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Bi-directional communication between humans and swarm systems begs for efficient
languages to communicate information between the humans and the Artificial Intelligence
(AI)-enabled agents in a manner that is most appropriate for the context. We discuss the
criteria for effective teaming and functional bi-directional communication between humans
and AI, and the design choices required to create effective languages. We then present a
human-AI-teaming communication language inspired by the Australian Aboriginal
language of Jingulu, which we call JSwarm. We present the motivation and structure
of the language. An example is used to demonstrate how the language operates for a
shepherding swarm guidance task.

Keywords: human-AI teaming, human-swarm teaming, teaming languages, jingulu, human-swarm languages

1 INTRODUCTION

Natural languages are very rich and complex. Human languages have been in place for around
10,000 years and have served humans effectively and efficiently. Even within a single language, there
could be many different varieties or codes, used by specific speaker groups, or maintained for
particular contexts. English for specific purposes is a discipline of language teaching that focuses on
the teaching of English for various professional or occupational contexts, such as English for nursing
or English for legal purposes. These natural languages could be too inefficient for an artificial
intelligence (AI) enabled agent designed for a particular task or use, due to the languages being
highly-complex, thus, creating a space of ambiguity or unnecessary complexity. There is a significant
amount of research in computational linguistics that could help and guide the design of human-
friendly languages for distributed artificial intelligence (AI) systems to enable humans and AI-
enabled agents to work together in a teaming arrangement. Each relationship-type among a group of
agents shape the subset of the language required to allow agents to negotiate meanings and concepts
associated with the particular domain where the relationship-type belongs. Moreover, understanding
the principles for computational efficiency in natural languages has been the subject of inquiry by
computational linguists. By identifying the minimum set of rules (ie grammar) governing a language,
linguists discover the DNA-equivalent of, and morphogenesis for, human languages. Be it through
learning or direct encoding of this minimum set, the concept of computational efficiency can
contribute to an assurance process for a proper coverage of the semantic space required for, and
requirements to reduce impermissible sentences during, an interaction.

Unsurprisingly, culture shapes language and vice-versa [1, 2]. This has led to the diversity of
human languages available today, which vary in grammar, vocabulary and complexity of meaning.
Similar to human systems, in artificial systems language also reflects cultural and social networks. To
situate the contribution of this paper in the current literature, Figure 1 depicts a high-level
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classification of the research done on human-AI languages. The
figure presents six dimensions or lenses that one can see the
literature. These dimensions are formed from the perspective of
who is interacting with whom. We will discuss below three
research directions with particular relevance to the current
work and focus particularly on human-designed languages for
different forms of human-machine interaction. The discussion
together with the figure attempts to compress the wide variety of
contributions made in this space for centuries.

Human-Human languages have a very long history, with
studies that could be traced back to the ancient Greeks. AI-AI
languages have its roots in recent literature, and have been a
fruitful research area, whereby the languages could be emerging
or designed. The literature on the languages required at the
interface between humans and machines, or more specifically
in this paper human-AI systems, has witnessed different
categories of methods to approach the topic. The current
literature can generically be categorised into three research
directions, each with their own cultural traits. The first
research direction aims at designing “computer programming”
languages (see for example [3]), aiming at affording a human with
a language to program a group of robots. This class of languages
allow a human to encode domain knowledge in algorithmic form
for robots to function and can be seen as human’s means to
communicate to the machine. The second research direction
focuses on languages required for communication between an
AI and another, or between an AI and a human. In this branch,
work on designing languages to allow communication among a
group of artificial agents has been primarily dominated by the
multi-agent literature [4] and more recently the swarm systems
literature [5]. When a human interacts with an AI, conversational
AI [6, 7], chatbots and Questions and Answer (Q&A) systems [8]
dominate the recent literature using data-driven approaches and
neural-learning [9]. The third research direction shifts focus away
from human-design of the communication language to the
emergence of communication and language in a group of
agents. A reasonably large body of evolutionary and
developmental robotics literature [10] has dedicated significant
efforts into this research direction. These three research
directions could carry some relevance across all dimensions in
Figure 1, but clearly the amount of relevance is not uniform.

The focal point of this paper is human-AI teaming, especially
within the context of distributed AI systems capable of
synchronising actions to generate an outcome, or what we
call AI-enabled swarm systems. In particular, our aim is to
design a computationally efficient human-friendly language for
human-AI teaming that is also appropriate for human-swarm
interaction and swarm-guidance. The design is inspired by the
Jingulu language [11], an Aboriginal language spoken in parts of
Australia and demonstrated on a swarm guidance approach
known as shepherding [12]. Briefly, the shepherding problem is
inspired by sheepdogs mustering sheep. The shepherding
(teaming) system comprises of a swarm (analogous to sheep)
to be guided, an actuator agent (analogous to a sheepdog in
biological herd mustering) with the capacity to influence the
swarm, an AI-shepherd (analogous to sheepdog cognition) with
the capacity to autonomously guide the actuator agent
(sheepdog body) to achieve a mission, and a human-team
(analogous to farmers) with the intent to move the swarm.
To achieve this goal, the human team interacts with the AI-
shepherd and is required to monitor, understand, and command
it when necessary, as well as take corrective actions when the AI-
shepherd deviates from the human team’s intent. We assume
that the AI-shepherd is more clever than a sheepdog and is
performing the role of the human-shepherd in a biological
mustering setting. Biological swarms such as sheep herds
have been shown to be appropriately modelled by attraction
and repulsion rules amongst the swarm members. The special
characteristic of the Jingulu language is that the language has
only three main verbs: do, go and come. Such a structure is most
efficient for communication in attraction-repulsion equations-
based distributed AI-enabled swarm systems as this paper
shows.

An introduction to Jingulu and swarm shepherding is
presented in Section 2. We then discuss the requirements for
computational efficiency when designing human-AI teaming
languages and propose an architecture in Section 4. A
computationally-efficient human-friendly language for human-
AI swarm teams is then presented in Section 5, followed by a
discussion on the assurance of human-AI teaming language in
Section 6. Conclusions are drawn and future work is discussed in
Section 7.

FIGURE 1 | Classification of literature on communication languages and contribution of this paper.
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2 BACKGROUND

2.1 Aboriginal Languages
Aboriginal people are the traditional owners of the Australian
land. Different tribes occupy different parts of the island.
Australian Aboriginal languages display unique syntactic
properties, and one property in particular is called the non-
configurationality free word order [13]. We offer a simple
introduction to some basic linguistic features to explain this
property.

