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Air transport involves a long-distance journey; it is the main method of transnational travel,
which is also an important connection channel between countries/regions. The aviation
network is one of the core national transportation networks, whose importance is self-
evident. To improve the management efficiency of the aviation network, this study studies
the topological characteristics of the global aviation network in detail. The findings show
that the global aviation network is a scale-free heterogeneous network, and the aviation
network is tolerant of random faults. However, if key nodes are deliberately attacked, the
network structure can easily be destroyed into fragments. To further explore the
importance of nodes, combined with the background of airport mergers or unions, the
node shrinkage method is improved by weighing network edges with the number of edges
and ranking the importance of each node in the aviation network. This study compares the
results of the node importance calculation by the node shrinkage method and improved
weighted node shrinkage method, respectively. The results show that the ranking results
obtained from the weighted node shrinkage method are better than those obtained from
the traditional node shrinkage method. To further verify the validity of the weighted node
shrinkage method, this study conducts a sensitivity analysis by calculating the weights of
nodes and edges with different values. The results imply that the rank changes of node
importance in the top 20 global aviation networks are the same. Therefore, it is important to
find the key nodes in the aviation network and take corresponding protective measures to
protect the stability of the global aviation network and improve the efficiency of the
management of the aviation network.

Keywords: air transportation, key airport identification, weighted node contraction method, aviation network,
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INTRODUCTION

As an effective and convenient transportation mode, air transportation has incomparable advantages
compared with land transportation, especially in long-distance transportation across countries.
According to the statistics released by IATA in 2018, airlines worldwide carried a total of 4.4 billion
passengers on scheduled flights. Since taking an airplane has become a significant choice for citizens
to travel, air transportation is crucial in globalization. However, this industry suffered a great deal due
to the outbreak of the Covid-19 pandemic. Indeed, airline operations were paralyzed by the collapse
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of any route triggered by the sudden circuit breaker, which
considerably impacted the airline network. Therefore, to cope
with the emergent situation in the airline network, it is critical to
analyze the structural characteristics of the network.

The current research on aviation networks mainly focuses on
several basic properties, such as the topology, resilience,
robustness, association structure, and identification of a key
node, in an airline network. Zhang et al. [1] investigated the
Chinese air route network based on the complex network theory.
Verma et al. [2] built a world airline network and analyzed the
corresponding characteristics. Wang et al. [3] uncovered the
important intrinsic properties of the structure of the airport
network. Lordan and Sallan [4] studied the Europe airline
network. The United States airline network was investigated
by Lin and Ban [5]. Cheung et al. [6] studied the evolution of
the global air transport network over the period 2006–2016.

Later, Liu et al. [7] studied the reliability of complex networks
and analyzed the criticality nodes of the networks. Wen et al. [8]
discussed the Chinese airport network as multilayer networks
using the complex network method. Roy et al. [9] studied the
vulnerability of the airspace system using topological metrics
from the perspective of the network model. Sun et al. [10] studied
the criticality of nodes in air transport networks by three
domains, providing a better understanding of the same. Du
et al. [11] proposed a centrality measure named TOPSIS, and
the efficiency and practicability of TOPSIS were evaluated via the
susceptible-infected model. At present, Truong [12] used neural
networks and Monte Carlo simulation to estimate the impact of
COVID-19 on medium- and long-term air travel, finding that air
transportation was difficult to recover in a short time. Yun [13]
combined an entropy weight method with a centrality algorithm
to calculate the importance of each node and ranked the nodes by
the calculated importance in the global aviation network. Ren
[14] established an aviation sector network model by the schedule
of China. In the meantime, he also proposed a node ranking
algorithm through a variation coefficient method and ranked the
airports in the Chinese aviation network.

For the key node ranking problem of the aviation network, most
scholars mainly considered the attribute of the nodes and the
topology of the whole network. However, they ignored the
interactions among the nodes. In the actual aviation network,
airlines is an exceedingly vital factor that affects the significance of
the airport. For the ranking algorithm of node importance, this
study proposes a node contraction algorithm based on the edge
betweenness to identify the key nodes in the global airline network.

