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We present a unified approach to multi-agent autonomous coordination in complex and
uncertain environments, using path planning as a problem context. We start by posing the
problem on a probabilistic factor graph, showing how various path planning algorithms can
be translated into specific message composition rules. This unified approach provides a
very general framework that, in addition to including standard algorithms (such as sum-
product, max-product, dynamic programming and mixed Reward/Entropy criteria-based
algorithms), expands the design options for smoother or sharper distributions (resulting in
a generalized sum/max-product algorithm, a smooth dynamic programming algorithm and
a modified versions of the reward/entropy recursions). The main purpose of this
contribution is to extend this framework to a multi-agent system, which by its nature
defines a totally different context. Indeed, when there are interdependencies among the
key elements of a hybrid team (such as goals, changing mission environment, assets and
threats/obstacles/constraints), interactive optimization algorithms should provide the tools
for producing intelligent courses of action that are congruent with and overcome bounded
rationality and cognitive biases inherent in human decision-making. Our work, using path
planning as a domain of application, seeks to make progress towards this aim by providing
a scientifically rigorous algorithmic framework for proactive agent autonomy.
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1 INTRODUCTION

Decision-making problems involve two essential components: the environment, which represents the
problem, and the agent, which determines the solution to the problem by making decisions. The
agent interacts with the environment through its decisions, receiving a reward that allows it to
evaluate the efficacy of actions taken in order to improve future behavior. Therefore, the overall
problem consists of a sequence of steps, in each of which the agent must choose an action from the
available options. The objective of the agent will be to choose an optimal action sequence that brings
the entire system to a trajectory with maximum cumulative reward (established on the basis of the
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reward obtained at each step). However, when the problem
becomes stochastic, the main thing to pay attention to is how
to evaluate the various possible rewards based on the intrinsic
stochasticity of the environment. The evaluation of the reward on
the basis of the probabilistic transition function leads in fact to
different reward functions to be optimized. The first part of this
work will show how it is possible to manage these different
situations through a unified framework, highlighting its potential
as a methodological element for the determination of appropriate
value functions.

The present work aims to extend this framework to manage
the behavior of several interdependent autonomous agents who
share a common environment. We will refer to this as a multi-
agent system (MAS) [1]. The type of approach to a MAS problem
strongly depends on how the agents interact with each other and
on the final goal they individually set out to achieve. A “fully
cooperative” approach arises when the reward function is shared
and the goal is to maximize the total sum of the rewards obtained
by all the agents. The cooperative MAS can be further subdivided
into “aware” and “unaware” depending on the knowledge that an
agent has of other agents [2]. Moreover, the cooperative aware
MAS can be “strongly coordinated” (the agents strictly follow the
coordination protocols), “weakly coordinated” (the agents do not
strictly follow the coordination protocols), and “not
coordinated.” Furthermore, the agents in a cooperative aware
and strongly coordinated MAS can be “centralized” (an agent is
elected as the leader) or “distributed” (the agents are completely
autonomous). Conversely, a “fully competitive” approach ensues
when the total sum of the rewards tends to zero, and the agents
implicitly compete with each other to individually earn higher
cumulative rewards at the cost of other agents.

In various applications, ranging from air-traffic control to
robotic warehouse management, there is the problem of
centralized planning of the optimal routes. Although dynamic
programming (DP) [3, 4] provides an optimal solution in the
single-agent case, finding the optimal path for a multi-agent
system is nevertheless complex, and often requires enormous
computational costs. Obviously there are some research efforts
that investigate MAS using DP [5, 6], however, they are not
directly focused on the solution of a path planning problem, but
rather on solving a general cooperative problem. Furthermore, it
is worth noting that many research efforts are devoted to the
application of reinforcement learning (RL) [7, 8] to MAS that
constitutes a new research field termedmulti-agent reinforcement
learning (MARL) [9–11]. The main problem with reinforcement
learning is the need for a large number of simulations to learn the
policy for a given context, and the need to relearn when the
environment changes [12]. Indeed, it is essential to understand
that the agent (being autonomous but interdependent on others)
must consider the actions of other agents in order to improve its
own policy. In other words, from the agents’ local perspective, the
environment becomes non-stationary because its best policy
changes as the other agents’ policies change [9]. Moreover, as
the number of agents increase, the computational complexity
becomes prohibitively expensive [11].

