by comparing the modulated signal and the
reference signal [48].

Recently, the vectorial counterpart of RDEwas revealed, which
uses vectorial polarization fields and shows the potential to
retrieve the full vectorial motion information of the moving
object [49, 50]. The above measurements are based on the
constant rotation velocity. While for variable rotation, Zhai et
al. succeeded in measuring the angular acceleration through a
time-frequency analysis of the RDE frequency shift [51]. The
transformation of OAM beams when passing through a non-
uniform spinning SPP is shown in Figure 3B.

At present, the accuracy of RDE-based speed measurement is
relatively high, generally reaching over 95% [31, 33, 47]. Even
under the light noncoaxial incidence condition, the rotational
speed still can be measured in a high accuracy through the
extraction the frequency difference in the discrete frequency
shift signals [52]. However, the accuracy of the speed

measurement also fluctuates in response to changes in
measurement conditions [53]. Moreover, since the frequency
shift caused by the RDE is proportional to the object’s angular
velocity, in order to ensure the frequency shift can be measured,
this scheme is more available for measuring objects rotating at
high speed rather than low speed [54]. The rotational speed can
be measured in most laboratory conditions is larger than 2π rad/s,
and only a handful of measurement experiments those use the
spatial light modulators to mimic real rotating objects can reach a
lower speed [55, 56].

RDE Introduced byDifferent Types of Vortex
Beams
Researchers have tried using different types of structured vortex
beams to investigate RDE, including Laguerre–Gaussian (LG)
beam [31], Bessel-Gaussian (BG) beam [57], Perfect Optical
Vortex (POV) beam [58, 60, 61], and Ring Airy Gaussian
Vortex (RAiGV) [59]. The LG beam is the most popular
structured light used in the RDE detection which can stably
propagates over a long distance. The transverse beam profile is a
single intensity ring with zero radial index p � 0. For the LG
beams with non-zero radial index, multiple rings would appear in

FIGURE 3 | RDE in rotational speed detection. (A) Direction-sensitive detection by dual-frequency optical vortex [48]. (B) Detection of angular acceleration based
on optical RDE [51]. (C) Non-diffractive Bessel-Gaussian beams for the detection of rotational speed [57]. (D) RDE detection results by using perfect optical vortex [58].
(E) The measured results of RDE frequency shift along the propagation path of ring Airy Gaussian vortex [59].
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the radial direction. Experiments have shown that the LG beams
of nonzero radial indices can enhance the light intensity and the
amplitude of the RDE frequency signal, in comparison with those
of zero radial index [62]. The BG beam has been proved to have
non-diffractive and self-recovery characteristics which can be
immune to the influence of the small obstacles in the optical path
[57], as shown in Figure 3C.

Also, POV have recently attracted a lot of research attention,
owing to its characteristic feature that they have the same
intensity profile regardless of carrying different topological
charges, as is shown in Figure 3D [58]. Therefore, the POV
beam is more flexible when detecting the objects of different sizes.
In particular, when the topological charges of the two
components of a superposition beam are not the same
magnitude, the POV performs better than the LG beam [58].
It was reported that, as is shown in Figure 3E, the RAiGV has the
same well performance in spinning speed detection as other
vortex beams [59]. Besides, the RAiGV beam has self-focusing
property, which enables the best detection results on its focal
length. These researches fully considered the RDE detection effect
of the different types of vortex beams, which offers useful
instructions in choosing suitable vortex beams for realistic
applications.

RDE in Compound Motion Measurement
In the actual applications, we usually encounter the compound
motion, e.g., translation, rotation, and other kinds of micro-
motion. Accordingly, the scattered light would experience LDE,
radial Doppler effect [63], RDE, and micro-Doppler effect [64,
65]. These frequency shifts are generally coupled to each other.
Thus, a question arises naturally as to how we can measure them
individually. It was reported that the translational and rotational

velocities of the particles can both be determined by switching
between two modes. They were able to isolate the longitudinal
frequency shift by illuminating a Gaussian beam while measure
the rotational frequency shift by using LG modes. In 2019,
Carmelo et al. put forward a novel three-dimensional
technique that enables the direct and simultaneous
measurement of both the longitudinal and angular speed of
cooperative targets [66], as was shown in Figure 4A.

The rotational Doppler shift could be separated from the
micro-Doppler shift by using two microwave beams of
opposite OAM [67]. Figure 4B shows the spectrogram of a
normal 5.8 GHz incident wave reflected from a spinning
helicoidal reflector, and the scattered waves produce both
linear and rotational Doppler shifts. Figure 4C reveals the
reason why a particle moving along a spiral trajectory will
produce both linear and rotational frequency shifts. By
employing the OAM interferometry of the multi-mode beam,
decoupled measurement of linear velocity and rotational speed
can be achieved [55, 68]. These methods can partially resolve the
decoupled measurements of the compound motion with OAM
beam. It is expected that the use of multidimensional information
about light beams may provide new solutions to this engineering
challenge in the future.

It was found that not only the rotational speed, but also the
flow velocity could be accurately estimated by making use of the
transversal Doppler effect of the returned signals that depend
only on the azimuthal indices of the vortex beams [69], as was
shown in Figure 4D. Also, the fluid flow vorticity could also be
measured in a straightforward way by taking advantage of the
RDE [70], which allowed for a localized real-time
determination of vorticity in a fluid flow with three-
dimensional resolution.