The remainder of this manuscript is organized as follows.
Section 2 introduces the methodology of the aviation network
analysis. Section 3 presents the practical application and analysis
of the results. Section 4 describes the sensitivity analysis. The
conclusions are provided in Section 5.

AVIATION NETWORK ANALYSIS

Centrality Measurement Algorithm
Due to the complexity of the network, the structural
characteristics of the network and the interactions between the

nodes should be analyzed. In general, the following key node
algorithms are commonly used: degree centrality (DC) [15, 16],
betweenness centrality (BC) [17, 18], closeness centrality (CC)
[19], and eigenvector centrality [20] algorithms.

1) Degree centrality

DC is the most direct measure of node centrality, calculating
the weight of a node degree in the network. DC of a node is
calculated as

DC(i) � di

∑jdj
(1)

where di denotes the degree of node i and∑
j
dj represents the sum

of the degree of all nodes in the aviation network.

2) Betweenness centrality

BC is a centrality measurement model that relates to the
shortest path, which is the number of the shortest path
through the node. BC of node i is calculated as

BC(i) � ∑
i≠j≠k∈V

σjk(i)
σjk

(2)

where σjk represents the number of shortest paths between node i
and node j and σjk(i) denotes the number of shortest paths
between node i and node j that through node i.

3) Closeness centrality

CC also is a vital indicator that reveals the importance of the
nodes, calculating the overall distance from one node to other
nodes in the airline network. In an airline network, if a node is
closer to other nodes, the CC of the node is greater. CC of a node
is calculated by the following formula:

CC � |V| − 1
∑i≠vdi

(3)

where |V| is the number of nodes in the airline network and ∑
i≠v

di
denotes the sum of columns of node i in the adjacency
matrix.

4) Eigenvector centrality

Eigenvector centrality focuses on the importance of a node
by measuring the importance of neighboring nodes in the
airline network. Eigenvector centrality is an algorithm that
measures the connectivity between these nodes, which
indicates that the influence of a node connected to a node
with a high score is greater than that of a node connected to a
node with a low score. The eigenvector centrality of a node is
calculated as follows:

We assume M � (mij) as an adjacency matrix of the airline
network; then we obtain

λx � xM (4)
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Since λ is a constant and λ ≠ 0, we know that

EC(i) � xi � 1
λ
∑
k

mkixk (5)

Calculation of Cohesiveness of Aviation
Network by Nodal Contraction Method
The node contraction method [21] is a model to measure the
importance of each node in a network. The process is to form a
new network by absorbing the neighbors of a node into a new
node and establishing connected edges with the neighbors of the
neighboring nodes. Further, the importance of the node is
measured by comparing the cohesiveness of the network after
the contraction of different nodes. In general, the greater the
cohesiveness of a node, the higher the importance of the node. A
schematic diagram of the node contraction process is shown in
Figure 1.

In the viewable networks, the cohesiveness of the network is
defined as follows:

Ψ(G) � 1
NL

� N − 1
2∑1 ≤ i≤ j≤Ndij

(6)

where Ψ(G) is the cohesiveness of the viewable network G, L is
the average shortest path, and N is the number of the nodes.

Then, the importance of nodes can be expressed by the
following equation:

φ(i) � 1 − Ψ(G)
Ψ(Gi) (7)

Through Equations 6 and 7, it could be determined that the
importance of a node mainly relates to the degree and position.
Furthermore, we should take the two indicators, both DC of the
node and BC, into consideration, when evaluating the importance
of the connected point. When the DC of the node is lager, the
degree of the node is large. While the number of nodes after the
node contraction in the network is small, the cohesiveness of the
airline network is large. Thereafter, the definition of BC is the
number of shortest paths through the node in all node pairs. If a
node with a large BC is contracted, the average shortest path that

newly generated network will be greatly reduced. As a
consequence, the cohesiveness of the airline network will be
greater.