Syntactic relations describe the minimal components of a
simple sentence that usually consists of subject-verb-object,
which we will abbreviate as SVO. The presence of SVO is a
universal property in the organisation of sentences despite
the existence of variation in the order. Some languages follow
SVO, others VSO, and others SOV. SVO are syntactic
positions that are occupied by noun phrases (NPs), verb
phrases (VPs), and NPs, respectively. English is an SVO
language.

[My daughter] [ate] [her ice cream]
[Subject] [Verb] [Object]
[Pronoun Noun] [Verb] [Pronoun noun]

Non–configurationality describes a principle that applies to
languages whose sentence structure imposes fewer restrictions in
the order of syntactic relations. Greek is a non–configurational
language that allows SVO swapping in a sentence.

[E kore mou] [efage] [To pagoto ths]
[The daughter my] [ate] [The ice cream her]
[Article, noun, pronoun] [Verb (tense/person)] [Article noun
pronoun]
[Subject] [Verb] [Object]
[efage] [E kore mou] [To pagoto ths]
[V] [S] [O]
[To pagoto ths] [E kore mou] [efage]
[O] [S] [V]

Most configurational and non-configurational languages
impose restrictions on the constituent order, that is the order
of words that forms the subject or the verb phrase or the object
phrase. For example, in English, the order of the subject [my
daughter] needs to follow [pronoun + noun] order and not vice
versa. This group of words always moves together as a phrase
(constituent) and cannot be separated.

However, many Aboriginal languages are not only
non–configurational but also display free word order within the
constituent phrases. This means that a noun phrase, that is a group
of words thatmight fill the position of the subject, for example, or the
object, can be split in the sentence. Such languages express meaning,
using inflectional morphology such as prefixes and suffixes that
might indicate, person, gender, tense, aspect, which are limited in the
English language.

This flexibility has also been found in Jiwarli and Walpiri, two
heavily studied Aboriginal languages. Jiwarli language (no longer
spoken), used to be part of the Pilbara region in Western

Australia. Walpiri, is an Aboriginal language spoken in the
Northern Territory:

Example from Walpiri [14]:
[Kurdu-jarra-rlu] [ka-pala] [maliki wajili-pi-nyi] [wita-
jarra-rl]
[child-(two)-] [(Present)] [Dog chase] [Small]

Two small children are chasing the dog. OR Two children are
chasing the dog and they are small.

2.2 The Jingulu Language
The Jingili people live in the western Barkly Tablelands of the
Northern Territory in the town of Elliott. We consulted the
grammar of Jingulu (the language of the Jingili’s people) in
Pensalfini’s dissertation and subsequent book written on the
grammar of the Jingulu language [11].

Similar to many Aboriginal languages, Jingulu displays free
constituent order.

1. Uliyija-nga ngllnja-ju karalu. (SVO)
sun-ERG.f burn-do ground
The Sun is burning the ground.
2. Uliyijanga karalu ngunjaju. (SOV)
3. Ngu njaju uliyijnnga karalu. (VSO)

Jingulu shows also free word order within the Noun Phrases as
seen below.

The Noun phrase in English ‘that stick’ would never be
separated, however in Jingulu, they seem to can be separated.

[Ngunll] [maja-mi] [ngnrru] [darrangku.]
[that] [get] [(Me)] [stick]

Get me that stick.
Jingulu has many interesting features that we will not cover in

this paper. Instead, we will focus on the most prominent feature
of Jingulu, that it is a language with only three primary verbs: do,
go, and come. We will refer to them as light verbs. We are not
aware of any other Aboriginal languages that display this
structure and as such this is perhaps unique for Jingulu.

We argue that this feature makes Jingulu an ideal natural
language for representing spatial movements between entities and
the exchange of communication messages, including commands,
among the agents. To explain this further, we borrow three
examples from [15]. The use of FOC in the following text
indicates ‘contrastive focus’, which is a linguistic marker to
represent where focus is placed in a sentence. This is not a
feature of Jingulu per se, it is part of the linguistic
characterisation linguists use to mark attention in sentences.

Example 1 [15][p.228]

Kirlikirlika darra-ardi jimi-rna urrbuja-ni.
galah eat-go that(n)-FOC galah_grass-FOC
“Galahs eat this grass.”

Example 2 [15][p.229]
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Aja(-rni) ngaba-nya-jiyimi nginirniki(-rni)?
what(-FOC) have-2sg-come this(n)(-FOC)
“What’s this you’re bringing.”

Example 3 [15][p.229]

Ngaja-mana-ju.
see-3MsglO-do
“He is looking at us.”

In the previous examples, the use of do, go and come
represents stationarity at current location, and departure
away from and arrival to current location, respectively. In
the first example, eating the grass indicates that the subject
needs to move away from the subject’s current location by
“going” to the grass. In the second example, questioning what
a person brings depicts a picture of something coming from
the subject’s current location to our location. In the third
example, “looking at us” does not require any movements, the
act could be performed without a change of location. Despite
this simplicity, what is truly powerful in this representation is
the acknowledgement of the abstract concept of a space, that
does not have to be physical in nature. For example, the space
could be a space of ideas where an idea might come to a
person or a person can go to an idea. The explicit spatial
representation is so powerful in the structure of the language.

One distinctive aspect of the Jingulu language is the
structure of the verb. Take for example “see-do,” which is
the third example above. Prior researchers to Pensalfini
explained “do” as an inflectional element representing the
final tense-aspect marker. Pensalfini, however, defines it as
the “verbal head”; the core syntactic verb. “See” in the sentence
is the normalised verb object; a category-less element and root
of the verb. The root does not bear any syntactic information,
only semantic one. The three semantically bleached light verbs,
however, play syntatic and semantic roles. Jingulu has the
smallest inventory of inflecting verbs, that is 3, that have
complex predicates amongst the northern Australian
languages [11].

The verbal structure can, therefore, be described as: Root (See)
+ Light-verb (Do).

Pensalfini saw the final element as the “true syntactic verb,”
which encodes inflectional properties such as tense, mood, and
aspect, as well as “distinctly verbal notions such as associated
motion. These elements fall into three broad classes,
corresponding to the English verbs “come” (3.3), “go” (3.4)
and “do/be” (3.5).”