Finally, previous works that approach the problem of path
planning in a MAS context (both centralized and decentralized)

do not consider regions with different rewards, ending up simply
generating algorithms whose solution is the minimum path
length [13]. Consideration of maps with non-uniform rewards
is salient in real world scenarios: think of pedestrians that prefer
sidewalks, or bikers who prefer to use bikeroutes, or ships that
may use weather information to choose the best paths, etc.

The main reason for focusing on a particular problem of
interest lies in the fact that knowledge of it can somehow speed up
the calculations. In particular, with regards to path planning, if
the goals are known to each agent a priori (as we will discuss in
this work) the appropriate evaluation of the paths can be obtained
using pre-computed value functions. In this case, the optimal
paths can be determined without learning the policy directly, but
by obtaining it on the basis of the information available from
other agents. Through this work, we will show exactly how, using
the knowledge of the problem and a factor graph in reduced
normal form (FGrn) [14, 15], it is possible to find the optimal path
in a MAS with minimal computational costs, guaranteeing an
optimal solution under certain scheduling constraints. The multi-
agent extension of the framework will be achieved by creating a
forward flow, which will use the previously computed single-
agent backward flow to enable decision making (recalling the
classic probabilistic use).

Section 2 presents the Bayesian model and the corresponding
factor graph in reduced normal form for the single agent case. This
section shows the generality of the factor graph approach by
introducing the main equations for the calculation of the value
functions related to the various versions of the algorithms from
probabilistic inference and operations research. Section 3 deals
with the multi-agent problem, highlighting the algorithmic
solution that uses the forward step coupled with the single-
agent backward step, while Section 4 shows some simulation
examples. Finally, in Section 5, the relevant conclusions are drawn.

2 THE SINGLE-AGENT SCENARIO

When the outcomes generated by the actions are uncertain, because
partly under the control of the agent and partly random, the
problem can be defined as a Markov decision process (MDP)
[16, 17]. This discrete-time mathematical tool forms the
theoretical basis for the modeling of a general class of sequential
decision problems in a single-agent scenario, and consequently the
well-known DP, RL, and other classical decision algorithms
basically aim to solve an MDP under various assumptions on
the evolution of the environment and reward structure.

Mathematically, at any discrete time step t, the agent of a MDP
problem is assumed to observe the state St ∈ S and chooses action
At ∈ A. If the sets of states and actions (S and A) have a finite
number of elements, the random process St is described as a
discrete conditional probability distribution, which can be
assumed to be dependent only on the previous state and action

p st+1|st, at( ) � Pr St+1 � st+1|St � st, At � at{ }
for each admissible value of the random variables st+1, st ∈ S, and
at ∈ A. At the next time step, having moved to the state St+1, the
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agent receives a reward r(st, at) ∈ R ⊂ R determined according
to the previous state and action, thanks to which it will
understand the goodness of the previous action.

A Bayesian representation of the MDP can be obtained by
adding a binary random variable Ot ∈ {0, 1} (that denotes if the
state-action pair at time step t is optimal or not) to the Markov
chain model determined by the sequence of states and actions
[18–20].

This addition (Figure 1) gives the resulting model the
appearance of a hidden Markov model (HMM), in which the
variable Ot corresponds to the observation. In this way, at each
time step, the model emits an “optimality”measure in the form of
an indicator function, which leads to the concept of “reward”
necessary to solve the problem of learning a policy π(at|st)
(highlighted in red in Figure 1) that maximizes the expected
cumulative reward. Assuming a finite horizon T, 1 the joint
probability distribution of the random variables in Figure 1
can therefore be factored as follows

p s1, a1, o1, . . . , sT, aT, oT( ) � p s1( )p aT( )p oT|sT, aT( )