FIGURE 4 | Compound motion detection by RDE of structured light. (A) In-suit detection of a cooperative target’s longitudinal and angular speed using structured
light [66]. (B) Experimental observation of linear and rotational Doppler shift from several designer surface [67]. (C)Measuring the translational and rotational velocities of
particles [38]. (D) Measurement of flow velocity with helical beams of light [69].
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RDE in Nonlinear and Quantum Optics Field
When the circularly polarized beam passes through a spinning
nonlinear optical crystal with three-fold rotational symmetry, it was
found that the second harmonic generation signals may experience

a Doppler effect of three times the spinning speed [24]. Figures
5A,B illustrate the RDE in the linear and nonlinear optical regime.
This demonstration of RDE provided us with an insight into the
interaction of light with moving nonlinear media. By using the post-

FIGURE 5 | RDE in nonlinear optics. RDE in (A) linear and (B) nonlinear optics. The second harmonic generation signal experiences a Doppler shift of three times
[24]. (C) The evolution of RDE of second harmonic generation from a quartz coated with silver mirror [71]. (D) RDE detection by frequency up-conversion [72].

FIGURE 6 | RDE in quantum optics. (A) Quantum entanglement of high order angular momenta [26]. (B) Quantum remote sensing of the angular rotation of
structured objects [74]. It suggests potential applications in developing a noncontact way for angular remote sensing of object.
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selection and beating frequency techniques, researchers further
simplified the conventional nonlinear RDE measurement setup
and successfully observed the RDE of second harmonic generation
waves [71]. As shown in Figure 5C, when the forward propagating
fundamental wave with left- and right-circular polarization pass
through the spinning nonlinear material with three-fold rotational
symmetry, the RDE frequency shift is three times of the spinning
speed [71]. Besides, the RDE also can be detected by using the near-
infrared light to illuminate the rotating object, in which the
rotational frequency shifts can be transferred to the visible
regime after parametric up-conversion [72]. The corresponding
up-conversion detection scheme is shown in Figure 5D.

In addition to those classical methods, quantum remote sensing
with OAM-entangled photon pairs enabled an improved angular
resolution that can be amplified by large OAM values [73]. By using
photonic entanglement of high orbital angular momenta, Flicker
et al. demonstrated a method of increasing the angular resolution in
remote sensing [26]. As shown in Figure 6A, the polarization
entanglement is created in a parametric down-conversion process
and afterward transferred to modes with high quanta of OAM. Also,
Zhang et al. showed that the object’s angular rotational speed can be
measured nonlocally, the corresponding experimental scheme is
shown in Figure 6B. They revealed that the angular sensitivity of the
object in the path of idler photons is proportional to theOAMvalues
of signal photons, which can be considered as a quantum version of
RDE [74].

RDE in Various Bands
Since the RDE has nothing to do with the wavelength of the
detection beam [33]. In recent years, the RDE in the radio domain
is investigated widely [65]. Zhao et al. used the phase
accumulation method to experimentally verify the RDE in the
microwave band [35]. Although the measurement accuracy of the
rotational speed is high, phase accumulation takes relatively long
time and has certain limitations in practical applications. Similar
to the detection technique of the light wave, Brousseau et al.
realized the RDE detection of the microwave at 2.47 GHz by the
spectrum analyzer [75]. Both the rotational speed and the
direction can be measured through this model. The RDE of
uniformly accelerated targets has also been studied in the
radio frequency band by means of time-frequency analysis [76].

For the microwave band, the signal extraction process when
detecting the target is more convenient. However, vortex
electromagnetic waves in the microwave band are difficult to
propagate over long distances. Structured laser can be transmitted
over long distances, but the probe beam is easy to be disturbed by
the atmospheric turbulence [77]. Further, the extraction of weak
light signals under long-distance detection is more troublesome.

CONCLUSION AND PERSPECTIVES

In summary, with the technological advancements in the
structured light generation, propagation, manipulation, and
detection, we have offered a systematic understanding on the
physical origin and behaviors of the RDE, from both fundamental
and applied points of view. We have analyzed the basic
mechanism of the RDE from the perspective of the wave
property of light and the conservation of energy. Moreover,
we have summarized the recent developments in rotational
speed measurement based on RDE, ranging from the
molecular motion to the rotation of macro-objects, and from
linear optics to nonlinear optics, and to quantum optical realms.

It is noted that, although a lot of studies have been conducted
on the fundamental and applied aspects of RDE, there is still a long
way to go in terms of developing a viable system and putting this
technique into practical applications. There are various hurdles to
solve in order to implement detection from the lab to the outside
scale. Firstly, atmospheric turbulence has a significant impact on the
mode purity of an OV beam as it propagates across free space
[77–81]. This is a challenge that must be solved, both for OAM-
based communication and detection applications. Secondarily, the
relative pose between the detection OV beam and the rotating object
has a significant influence on the detection signal [68, 82–84],
therefore the distribution of the RDE signals under different
conditions of motion and positions needs to be further
investigated. Thirdly, the receiving and processing of signals is an
important aspect for the detection system, especially for weak signals
at the photon-counting level [54]. Also, as the RDE is independent of
the wavelength of the beam [75, 76], we can anticipate that an
extension of the RDE into the radar band might lead to some new
discoveries. In future studies, we can imagine that the RDE with
structured light will provide us with more and more surprises.
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