While the language may appear to be complex or primitive,
depending on perspectives, from a human-human
communication perspective, the above discussion demonstrates
very powerful linguistic features in the Jingulu language that we
will use for human-AI teaming in a human-swarm context. In
particular, the above structure sees the light verb as a semantic
carrier; that is, it is the vehicle that carries the meaning created by
the root. This vehicle offers spatio-temporal meaning, while the
root offers context. These features will be explained later on, in
this manuscript.

2.3 Shepherding
A swarm is a group of decentralised agents capable of displaying
synchronised behaviors despite the simple logic they adopt to
make decisions in an environment. Members in a swarm do not
necessarily synchronise their behavior intentionally. However, for
an observer, the repeated patterns of the coordinated actions they
display is synchronised in the behavior space. It is this
synchronisation that creates observable patterns in the
dynamics that allow members in the swarm to either appear
in certain formations or act to generate a larger impact than the
impact that could have been generated by any of the individuals
in isolation.

The Boids (Bird-oids or Bird-Like-Behavior) model by
Reynolds [16] is probably the most common demonstration of
swarming in the academic literature. The model relies on three
simple rules, whereby each agent is (rule 1) attracted to and (rule
2) aligns its direction with its neighbor, and (rule 3) repulses away
from very nearby agents. Following these three simple attraction-
repulsion equations, the swarm displays complex collective
dynamics.

While the collective boids can swarm, real-world use of
swarming calls for methods to guide the swarm [17–22].
There are several ways to guide the swarm from the inside by
having an insider influence [23] with a particular intent and
knowledge of goals. Another approach is to leave the swarm
untouched and to guide them externally with a different agent
that is specialized in swarm guidance. This approach mimics the
behavior of sheepdogs, where a single sheepdog (the guiding
agent) can guide a large number of sheep (the swarm). Indeed, the
sheep are modelled with two of the boids rules (attraction to
neighbors and repulsion from very nearby agents), with the
addition of a third rule to repulse away from sheepdogs. A
number of similar models exist to implement this swarm-
guidance approach [24–26].

Multiple sheepdogs could be used to herd the sheep, and they
could themselves act as a swarm leading to a setup of swarm-on-
swarm interaction. The implicit assumption in these models is
that the number of sheepdogs is far less than the number of sheep;
otherwise the problem could become uninteresting and even
trivial. In the simplest single-sheepdog model, the sheepdog
switches between two behaviors: collecting a sheep when a
sheep is outside the cluster zone of the herd and driving the
herd when all sheep are collected within the cluster zone of the
herd. When more sheepdogs are used, rules to spread them into
formations and/or coordinate their actions are introduced [24, 25,
27–31].

One aim of different shepherding models is to increase the
controllability of the sheepdog as demonstrated by the number of
sheep it can collect. The two most recent models in the literature
are the one by [26] and an improvement on it by [32]. Both
models use attraction and repulsion forces and smooth
movements by adjusting the velocity vector in the previous
timestep with new intent. The latter model improved the
former with a number of adjustments. One is to skill the
artificial sheepdog to use a circular path to reach a collection
or a driving point and to avoid dispersing sheep on the way. Sheep
have more realistic behaviors when they do not detect sheepdogs.
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In nature, the sheep do not continue to group in the absence of a
sheepdog. Instead, they continue to do whatever their natural
instinct motivates them to do (eating, sleeping, etc); thus, the
latter model does not introduce a bias of continuous attraction to
neighbors in the absence of a sheepdog effect. The latter model
also defined a sheep’s neighborhood based on different sensing
ranges. This is more realistic than the former model which fixes
the number of closest sheep; ensuring every sheep always having a
fixed number of neighbors regardless of where these neighbors
are. Other changes were introduced, which overall improved the
success rate of the guidance provided by the sheepdog. In the
remainder of this paper, we use El-Fiqi et al. [32]’s model.

A fundamental principle in modelling the shepherding
problem is the cognitive asymmetry of agents, where sheep are
the simplest agents cognitively with simple survival goals.
Sheepdogs have more complex cognition than sheep as they
need to be able to autonomously execute a farmer’s intent.
The cognition of farmers/shepherds, however, is more
complex than sheepdogs due to their role which requires them
to have a higher intent with abilities to understand the capabilities
of sheepdogs and commanding them to perform certain tasks. In
our shepherding-inspired system, we separate between the
sheepdog as an actuator and the cognition of a sheepdog. We
call the latter the AI, representing the cognitive abilities of a
sheepdog to interact and execute human intent.

We present the basic and abstract shepherding model
introduced by [32]. While this model has evolved in our own
research to more complex versions, it suffices to explain the basic
ideas in the remainder of the paper. We will use our generalised
notations for shepherding to be consistent with the notations
used in our group’s publications.

The set of sheep are denoted as Π = {π1, . . ., πi, . . ., πN}, where
N is the total number of sheep, while the sheepdog agents are
denoted as B = {β1, . . ., βj, . . ., βM}, where M is the number of
sheepdogs. The agents have a set of behaviours available to choose
from; the superset of behaviours is denoted as Σ = {σ1, . . ., σK},
where K is the number of behaviours available in the system.
Agents occupy a bounded squared environment of length L. Each
sheep can sense another sheep in the sensing range of Rππ and can
sense a dog in the sensing range of Rπβ. The global centre of mass
(GCM) for sheep is denoted by Γtπi . The flock of sheep in this
environment has two states; they are either collected or not. Sheep
are collected when all sheep are located within a radius f(N) of
their GCM. The radius is calculated as:

f N( ) � RππN
2
3 (1)

If all sheep are within distance of f(N) of their GCM, then they
are collected and are ready to be driven as a herd to the goal. The
sheepdog moves to the driving point which is located behind the
herd on the ray from the goal to the GCM. If the sheep are not
collected, the sheepdog needs to identify the furthest sheep to
GCM and move to a collection point to collect that sheep by
influencing it to move towards the GCM of the herd. By
alternating between these two behaviours, in a simple obstacle-
free environment, the sheepdog should be able to collect the sheep
successfully.

All actions in the basic and abstract shepherding model are
represented using velocity vectors; however, these vectors are
called force vectors due to the fact that if the agents are actual
vehicles, the desired velocities need to be transformed into forces
that cause agents to move. For consistency with the shepherding
literature, we will call them (proxies of) force vectors. Below is a
list of all force vectors used in this basic model.