× ∏T−1
t�1

p st+1|st, at( )p at( )p ot|st, at( )

where p(at) is the prior on the actions at time step t. In other
words, the introduction of the binary random variable Ot

represents a “trick” used by the stochastic model to be able to
condition the behavior of the agent at time step t, so that it is
“optimal” from the point of view of the rewards that the agent can
get. Specifically, defining with c (st, at) the general distribution of
the random variable Ot, we obtain that when Ot = 0, there is no
optimality and

p Ot � 0|st, at( ) ≜ c st, at( )∝U st, at( ).
where U(st, at) is the uniform distribution over states and
actions, implying the agent has no preference to any particular
state and action of the MDP. Vice-versa optimality with Ot = 1
corresponds to

p Ot � 1|st, at( ) ≜ c st, at( )∝ exp r st, at( )( )

where r (st, at) is the reward function and the exponential derives
from opportunistic reasons that will be clarified shortly. Since
what really matters is the optimal solution obtained by
conditioning on Ot = 1 for every t = 1, . . . , T, we can also
omit the sequence{Ot} from the factorization, and rewrite the
joint distribution of state-action sequence over [0, T] conditioned
on optimality as

p s1, a1, . . . , sT, aT|O1: T � 1( ) � pp s1, a1, . . . , sT, aT( )
×∝p s1( )p aT( )c sT, aT( ) ∏T−1

t�1
p st+1|st, at( )p at( )c st, at( )

It can thus be noted that

pp s1, a1, . . . , sT, aT( )∝ p s1( )p aT( )∏T−1
t�1

p st+1|st, at( )p at( )⎡⎣ ⎤⎦

× exp ∑T
t�1

r st, at( )⎛⎝ ⎞⎠
and therefore, through the previous definition of the function
c(st, at) as the exponential of the reward function, the
probability of observing a given trajectory also becomes
effectively dependent on the total reward that can be
accumulated along it.

2.1 The Factor Graph
The probabilistic formulation of the various control/estimation
algorithms based on MDP can be conveniently translated into a
factor graph (FG) [21–23], in which each variable is associated with
an arc and the various factors represent its interconnection blocks. In
particular, we will see how it is extremely useful to adopt the
“reduced normal form” (introduced previously) which allows,
through the definition of “shaded” blocks, to map a single
variable in a common space; simplifying the message propagation
rules through a structure whose functional blocks are all SISO
(single-input/single-output). The Bayesian model of interest in
Figure 1 can in fact be easily translated into the FGrn of
Figure 2, where the a priori distributions p(at) and c(st, at) are
mapped to the source nodes, and the probabilities of transition
p(st+1|st, at) are implemented in the M SISO blocks. Each arc
is associated with a “forward” f and a “backward” b message,
proportional to the probability distributions and whose
composition rules allow an easy propagation of the probability;
while, as usual, the diverter (in red) represents the equality constraint

FIGURE 1 | Bayesian graph of the generative model of an MDP, in which the variable Ot represents the optimum for that time step.

1Note that we consider the time horizon T as the last time step in which an action
must be performed. The process will stop at instant T + 1, where there is no action
or reward.
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between the variables that belong to it. Furthermore, using this
structure, one has the advantage of easily introducing constraints
and a priori knowledge into the corresponding messages that
propagate through them. 2 In general, all available evidence can
in fact be collectively identified through the symbol K1:T, so that we
can describe the model in the form p*(s1, a1, . . . , sT, aT|K1:T) during
the process of inference. For the defined graph, we therefore aim to
compute mainly the functions

pp st|K1: T( ) ∝ ∑
sj, j�1: T,j≠t
ak, k�1: T

pp s1, a1, . . . , sT, aT|K1: T( )

pp st, at|K1: T( ) ∝ ∑
sj,aj, j�1: T,j≠t

pp s1, a1, . . . , sT, aT|K1: T( )

which, for example, can be derived from message propagation
through the use of the classic sum-product rule [22, 24]. Note that
these are the only functions needed for our purposes because the
optimal policy at time t can be obtained by

πp at|st( ) ≜ pp at|st, Kt: T( ) � pp st, at|Kt: T( )
pp st|Kt: T( ) , t � 1: T

By rigorously applying Bayes’ theorem and marginalization, the
variousmessages propagate within the network and contribute to the
determination of the posteriors through the simple multiplication of
the relative forward and backward messages [14, 25]. In particular,
from Figure 2, it can be seen that the calculation of the distribution
for the policy at time t can generally be rewritten as

πp at|st( )∝ f St,At( ) i( ) st, at( )b St,At( ) i( ) st, at( )
fSt st( )bSt st( )

� fSt st( )U at( )b St,At( ) i( ) st, at( )
fSt st( )bSt st( ) � b St,At( ) i( ) st, at( )

bSt st( )
and, therefore, the policy depends solely on the backward flow, 3

since (by conditioning on st) all the information coming from the
forward direction is irrelevant to calculate it. 4