Node Contraction Method Considering the
Inter-Airport Correlation
At present, for the model to identify the key node in the complex
network, the literature focuses on the study about the unweighted
network. However, if only the topological structure of the
network is assessed, it may fail to analyze the importance of
the aviation network effectively. Therefore, the importance of
connected edges between airports should be taken into
consideration. Then, suitable and critical airports can be better
found. Based on the analysis above, this study not only considers
the importance of connected edges between airports but also
analyzes the importance of nodes in aviation networks.

Edge betweenness is similar to BC of a node. Moreover, node
betweenness is the number of the shortest path through the node,
while edge betweenness is the number of the shortest path
through the edge. For the definition of edge betweenness, we
regard edge betweenness as the importance of the connected
edges in the aviation network. Then, the importance of a node
under the improved node contraction calculus can be defined as
follows:

INCM(i) � αIMC(i) + β ∑
e∈{Eij}

EBCi(j) (8)

where IMC(i) represents the importance of contraction of node i
and EBCi(j) denotes the importance between node i and its
neighbor node j. Eij is the set of all nodes connected to nodes; α
and β are the weights of two importance degrees, respectively, and
α + β � 1.

Then, EBCi(j) is calculated as follows:

EBCi(j) � ∑
s,tϵV

σ(s, t| j)
σ(s, t) (9)

where V denotes a set of all nodes, σ(s, t) is the number of the
shortest path between node s and node t, and σ(s, t| j) is the
number of the shortest path through edge eij.

FIGURE 1 | Node contraction process.
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Solution of the Algorithm
In summary, the calculation steps for this framework are shown
in Figure 2. Step 1: Find the adjacency matrix of the global
airline network. Step 2: Calculate the set of edge betweenness
EBCi in the aviation network. Step 3: Calculate the shortest path
between all pairs of nodes, and obtain initial cohesiveness. Step
4: Contract nodes to obtain a new network, and calculate
cohesion of the new network. Step 5: Normalize cohesiveness
and the set of edge betweenness separately. Step 6: Calculate the
importance of the i th node. Step 7: Rank the importance of all
nodes.

PRACTICAL APPLICATION AND ANALYSIS
OF RESULTS

Aviation Network Structure
In this study, the global flight information of 2018 is collected and
integrated. If there are flights between two airports, it can be
considered that there is a connected edge. Otherwise, there is no
connected edge between these two airports. Through integration
and analysis of the global flight data of 2018, it is found that there
are 3,154 airports and 18,592 routes in the global aviation
network. The structure diagrams of the aviation network are

presented in Figure 3, and Table 1 shows the statistical
characteristics of the aviation network.

In Table 1, the density of the global aviation network is 0.004.
It is obvious that the number of flights in the aviation network is
still relatively sparse. Meanwhile, the average path length and
diameter are 3.691 and 12, respectively, indicating that the
average number of airports to pass through from one airport
to another is 3.961, with the maximum number of airports to pass
through being 12. Among other things, the coefficient of
homogeneity is −0.017, which indicates the connected edges
between airports that tend to connect with airports that are
not like their own in the aviation network. That is, the global
aviation network is heterogeneous.

Figure 4 shows the degree distribution of the aviation
network, where the blue circles are the real degree distribution
and the black line is the result of fitting the degree distribution
with an R2 of 0.91. Therefore, the degree distribution of the global
airline network is a power-law distribution with scale-free
characteristics.

To further verify the effectiveness of the importance
calculation of nodes under this model, this study simulates the
disease transmission 100 times by the SI model with the top
20 nodes in the node contraction algorithm and the improved
node contraction method as the source of transmission,
respectively. At last, the average value of the infected nodes
over time is calculated. The results are shown in Figure 5A.
By analyzing the simulation results, it is found that the improved
node contraction method starts to converge at step 118, while the
unimproved nodal contraction method starts to converge at
step 127.