• Sheep-Sheepdog Repulsive Force Ft
πiβj

: repulsion of πi agent
away from βj agents at time t.

• Sheep-Sheep Repulsive Force Ft
πiπ−i : repulsion of πi agent

away from other πk≠i agent at time t.
• Sheep Attraction to Local Herd Ft

πiΛt
πi

: attraction to Local
Centre of Mass for the neighbours of a πi agent at time t.

• Sheep Local Random Movements Ft
eπi
: jittering movements

by the πi agent at time t.
• Sheep Total Force Vector Ft

πi
: movement vector of the πi

agent at time t.
• Sheepdog Attraction to Driving Point Ft

βjd
: driving vector of

the βj agent at time t.
• Sheepdog Attraction to Collecting Point Ft

βjc
: collection

vector of the βj agent at time t.
• Sheepdog Local Random Movements Ft

eβj
: jittering

movements by the βj agent at time t.
• Sheepdog Total Force Vector Ft

βj
: movement vector of the βj

agent at time t.

The total forces acting on the sheep and sheepdog,
respectively, are formed by a weighted sum of the individual
forces. The weights are explained in Table 1. The equations for
total forces are included below.

Ft
πi
� WπΛ × Ft

πiΛt
πi
+Wππ × Ft

πiπ−i +Wπβ × Ft
πiβj

+Weπi × Ft
eπi

+Wπυ × Ft−1
πi

Ft
βj
� Wβjc × Ft

βjc
+Wβjd × Ft

βjd
+Weβj × Ft

eβj

3 HUMAN-SWARM TEAMING

Human-human teaming, albeit still a challenging topic, seems
natural to the extent that most humans would only focus on the
external/behavioural traits required to generate effective teams.
The compatibility among humans has hardly been questioned; all
humans have a brain with similar structure and while their
mental models of the world could be different–thus, requiring
alignment for effective teams–the internal physiological machines
are similar in the manner they operate. When we discuss teaming
among different species, especially when one species is biological
(humans, dogs, sheep, etc) and the other is in-silico (computers
controlling UGVs, UAVs, etc), some of the factors taken for
granted in human-human teaming need to be scrutinised and
looked at with a great level of depth.

A particular focus in this paper is the alignment of
representation language on all levels of operations inside a
machine. Interestingly, in a human, neurons form the nerves
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that sense, the nerves that control the joints and actuators, and the
basic mechanical unit for thinking. While these neurons perform
different functions, they work with similar principles. It seems
within humans, the representational unit in a nervous system, the
neuron, is the unified and smallest representational unit for
sensing, deciding and acting. The representational unit of
concern in this paper sits at a higher level than the
physiological neuron; it sits on the level of thinking and
decision making, where it takes the form we called ‘force vectors’.

We will differentiate between three representations as showing
in Figure 2. The first representation, we call control-
representation, is one where the action-production logic for an
agent is ready for hardware/body/form/shape execution. Control
systems at their lower level are executed in a CPU, GPU, FPGA or
a neural network chip where the output gets transmitted to
actuators. They mostly come in calculus forms. The
mathematics of the control system, even for simple ones, are
not necessarily on the level to be explainable to a general user.
What is important on this level is computational efficiency from
sensing to execution to ensure that the agent acts in a timely
manner, and the assurance of performance to ensure that the
agent acts correctly.

The second representation, we call reasoner-representation, is
where the agent needs to make inferencing to connect its high
level goals and low-level control, create an appropriate set of
actions, and select the right courses of actions to achieve its goals
or purpose. On this level, the agent performs functions that
govern the overall logic that connects its mission to its actions.

The third representation, we call communication-
representation, is where the agent needs to transform its
internal representation for reasoning and action production to
external statements to be communicated to other agents,
including humans, in its environment. This representation is
key for agents to exchange knowledge, negotiate meaning, and be
transparent to gain trust of others in their eco-system.

Take for example the artificial sheepdog, which we will assume
to be a ground autonomous vehicle. Its objective is to collect all
dispersed sheep outside the paddock into the paddock area. It
senses the environment through its onboard sensors and/or
through communication messages received from the larger
system it is operating within. Through sensing, it needs the
following information to be able to complete its mission:
location of sheep, location of goal (paddock), location and size
of obstacles in the environment, and location of other dogs in the

environment. The dog may receive all information about all
entities in an accurate and precise form as it is the case in a
perfect simulated world, or it may receive incomplete or
ambiguous information with noise as is the case in a realistic
environment.

On a cognitive-level, the dog needs to decide which sheep it
needs to direct its attention to, how it will get to them, how it will
influence them to get them tomove, where to take them, and what
to do next until the overall mission is complete. The timescale on
which the cognitive level works on is moderate. We will quantify
this later in the paper. Meanwhile, whatever the cognitive-level
decides, it needs to be transformed into movements and actions.

The control representation takes the relevant subset of the
sensed information and the immediate waypoints the dog needs
to move to and generates control vectors for execution. It needs to
transform the required positions decided on by the cognitive level
into a series of acceleration and orientation information steps that
get transmitted to its actuators (for example, joints and/or
wheels). The time scale this level operates on is shorter than
what the cognitive-level operates on.

Additionally, the dog may need to communicate with its
(human or AI) handler, explaining what it is doing and/or
obtaining instructions. The timescale in which the
communication operates could vary, and the system needs to
be able to adjust this time scale based on the cognitive agents it is
teaming with. For example, the communication could occur more
frequently if the dog is interacting with another AI than if it was
interacting with a human.

Each representational language defines what is
representable (capacity), and thus, what is achievable
(affordance), using such representation. For example, if the
control system is linear, the advantages include: being easy to
analyse and being easy to prove/disprove its stability. We
equally understand its disadvantages for example in
requiring a complete system identification exercise prior to
the design of the controller and its inability to adapt when
context changes. When two or more representational
languages interface with one another, their differences
generate challenges and vulnerabilities. We will illustrate
this point with the three representational languages
discussed for the artificial sheepdog.

The reasoner-representation relies on propositional calculus.
A set of propositions can be transformed to an equivalent binary
integer programming problem. If the communication-
representation is in unrestricted natural language, clearly many
sentences exchanged at the interface level will not be interpreted
properly by the reasoner. In the same manner, when the control-
representation is a stochastic non-linear system, some actions
produced by the controller may not be interpretable by the
reasoner. This requirement for equivalence at the interface
between the three representations impose constraints on which
representation to select. Meanwhile, it ensures that actions are
interpretable at all levels; thus, what the agent does at the control
or cognitive levels can be explained to other agents in the
environment, and requests from other agents in the
environment can be executed as they are by the agent.
Moreover, due to the equivalence in the capacity of the

TABLE 1 | The Library of behaviors observed or performed by the sheepdog.