Particularly interesting is the passage from the
probabilistic space to the logarithmic space, which, within
the FGrn, can be obtained through the simple definition of the
functions

VSt st( ) ≜ ln bSt st( )
Q St,At( ) i( ) st, at( ) ≜ lnb St,At( ) i( ) st, at( ), i � 1, . . . , 4

whose name is deliberately assigned in this way to bring to
mind the classic DP-like approaches. 5 Looking at Figure 2,
the backward propagation flow can then be rewritten
considering the passage of messages through the generic
transition operators represented by the blocks M[·] and
E[·] shown as

VSt st( ) ∝ E Q St,At( ) 1( ) st, at( )[ ]
Q St,At( ) 1( ) st, at( ) ∝ lnp at( ) + r st, at( ) +M VSt+1 st+1( )[ ]

� R st, at( ) + Q St,At( ) 4( ) st, at( )
where R(st, at) = ln p(at) + r(st, at). Although, in the classic
sum-product algorithm, these blocks correspond to a
marginalization process, it is still possible to demonstrate
that the simple reassignment of different procedures to
them allows one to obtain different types of algorithms
within the same model [25]. Supplementary Appendix S1
presents various algorithms that can be used simply by
modifying the function within the previous blocks, and
which, therefore, show the generality of this framework,
while Table 1 summarizes the related equations by setting
Q(st, at) � Q(St,At)(1)(st, at) and V(st) � VSt(st). It should also
be noted that, for all the algorithms presented in the
Supplementary Appendix, the definition of the policy can
always be described according to the V and Q functions, by
setting

πp at|st( )∝ exp Q St,At( ) 1( ) st, at( ) − VSt st( )( )
We emphasize the ease with which these algorithms can be
evaluated via FGrn, as they can be defined through a simple
modification of the base blocks. The pseudocode presented in
Algorithm 1 highlights this simplicity, using the generic
transition blocks just defined (and illustrated in Figure 2)
whose function depends on the chosen algorithm.

FIGURE 2 | Factor Graph in reduced normal form of an MDP, in which the reward is introduced through the variable Ct.

2Think, for example, of a priori knowledge about the initial state or even more
about the initial action to be performed.
3The index i is used in general terms, since for each i = 1, . . . , 4, the value of the
product between forward and backward (referring to the different versions of the
joint random variable in Figure 2) is always identical.
4This is consistent with the principle of optimality: given the current state, the
remaining decisions must constitute an optimal policy. Consequently, it is not
surprising that the backward messages have all the information to compute the
optimal policy.

5From the definition provided, it is understood that in this case the functions will
always assume negative values. However, this is not a limitation because one can
always add a constant to make rewards nonnegative.
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Algorithm 1. Algorithm for the generic V-function

3 THE MULTI-AGENT SCENARIO

As stated above, when we have a problem with more than one
agent, the computation of the value function collides with the
complexity of a changing environment. More specifically, if all
agents move around seeking their goals, the availability of states
changes continuously and in principle the value functions have to
be recalculated for each agent at every time step. Therefore, the
problem is no longer manageable as before, and in general it must
be completely reformulated to be tractable in many problem
contexts.

The theoretical framework to describe a MAS is theMarkov
game (MG) [26, 27], that generalizes the MDP in the presence
of multiple agents. Differently from the single agent MDP, in
the multiple agent context, the transition probability function
and the rewards depend on the joint action At ∈ A, whereA �
A1 × A2 . . .× An with n agents. At each time step t, the ith
agent selects an action from its own action space Ai

(simultaneously with other agents) and the system evolves
following the transition probability function
P: S × A → [0, 1] and generates the reward
Ri: S × A × S → R ⊂ R. Consequently, the value function
will not only depend on the policy of the single ith agent,
but also on all other agents [10, 11]. In other words,
considering the general case of an infinite horizon
discounted version of the stochastic path planning problem,
with a reward function that depends on current state-action
pair as well as the next state, the value function for the ith agent
will be

V i( )
πi ,π−i s( ) � Est+1~P,at~π ∑∞

t�0
γtRi st, at, st+1( )|s � s0⎡⎣ ⎤⎦ (1)

where at ∈ At, π = {π1, . . . , πn} is the joint policy, π−i = {π1, . . . ,
πi−1, πi+1, πn} is the policy of all other agents except the ith and γ ∈
[0, 1] is a discount rate.