Correlation of Degree With Degree
The correlation between the degree of the nodes is used to
indicate the preference of the linkage of the nodes. The
average degree of the adjacent points of node i is specified as
follows:

knn,i � 1
ki

∑
j∈V(i)

(10)

FIGURE 2 | Flow diagram of the solution of the algorithm.

FIGURE 3 | Air transportation network.
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where ki denotes the degree of node i. Node j is connected to node
i, while kj denotes the degree of node j. Then, the average degree of
the adjacent nodes of the node with degree k is specified as follows:

knn(k) � 1
Nk

∑
i,ki�k

knn,i (11)

When knn(k) increases as k increases, nodes with a high
degree tend to connect to other nodes with a high degree,

which indicates a positive degree correlation (or assortativity).
When knn(k) decreases as k increases, it implies that the degree
correlation is negative. Furthermore, if knn(k) is constant, the
degrees of the nodes are uncorrelated. As shown in Figure 5,
when k is small (k is smaller than 15), the nodes with a high

TABLE 1 | Parameters of the global airport network.

Number of
Nodes

Average Degree Average Path
Length

Average Clustering
Coefficient

Diameter Density Coefficient of
Homogeneity

3,154 11.789 3.961 0.631 12 0.004 -0.017

FIGURE 4 | Degree distribution of the air transportation network.

FIGURE 5 | Relationship between the average degree of the adjacent
nodes (knn(k)) and the degree (k) in the global aviation network.

FIGURE 6 | Relationship between the average betweenness of the
adjacent nodes ((gnn(k))) and the betweenness (k) in the global aviation
network.

FIGURE 7 | Relationship between the clustering coefficient and the
degree of the node in the global aviation network.
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degree tend to connect to nodes with a high degree, which
means that the degree correlation is positive. When k is
between 15 and 200, knn(k) and k are negatively correlated,
indicating that the nodes with a high degree tend to connect to
other nodes with a low degree. When k is larger than 200, the
degree correlation is positive again, which means that the
nodes with a high degree are inclined to connect to other
nodes with a high degree.

Betweenness Correlation
Betweenness correlation depicts the preference of nodes to select
connections with other nodes based on the value of betweenness.
The following is the average betweenness of the adjacent nodes of
the node whose betweenness is g:

gnn,i � 1
ki

∑
j∈V(i)

gj (12)

FIGURE 8 | Selection of different nodes as the source of propagation.

TABLE 2 | Ranking of airport importance (top 20).

Ranking Closeness
Centrality

Degree
Centrality

Betweenness
Centrality

Eigenvector
Centrality

Improved Node
Contraction
Method

1 FRA AMS CDG FRA TUF
2 CDG FRA LAX AMS AZI
3 LHR CDG DXB CDG MEM
4 AMS IST ANC MUC ERF
5 DXB ATL FRA LHR MPN
6 LAX ORD AMS FCO LBB
7 JFK PEK PEK IST LCY
8 YYZ MUC ORD ZRH YYY
9 IST DFW YYZ BCN DNZ
10 MUC DME IST MAD WGA
11 ORD DXB GRU BRU JHM
12 PEK LHR LHR JFK TBN
13 FCO IAH NRT DUB LUK
14 NRT DEN SYD DUS HUN
15 EWR LGW SEA MAN NLK
16 ICN BCN BNE LGW DIL
17 ZRH JFK SIN VIE HOB
18 MAD FCO DFW DXB PBG
19 HKG MAD ATL CPH DAC
20 IAH EWR DME EWR LFT