Desires Weight vector

Sheep desire to cluster WπΛ
Sheep desire to avoid collision Wππ

Sheep desire to avoid sheepdog Wπβ

Sheep desire to stay where they are Weπi

Sheep desire to maintain velocity at t − 1 Wπυ

Sheepdog desire to collect astray sheep Wβj c

Sheepdog desire to drive collected sheep Wβj d

Sheepdog desire to desire to avoid sheep on the way to
collection or driving points

Wβπ

Sheepdog desire to rest Weβj
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representation language at each level, mappings between different
representations are direct mappings; thus, they are efficient.

Last, but not least, once a system is assured on one level, due to
the equivalence of the representation language on all three levels,
the system can be easily assured on another level. For example,
take the case where a system is assured that it will not request or
accept an unethical request. Considering that what the agent
executes at the control level is equivalent to the request it receives
on the communication level, if we guarantee that the mappings
between levels are correct and complete, we can induce that the
control level will not produce an unethical behaviour.

Before departing from the discussion above, the
representation language plays a dual role in a system. On the
one hand, it constraints the system’s capacity to perform. As we
explained above, a linear system can only be guaranteed to
perform well under sever assumptions of linearity. On the other
hand, the representation language equally constrains
affordance. This may not be so intuitive because affordance
is the opportunities that the environment offers an individual
agent to do. An agent is unable to tap into opportunities where
the representation language constrains its action set or the
quality of actions. Due to the trade-offs discussed above, the
decision on which representation language to use needs to be
risk-based to analyse the vulnerability and remedies of the
design choices made during that decision.

In the next section, we will present the requirements for the
human-machine teaming problem, including a formal
representation of the problem, before presenting the Jingulu
swarm language in the following section.

4 HUMAN-AI TEAMING LANGUAGE
REQUIREMENTS

In human-AI teaming, different categories of information assist
in the efficiency of the teaming arrangements and the ability of
the system to adapt [33]. However, these capabilities will not
materialise unless there is a language that allows this information
to flow and to be understood by the humans and the swarm. In
this section, we focus primarily on the requirements for this
language.

4.1 Human-AI Teaming Language
Requirements
The discussion and example presented in the previous section
illustrate the scope of each of the three levels. From this scope, we
will draw and justify the requirements for the Human-Swarm
Language as follows:

1. Contextual Relevance: The representation languages need to
be appropriate for the particular mission the agent is
assigned to do. The representation needs to represent,
and when necessary, enable the explanation of, the
sensorial information in the context within which the
agent operates, the logic used for action production, the
actions produced at a particular level, the intent of the agent,

and the measures that the agent uses to assess its
performance. Put simply, the representation serves the
context; everything the context requires should be
representable by the chosen language at each level.

2. Computational Efficiency: The reasoner-representation
works in the middle between the control-representation
and the communication-representation. The three
representations need to allow the clocks of the three
levels to serve each other’s frequencies. For example, if
the reasoner needs to produce a plan on 0.2 Hz (ie a plan
each 5 s), and the controller is running on 1 Hz, while the
communication system needs to explain the decisions
made in the system on 0.05 Hz, the representation on
each level needs to be computationally efficient to allow
each level to work on these timescales without latencies. In
other words, if it takes 25 s to produce a sentence on the
communication layer, the agent will not be able to catch
up with the speed of action-production. This latter case
will force the agent to be selective in what aspects of its
actions it needs to explain, which could generate
cognitive gaps in the understanding of other agents
in the environment.

3. Semantic Equivalence: A reasoner that is producing a plan
that can’t be transformed intact1 to the communication-
representation will put the dog in a situation that the
handler can’t understand. Similarly, if the control level is
relying on highly non-linear and inseparable functions, it
could be very difficult to exactly explain its actions through
the communication-level. Representation is a language, and
the three representational levels need to be able to map the
meanings they individually produce to each other. Semantic
equivalence is a desirable feature, which would ensure that
any meaning produced on one level has sentences on other
levels that can reproduce it without introducing new
meaning (ie correctness) or excluding some of the
meaning (ie completeness).

4. Direct Syntactic Mapping: The easier it is to map each
sentence on one level to a sentence on a different level, the
less time it will take to translate between different levels.
The direct mapping of syntactic structures from one level to
another contributes to achieving the two requirements of
computational efficiency and semantic equivalence.

In the next sub-section, we will present formal notations
to demonstrate the mappings from the internals of
shepherding and swarm guidance equations to the external
transparent representation enabling the Jingulu-Swarm
based communication language. These mappings are
essential to ensure that the requirements above have been

1While we acknowledge that human communication contains and tolerates
ambiguity, we argue that given the current state of technological advances in
artificial intelligence systems, it is still difficult to allow for ambiguity to prevail in a
human-AI interaction. Therefore, we are constraining the space currently to a
bounded set of statements, where meaning is exact; thus, interpretation can be
done intact if we further assume that the communication channels do not
introduce further noise causing ambiguity in received messages.
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taken into account during the design and have been met
during the implementation phase of the system.

4.2 Interpretability, Explainability and
Assurance of Human-Swarm Systems
Abbass et al. [34]. presented a formal definition of
transparency towards bi-directional communication in
human-swarm teaming systems. The concept of
transparency was based on three dimensions,
interpretability, explainability and predictability. We will
quote these definitions here again for completeness and to
allow us to expand on them for human-AI teaming.

Let L be a set of languages, where each language Li ∈ L is a
set of sentences, Sβ. In this world view, any sentence in any
language will be a member of the superset L; while noting that
communicative sentences by an agent are interpretations of
internal knowledge statements Kβ of the agent. The mapping
from internal knowledge representation Kβ to a sentence Sβ is
achieved by a transformation function R. The reverse is
achieved by R−1. Below is the set of definitions quoted
from [34].