The above problem, when the state space and the number of
agents grow, becomes very quickly intractable. Therefore, we have
to resort to simplifications, such as avoiding the need to consider
the global joint spaces, and adopting simplifying distributed
strategies that are sufficiently general to be applicable to
practical scenarios. We focus here on a path planning problem
for multiple agents that act sequentially, are non-competitive,
share centralized information and are organized in a hierarchical
sequence. Within these constraints, in fact, we will see how it is
possible to use the versatility of the FGrn formulation by
leveraging just one pre-calculated value function for each goal.

3.1 The Environment
Consider a scenario with n agents moving around a map with a
given reward function r(st) that depends only on the state. The
rewards may represent preferred areas, such as sidewalks for
pedestrians, streets for cars, bike routes for bicycles, or related to
the traffic/weather conditions for ships and aircraft, etc.
Therefore, at each time step, the overall action undertaken by
the system is comprised of the n components

at � a 1( )
t , . . . , a n( )

t( )
where a(i)t represents the action performed by the ith agent at time
step t. The map is a discrete rectangular grid of dimensionsN ×M
that defines the state space S, in the sense that each free cell of the
grid determines a state reachable by the agents. We assume that
both the map and the reward function linked to the various states
are the same for each agent, but that each agent aims to reach its
own goal (some goals may coincide).

The objectives of each agent may represent points of interest in
a real map, 6 and the existence of different rewards in particular
areas of the map may correspond to preference for movement
through these areas. The ultimate goal is to ensure that each agent
reaches its target by accumulating the maximum possible reward,
despite the presence of other agents. We assume that every action

TABLE 1 | Summarized backup rules in log space.

Q (st, at) V (st)

Sum product R(st , at) + ln∑
st+1

elnp(st+1 |st ,at )+V(st+1 ) ln∑
at
eQ(st ,at )

Max product R(st , at) +maxst+1(lnp(st+1|st , at) + V(st+1)) maxatQ(st , at)
Sum/Max product (α ≥ 1) R(st , at) + 1

α ln∑
st+1

eα(lnp(st+1 |st ,at )+V(st+1 )) 1
α ln∑

at
eαQ(st ,at )

DP R(st , at) + ∑
st+1

p(st+1|st , at)V(st+1) maxatQ(st , at)
Max-Rew/Ent (α > 0) R(st , at) + ∑

st+1
p(st+1|st , at)V(st+1) 1

α ln∑
at
eαQ(st ,at )

SoftDP (β > 0) R(st , at) + ∑
st+1

p(st+1|st , at)V(st+1) ∑
at

Q(st ,at)eβQ(st ,at )

∑
at′
eβQ(st ,at′)

6For example, the targets could be gas stations or ports (in a maritime scenario),
whose presence on the map is known regardless of the agents.
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towards an obstacle, the edge of the map or another agent,
constrains the agent to remain in the same state (reflection),
setting a reward that is never positive (in our formulation the
rewards are all negative, except on the goal, where it is null).
Furthermore, it is assumed that in the time step following the
achievement of the objective, the agent no longer occupies any
position on the map (it disappears). This ensures that arriving at
the destination does not block the subsequent passage of other
agents through that state, which could otherwise make the
problem unsolvable.

3.2 The Forward Propagation
This MAS problem is ideally suited for approximate solution
using FGrn, performing just some small changes similar to those
introduced previously for the various objective functions. In
particular, we will show how each agent will be able to
perform its own inference on its particular FGrn (taking into
account the target and the presence of other agents) simply by
establishing an appropriate forward message propagation
process. To do this, first, it is assumed that each agent follows
a strict scheduling protocol, established in advance, to choose the
action to perform. To fix the ideas, the agents are numbered in
order of priority from 1 to n. Therefore, the ith agent will be
allowed to perform its action at time t only after all the previous
agents (from 1 to i − 1) have performed their tth step. In this way,
similarly to what [12] proposed, the time step t is decomposed
into n different sub-steps, relating to the n agents present on the
scene. Since each agent’s information is assumed to be shared
with every other agent, and each agent is assumed to have access
to this centralized information, the use of a scheduling protocol
provides the next agent with the future policy of the agents who
will move first, allowing it to organize its steps in relation to them.
The idea is akin to Gauss-Seidel approach to solving linear
equations and to Gibbs sampling.