Frankfurt am Main International Airport (FRA), Charles de Gaulle International Airport (CDG), London Heathrow Airport (LHR), Amsterdam Airport Schiphol (AMS), Dubai International
Airport (DXB), Los Angeles International Airport (LAX), John F Kennedy International Airport (JFK), Lester B. Pearson International Airport (YYZ), Atatürk International Airport (IST), Munich
International Airport (MUC), Chicago O’Hare International Airport (ORD), Beijing Capital International Airport (PEK), Leonardo da Vinci–Fiumicino Airport (FCO), Narita International Airport
(NRT), Newark Liberty International Airport (EWR), Incheon International Airport (ICN), Zürich Airport (ZRH), Adolfo SuárezMadrid–Barajas Airport (MAD), Chek Lap Kok International Airport
(HKG), George Bush Intercontinental Houston Airport (IAH).
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where ki denotes the degree of node i. Node j is connected to
node i, while gj denotes the betweenness of node j. Then, the
average betweenness of the adjacent nodes of the node with
betweenness value k is expressed as follows:

gnn(g) � 1
Ng

∑
i,gi�g

gnn,i (13)

The overall distribution of the betweenness of the adjacent
nodes shows no obvious tendency to the node’s betweenness (g),
as shown in Figure 6. The betweenness of the adjacent nodes of
the node with smaller betweenness varies widely.

Cluster-Degree Correlation
Cluster-degree correlation is used to describe the correlation
between the node and the clustering degree of its connected
nodes. As presented in Figure 7, when the node degree value is
less than 50, the average clustering coefficient of nodes is roughly
stable (between 0.3 and 0.45). If the node degree value is between
50 and 200, the average clustering coefficient shows an upward
trend, indicating that airports with higher degree values tend to
cluster. Meanwhile, the average clustering coefficient shows a
downward trend when the node degree value is large (k > 200).
The clustering coefficient varies between 0.35 and 0.45, which
indicates that the airports with the largest degree do not cluster
together.

Effectiveness of Key Node
To validate the effectiveness of this algorithm, this study utilizes
DC, CC, BC, the eigenvector centrality, and the improved node
contraction method. Then, the top 20 nodes ranked under these
models are selected as propagation sources for disease

propagation simulation through the SI model. The simulation
results are shown in Figure 8B. Moreover, although the improved
node contraction method ranks last in terms of the number of
infections at the beginning of transmission, its transmission
efficiency accelerates significantly over time and converges
rapidly over the other models. In summary, the improved
node contraction method proposed in this study is effective.

Table 2 shows the results of the top 20 airport rankings based
on the four algorithms mentioned above with the improved node
contraction method. The top 20 airports are Frankfurt am Main
International Airport (FRA), Charles de Gaulle International
Airport (CDG), London Heathrow Airport (LHR), Amsterdam
Airport Schiphol (AMS), Dubai International Airport (DXB), Los
Angeles International Airport (LAX), John F Kennedy
International Airport (JFK), Lester B. Pearson International
Airport (YYZ), Atatürk International Airport (IST), Munich
International Airport (MUC), Chicago O’Hare International
Airport (ORD), Beijing Capital International Airport (PEK),
Leonardo da Vinci–Fiumicino Airport (FCO), Narita
International Airport (NRT), Newark Liberty International
Airport (EWR), Incheon International Airport (ICN), Zürich
Airport (ZRH), Adolfo Suárez Madrid–Barajas Airport (MAD),
Chek Lap Kok International Airport (HKG), and George Bush
Intercontinental Houston Airport (IAH). It is obvious that the
importance of the critical nodes calculated by different models is
different, which is mainly due to the different contexts and
demand contexts where the critical nodes are created.
However, the simulation results of the rank of critical nodes
under these algorithms through the SI model also validate that the
construction of these algorithms is effective. In general, when we
select a different model to rank the importance of critical nodes,
although the results will be different, the algorithm is feasible.

TABLE 3 | Ranking of airport importance by different α (top 20).