Definition 4.1 (Interpretability). I is an interpretation function
that maps a sentence in one language to a sentence in a second,
potentially the same, language; that is,

I: Sm → Sn, Sm ∈ Li, Sn ∈ Lj, Li,Lj ∈ L (2)

Definition 4.2 (Explainability). E is an explanation function iff,
given a hypothesis Sc0→e, there exists,

E: Sc0→e → S
c0 , Sc0→c1 , Sc1→c2 , . . . , Sck−1→ck , Sck→e{ }
where R−1 S

ci( ) ∈ Kβ (3)

Definition 4.3 (Predictability). P is a prediction function that
takes a subset of axioms and facts, and projects them through
induction or abduction onto a different set of axioms or facts;
that is,

P: Sc → S
e (4)

Definition 4.4 (Transparency). T is a transparency function
that decides on the level of interpretability, explainability and
predictability that will be visible from one agent to another
agent, then implicitly or explicitly forms the language it will
use to communicate this information to the other agents;
that is,

T: I,E,P{ } → Lj (5)

Figure 3 depicts the coupling of the internal decision making
of an agent with the above definitions, leading to a transparent
human-AI teaming setting. Without loss of generality, we will
assume in our example that agents have complete and certain
information. The relaxation of this assumption does not change
the modules in the conceptual diagram in Figure 3, but rather, it

changes the design choices and complexity of implementing each
module.

In Figure 3, an agent senses two types of states, its internal
agent states reflecting its self-awareness, and the environment’s
states representing the states of other agents and the space it is
located within. In shepherding, the sheepdog needs to sense its
own position location (its own state), and the states of the
environment, which consists of the position locations of sheep
and the goal. The sheepdog needs to decide on its goal. This goal-
setting module could choose the goal by listening to a human
commanding the sheepdog or the sheepdog could have its own
internal mechanism for goal setting as in autonomous
shepherding. The goal could be mustering, where the aim is to
herd the sheep to a goal location.

Based on the goal of the sheepdog, its state and the state in
the environment, the agent needs to select an appropriate
behaviour. The behavioural database contains two main
behaviours in this basic model: a collecting and a driving
behaviour based on the radius calculated in Eq. 1. Once a
behaviour is selected, a planner is responsible for sequencing
the series of local movements by the sheepdog to achieve the
desired behaviour. For example, if the behaviour is to “drive,”
the sheepdog needs to reach the driving point using a path that
does not disturb the sheep then modulate its force vectors on
the sheep to drive them to the goal location. The planner will
generate a series of velocity vectors for the sheepdog to follow.
While the planner has an intended state, in a realistic setup, the
desired state by the planner may be different from the actual
state achieved in the environment due to many factors
including noise in the actuators, terrain, weather, or energy
level. The state update function is the oracle that takes the
actions of the agents and updates the states of the agent and the
environment.

The above description explains how the sheepdog makes
decisions. However, an external agent, be it a human or
artificial, needs to operate effectively as a teammate.
Therefore, the sheepdog needs to be able to communicate
the rationale of its decisions. The three factors for transparency
mentioned above are critical in this setting [35]. Explainability
provides teammates the reasons why certain goals, behaviours,
and actions were selected at a particular point of time.
Predictability offers the information for teammates to be
ready for future actions of the sheepdog; thus, it reduces
surprises which could negatively impact an agent’s situation
awareness and trust. The sheepdog is operating with force
vectors as explained above. However, an external teammate
may not understand these force vectors or may get overloaded
when a sheepdog storms it with a large number of force
vectors. This is where the force vectors generated by the
explainability and predictability module need to be
transformed into a language that the agent can use to
interact with other agents. This language needs to be
bidirectional; that is, humans and artificial agents need to
be able to exchange sentences in this language that they can
transform them into their own internal representation. In the
case of sheepdogs, the plain English sentences need to be
transformed to force vectors and vice-versa.
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5 JSWARM: A JINGULU-INSPIRED
HUMAN-SWARM LANGUAGE

Similar to Boids, the shepherding system transforms all swarm
actions into attraction and repulsion equations. In principle, a
whole mission can be encoded in this system. Let us revisit sheep
herding as a mission example to illustrate the application and

efficiency of the JSwarm language. We recall herding as a library
of behaviors that gets activated based on the sheep’s and the dog’s
understanding of a situation. We will use the definitions of a
context and a situation as per [36], where a context is “the
minimum set of information required by an entity to operate
autonomously and achieve its mission’s objectives,” while a
situation is defined as “a manifestation of invariance in a

FIGURE 2 | Generic three-layer representation of AI.

FIGURE 3 | Jingulu inspired Human-AI teaming.
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subset of this minimal information set over a period of time.” In
the herding example, different contexts and situations may
activate different behaviors. We will illustrate these by
categorizing all behaviors as either attraction, repulsion or no-
movements. We will commence our description of the language
by mapping all attractions, repulsions and no-movements forces
to sentences with the verbs “COME,” “GO,” and “DO,”
respectively. We will assume for simplicity that the dog has
complete accurate knowledge of all agents in the environment,
including how the sheep moves. This is only for convenience for
this first iteration of the language to avoid adding unnecessary
complexity.

Table 2 summarises the basic behaviors in shepherding. It is
worth noting that any other required behavior could still be
explained using the attraction-repulsion system. For example, if
the agent wishes to speak, words are directed towards an audience
and thus, the audience becomes the attraction point or the agent
becomes the repulsion point of the message. When an agent
wishes to drop a parcel, the target location of the parcel becomes
the attraction point and the agent becomes the repulsion point.
When an agent wishes to eat, the food-store becomes the
repulsion point of the food and the agent becomes the
attraction point. In each of these examples, there is a frame of
reference, such as the agent, where the world is seen from that
agent’s perspective. In this world view, every behavior in a
mission of any type could be encoded as movements in a
space. For example, this is the underlying fundamental
concept of a transition in a state space, where a transition is a
movement from one state/location in a space to another. When
modelling flow of ideas, an idea is either sent to an agent
(attracted to the agent), created by an agent (the doing of an
agent), or brainstormed by an agent (doing of an agent). The
attraction-repulsion system assumes that things move in one or
more spaces. While the information on space and time are not
required in the simple shepherding example, it is very important
to include information on space and time in our description of the
language when agents operates in different spaces or on different
timescales to ensure that the language is general enough to
capture these complexities.

Each agent has its context encoded in a state-vector,
representing the super-set of all spaces an agent needs to be
aware of. For example, in shepherding, three spaces are

important, the physical space affording an agent with
information on the location of each other agent in the
environment, the group space providing information on the
state of groups and members in the groups (whether the herd is
clustered or not, there is astray sheep or not, if so, how many
stray sheep) and the behavioral space representing the type of
perceived or real behavior an agent or a group of agents are
performing. The previous three spaces are sub-spaces of larger
spaces as shown in Figure 4. Decisions are made by
transforming sensorial information into particular spaces
that an agent operate on. We call these the embedding
spaces, a concept familiar to AI researchers working with
natural language processing. The physical space is a subset
of the embedding space. The behavioural space could be seen
as the externalisation of actions generated in the cognitive
space. The grouping aspects in shepherding are just a subset of
the social space that could extend to social ties and
relationships.

The cognitive level of an agent may focus on generating
movements in the group and behavioral spaces. For example,
the sheepdog would want to collect the astray sheep so that the

TABLE 2 | The Library of behaviors observed or performed by the sheepdog.

Situation Behavior Force vector Sentence

Sheepdog detected Sheep Attraction to Center of Mass Ft
πiΛt

πi
COME to CM

Sheepdog detected Sheep Repulsion from Nearby Sheep Ft
πiπ i

GO away from Nearby Sheep
Sheepdog detected Sheep Repulsion from sheepdog Ft

πiβj
GO away from sheepdog

Sheepdog not detected Sheep perform small local random movements Ft
πiϵ GO Random Direction and Steps

Always Sheep move towards velocity at t − 1 Ft−1
πi

GO velocity(t-1)
Astray sheep detected Sheepdog Attraction to Collection Point Ft

βj c
COME to Collection Point

Sheep Collected Sheepdog Attraction to Driving Point Ft
βj d

COME to Driving Point
Sheep detected on the path Sheepdog Repulsion from nearby sheep Ft

βπ
GO away from nearby sheep

Chaos or natural dynamics Sheepdog remains at current location Ft
βjϵ DO nothing

FIGURE 4 | The information spaces AI-enabled agents and humans
operate within in the shepherding problem.
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group of sheep is clustered together. These movements can be
achieved through a plan that will then generate a sequence of
actions requiring the sheepdog to move in the physical space. The
plan and its associated actions need to be executed within a
particular time-frame; thus, sentences may need to be
parameterised with time.

The previous discussion offers the rationale for the design
choice of the JSwarm langauge, which is presented
formally next.

JSwarm has three types of sentences: sentences to
communicate behaviors, sentences to communicate intent,
and sentences to communicate state information. The state
sentences are relevant when the AI communicates to humans
its states. The behavioural systems are more relevant for
action-production. The intent statements are crucial for
commanding and communicating goals to the AI. Figure 5
depicts the position of JSwarm as a formalism that sits between
humans and AI agents. Each of the three sentence types has a
structure explained below. We describe it in a predicate-logic-
like syntax as an intermediate representation for humans and
AI-enabled agents.

Behavior: Subject.Verb(Space.TimeDelay.
TimeDuration).SupportingVerb(Space.
TimeDelay.TimeDuration).Object
Intents: Subject.DO.SupportingVerb.Object
States:
Subject.DO.SupportingVerb(Space.TimeDuration).Object

We will present below examples to cover the space of each
sentence type mentioned above. We assume all spaces
represented in Cartesian coordinates and time in seconds.

• Behaviour: Subject.Verb(Space.TimeDelay.
TimeDuration).SupportingVerb(Space.TimeDelay.
TimeDuration).Object
• Sheep4.Go((x = 50,y = 70).0.50).Escape(NULL.0.30).Dog1

Now (0 delays), Sheep Sheep4 needs to go to location
(50,70) within 50 s and escape dog Dog1 for 30 s.

• Sheep2.Come((x = 20,y = 15).0.30).Group(NULL.0.10).Herd1
Within 30 s from now, sheep Sheep2 needs to arrive at

location (20,15) to group within 10 s with herd Herd1.
• Dog1.Come((x = 40,y = 40).0.30).Collecting(NULL.0.20).
Sheep5
Within 30 s from now, dog Dog1 needs to start moving

to arrive at location (40,40) and spend 20 s collecting
sheep Sheep5.

• Dog1.Come((x = 70,y = 20).0.30).Driving(NULL.0.15).Herd0
Within 30 s from now, dog Dog1 needs to start moving to
arrive at location (70,20) to drive Herd0 for 15 s.

• Herd1.Do(NULL.0.0).Sitting(NULL.0.20)
Herd Herd1 needs to stay in its current location for 20 s.

• Dog1.Do(NULL.10.0).Sitting(NULL.0.30)
Dog Dog1 needs to wait for 10 s then sit in its location
for 30 s.

• Intents: Subject.DO.SupportingVerb.Object
• Dog1.Do.Herd.Herd1
Dog Dog1 needs to herd group Herd1.

• Herd1.Do.Escape.Dog1
Herd Herd1 needs to escape dog Dog1.

• States: Subject.SupportingVerb(TimeDuration).Object
• Dog1.Do.Collecting(120).Many

Dog Dog1 is collecting many sheep for 2 min.
• Dog1.Do.Collecting(160).Sheep5
Dog Dog1 is collecting sheep Sheep5 for 3 min.

• Dog1.Do.Driving(60).All
Dog Dog1 is driving all sheep for 1 min.

• Dog1.Do.Driving(30).Herd0
Dog Dog1 is driving herd Her0 for 30 s.

FIGURE 5 | JSwarm as mid-layer between AI-enabled agents and
humans.

FIGURE 6 | A depiction of the environment for the shepherding scenario.
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• Dog1.Do.Patrolling(3600).All
Dog Dog1 is patrolling all sheep for an hour.

• Sheep1.Do.Foraging(1,200)
Sheep Sheep1 is foraging for 20 min.

• Sheep1.Do.Escaping(60).Herd1
Sheep Sheep1 is escaping herd Her1 for 1 min.

JSwarm is designed to be a transparent human-swarm
language in a manner consistent with Eq. 5 and the
definition of transparency given in the previous section.
As shown in Figure 5, JSwarm sits at the middle layer
between humans and AI-enabled swarms. We provided in
this paper the direct mappings from JSwarm to force vectors
and vice-versa. This form of interpretability is both sound
and complete. The example presented in the following
section will demonstrate explainability, where the logs of
the JSwarm is a series of expressions providing the intents
and actions taken by the AI-enabled swarm. Predictability
relies on the mental model formed within an agent’s brain
(including computers) for an agent to predict another.
Thanks to the 1-to-1 mapping in JSwarm, and the
simplicity of the abstract shepherding problem presented
in this paper, predictability is less of a concern. While we
argued that JSwarm is transparent in the abstract
shepherding problem, our future work will test this
hypothesis in more complex environments.