Ranking 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 TUF TUF TUF TUF TUF TUF TUF TUF TUF
2 MEM AZI AZI AZI AZI AZI AZI AZI AZI
3 AZI MEM MEM MEM MEM MEM ERF ERF ERF
4 PBG ERF ERF ERF ERF ERF MEM MEM MEM
5 ERF MPN MPN MPN MPN MPN LBB LBB LBB
6 MPN PBG LBB LBB LBB LBB MPN MPN LCY
7 WGA LBB PBG WGA YYY LCY LCY LCY MPN
8 LBB WGA WGA YYY WGA YYY YYY DNZ DNZ
9 YYY YYY YYY DNZ LCY DNZ DNZ YYY YYY
10 DNZ DNZ DNZ LCY DNZ WGA WGA WGA JHM
11 GYN LCY LCY PBG PBG JHM JHM JHM WGA
12 LCY GYN GYN HUN TBN TBN TBN TBN TBN
13 HUN HUN HUN NLK HUN LUK LUK LUK LFT
14 NLK NLK NLK TBN JHM HUN HUN LFT LUK
15 MIA TBN TBN GYN NLK NLK DIL HOB HOB
16 ASP DIL LUK LUK LUK DIL HOB DIL TYN
17 DIL LUK DIL DIL DIL HOB NLK HUN DIL
18 TBN MIA MIA JHM HOB PBG LFT TYN MSS
19 LUK ASP JHM DAC GYN DAC DAC NLK HUN
20 RFD DAC ASP HOB DAC LFT MSS MSS NLK

Tours-Val-de-Loire Airport (TUF), Chicago Rockford International Airport (RFD), Bateen Airport (AZI), Plattsburgh International Airport (PBG), Erfurt Airport (ERF), Mount Pleasant Airport
(MPN), Wagga Wagga City Airport(WGA), Lubbock Preston Smith International Airport (LBB), Mont Joli Airport (YYY), Denizli ardak Airport (DNZ), Santa Genoveva Airport (GYN), London
City Airport (LCY), Hualien Airport (HUN), Norfolk Island International Airport (NLK), Miami International Airport (MIA), Alice Springs Airport (ASP), Presidente Nicolau Lobato International
Airport (DIL), Waynesville-St. Robert Regional Forney field Airport (TBN), Cincinnati Municipal Lunken Airport (LUK), Chicago Rockford International Airport (RFD).
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The United States has eight airports and Australia,
Bangladesh, Canada, Timor-Leste, The Falk Islands, France,
Germany, Norfolk Island, Taiwan, Turkey, the United Arab
Emirates, and the United Kingdom each have one airport in
the global top 20, according to a significant ranking of airports
with the improved node contraction method. This shows that the
critical nodes in the global aviation network are mainly
concentrated in Western countries. Among them, the
United States is the main country, which also indicates that
air travel is an exceedingly significant means of transportation
between American cities.

SENSITIVITY ANALYSIS

This study uses different α to verify the effectiveness of the
algorithm, and α + β � 1. The nodes are ranked after the
calculation of the importance of each node in the aviation
network. The results are presented in Table 3. By analyzing
Table 3, it is found that the top-ranked airport has always been
Tours-Val-de-Loire Airport in France; as the value of α continues
to get larger, the order of the airports after rank three begins to
change. However, these airports are in the top 20, with onlyminor
changes in ranking. Therefore, the improved node contraction
method is effective.

CONCLUSION

This study focuses on the analysis of the global aviation network
based on the complexity network model. In terms of the
structural characteristics and degree distribution in aviation
networks, it is found that the global aviation network is a
scale-free heterogeneous network. Moreover, the scale-free
network is highly tolerant of random faults because of the
existence of key nodes in the network. If errors occur
randomly, the number of key nodes is so small that they are
hardly affected, and deleting other nodes has little impact on the
network structure. However, if key nodes are deliberately
attacked, the network is easily damaged. Therefore, the

identification of key nodes is extremely vital to ensure the
security and stability of the global aviation network.

With the background of airport mergers, the node contraction
method is improved to identify key nodes in a network. Based on
the structural characteristics, the concept of edge betweenness is
introduced, and the importance of connected edges to improve
the node contraction method is considered. To examine the
importance of nodes and identify the key nodes in a
multidimension way, the node centrality, node betweenness,
and edge betweenness are integrated. This research has
significant implications for the security and stability of the
global aviation network. Besides, it also lays a noticeable
foundation for research on how to improve the efficiency of
the aviation network.
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