6 HUMAN-SWARM LANGUAGE
DEMONSTRATION

The JSwarm language could generate significant amount of
sentences due to its ability to work on the level of atomic
action. It could also generate very comprehensive sentences
due to its ability to work on the behavioural space. The design
relies on the definitions provided in the previous section,
where interpretability is the mapping from the equations of
shepherding to JSwarm syntax presented in this section, and
explainability is the outcome of the sequence of expressions
produced by JSwarm to explain the sequence of behaviours
presented by an agent. In this section, we will present a
scenario for shepherding to demonstrate the use of the
JSwarm language.

Consider a case of a 100 × 100 m paddock with the goal
situated at the top left corner, the sheep are spread around the
centre point with an astray sheep at location (20,20), and the
dog at the goal location. The dog has complete and accurate
situation awareness of the location of all sheep. Its internal
logic determines that it needs to activate its collecting
behaviour to move around the edge of the paddock to
reach the collection point behind the astray sheep. The
collection point is at location (15,15), where its location
sits on the direction vector from the location of the sheep
(20,20) to the location of the centre of the flock (50,50). The
characters in this scenario are labelled D for the dog, A for the
astray sheep, and F for the flock. The dog needs to

communicate its actions every 5 s or when it selects a
different behaviour. Below is a series of messages
announced by the dog in JSwarm to indicate its actions
and what it perceives in the environment. This
environment is depicted in Figure 6.

Dog.Do.Herd.F % Intent communicated that the dog needs to
herd the flock.
Dog.Do.Collecting.A % Intent communicated that the dog is
collecting astray sheep A
Dog.Come(x = 15,y = 15).Collecting.CP % Dog is on its way to
collection point CP for astray sheep.

The above sentence repeats until Dog reaches the collection
point, CP.

Dog.Come(x = 50,y = 50).Collecting.A % Dog is collecting
astray sheep in the direction of the flock centre

The above sentence repeats until sheep A joins the flock or the
dog drifts away from the collection point. We assume the latter, at
which point in time, the dog needs to move towards the new
location of the collection point.

Dog.Come(x = 30,y = 30).Collecting.CP % Dog on its way to
new collection point for astray sheep
Dog.Come(x = 50,y = 50).Collecting.A % Dog collecting astray
sheep in the direction of the flock centre

The above sentence repeats until sheep A joins the flock.

Dog.Do.Driving.F % Dog’s intent change to driving the flock
Dog.Come(x = 75,y = 75).Driving.DP % Dog on its way to
driving point, DP, for the flock

The above sentence repeats until the dog reaches the driving
point.

Dog.Come(x = 100,y = 100).Driving.F % Dog is driving the
flock F towards the goal

The above sentence repeats until sheep are at the goal.

Dog.Do.Rest

While in the above example, we focused on the dog
communicating its actions, the example could get
extended where the dog communicates also its situation
awareness, the sheep communicates their actions and
situation awareness as individuals, and the AI
communicates the sheep flock actions. It is important to
notice that in the above example, we did not use the time
parameters in the language due to the fact that the simulation
for abstract shepherding is normally event-driven rather
than clock-driven. We could also decide to represent
spatial locations in other formats. The exact
representation of the parameters is a flexible user choice.
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7 CONCLUSION AND FUTURE WORK

Effective human-AI teaming requires a language that enables
bidirectional communication between the humans and the AI
agents. While human natural languages could be candidates, we
explained that the richness of these languages come with a cost of
increased ambiguity. The humans and the swarm need to
communicate in an unambiguous manner to reduce confusion
and misunderstanding. Consequently, we defined four main
requirements in the design choice of a language for human-AI
teaming; then we presented a language inspired by the Jingulu
language, an Australian Aboriginal language.

The JSwarm language is the first of its kind Human-AI
Teaming language that is based on direct mappings from the
internal logic, including the equation of motion, of an agent to a
human-friendly language. The language is designed to accurately
reflect the internal attraction-repulsion equations governing the
dynamics of a swarm, including states, intent and behaviours.
JSwarm allows humans and swarms to communicate with each
other without ambiguity and in a form that could be verified. The
language separates semantics from syntax, where the supporting
verb acts as a semantic carrier. While the light verb impacts
syntax, the supporting verb does not affect the syntax of an
expression, thus allowing semantics to be associated and de-
associated freely. This latter feature could utilise an ontology, and
allows the syntactical-layer of the language to remain intact as it
gets applied to different domains, while a replacement of the
ontology changes the semantic layer. Moreover, the free word
order feature in the language could offer a robust communication
setting, where meaning is maintained even if the receiver orders
the words differently.

We proposed a simple grammar and representation of
sentences in the language, which was intentionally selected
such that it mimics the structure of a first-order logical
representation, while being semantically-friendly to human
comprehension. We concluded the paper with an example to
showcase how the language could be used to provide a real-time
log for a dog to communicate its actions in a human-friendly
language.

For our future work, we will extend the design to connect the
JSwarm language as it works on the communication layer with the
representations used on the control and reasoner layers. We will
also conduct human studies to evaluate the efficacy of JSwarm. It
is important that the human usability study to evaluate the
effectiveness of JSwarm takes place with a complex scenario
with appropriate architectures and implementations of the
swarm. The risk of testing the concept in a simple scenario is
that the human will find the scenario trivial and the need for
explanation unwarranted.

While the JSwarm language is explained using a shepherding
example to make the paper accessible to a larger readership, the
language is designed to be application-agonistic and could benefit
any problem where communication between humans and a large
number of AI-enabled agents is required. For example, a swarm
of nano–robots combatting cancer cells could offer a perfect
illustration where the robots have a very simple logic that needs to
be transformed to an explanation to the medical practitioner
overseeing the operation of the system. The medical practitioner
equally needs a language to command the swarm that is simple to
match the internal swarm logic and reduces communication load.
In these applications, the sheepdog could be a chemical substance
that the swarm of nano–robots react to, which is controlled by an
external robot that the medical practitioner needs to command to
guide the swarm. Other applications include a swarm of under-
water vehicles cleaning the ocean or in the mining industry, a
swarm of uncrewed aerial vehicles surveying a large area.
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