Integrating this information into the FGrn is extremely simple.
By looking at Figure 3, it is sufficient to make block Ct also
dependent on the optimal trajectory at time t that the previous
agents have calculated (calculated but not yet performed!) for
themselves. In other words, at each time step, block Ct provides to

each agent i a null value (in probabilistic space) for those states
that are supposed to be occupied by the other agents. In this way,
the ith agent will be constrained to reach its goal avoiding such
states. Focusing on a specific agent i (dropping the index for
notational simplicity), a priori knowledge on the initial state S1 �
ŝ1 can be injected through a delta function 7 in the relative
probabilistic forward message

fS1 s1( ) � δ s1 − ŝ1( )
and assuming that M blocks in FGrn perform the function

fSt+1 st+1( ) � max
st ,at

p st+1|st, at( )f St,At( ) 4( ) st, at( )
with

f St,At( ) 4( ) st, at( ) � f St,At( ) 1( ) st, at( )f St,At( ) 2( ) st, at( )c st, at( )
the FGrn autonomously modifies its behavior by carrying out a
process of pure diffusion which determines the best possible
trajectory to reach a given state in a finite number of steps.

Note that this propagation process leads to optimality only if
we are interested in evaluating the minimum-time path [28]. 8

Although the reward is accumulated via c (st, at), the forward
process totally ignores it, not being able to consider other non-
minimal paths that could accumulate larger rewards. In fact,
exhaustively enumerating all the alternatives may become
unmanageable, unless we are driven by another process. In
other words, this propagation process alone does not
guarantee that the first accumulated value with which a goal
state is reached, is the best possible. Further exploration, without
being aware of the time required to obtain the path of maximum
reward, may force us to run the algorithm for a very large number
of steps (with increasing computational costs). However, as
mentioned above, the reference scenario involves goals that are
independent and are known a priori. This means that (through
any of the algorithms discussed in Supplementary Appendix S1)
it is possible to calculate the value function in advance for each
goal. Note that this offline calculation is independent of the
location/presence of the agents in the MAS scenario and
therefore could not be used directly to determine the overall
action at of the system. The following lemma is useful to claim
optimality.

LEMMA 1. The value function computed by excluding the agents
from the scene represents an upper-bound (in terms of
cumulative reward) for a given state.

FIGURE 3 | Modified version of FGrn for the Multi-Agent forward
step. Each agent will have its own factorial graph, in which information from
previous agents (within the scheduling process) modifies the Ct variable. The
algorithm block H, which analyzes the value function to block the
propagation of superfluous projections is shown in green.

7We refer to the Kronecker Delta δ(x), which is equal to 1 if x = 0 and is zero
otherwise.
8The very concept of “time” in this case can be slightly misleading. The reward
function linked to individual states can in fact represent the time needed to travel in
those states (for example due to traffic, or adverse weather conditions). In this case,
the number of steps performed by the algorithm does not actually represent the
“time” to reach a certain state. We emphasize that in the presence of a reward/cost
function, the objective is not to reach a given state in the fewest possible steps, but
to obtain the highest/lowest achievable reward/cost.
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Proof. : The demonstration is trivial as other agents (being
moldable as dynamic obstacles) can only reduce the value
obtained from the value function for the agent, by hindering a
valid passage through their presence and forcing the agent to
traverse a sub-optimal path.

Knowing the value function corresponding to the objective
of a particular agent, it is therefore possible to limit the
fSt+1(st+1) only to the values that actually have the
possibility of reaching the goal with an accumulated reward
larger than the current value. In other words, at each time step
t, after the diffusion arrives on the goal, it is possible to add the
value function to the lnfSt+1(st+1) to compare the active states

with the value currently obtained on the goal, eliminating all
those paths that could not in any way reach the objective with a
higher cumulative reward (since, as mentioned, this represents
an upper-bound for every possible state). The only projections
left will represent possible steps towards better solutions and
will continue to propagate to determine if their dynamics can
actually enable the discovery of a better path. To highlight this
step, in Figure 3, this addition is shown using a H block
(placed separately from the M block only to facilitate
understanding), which takes the pre-computed V-function
as input and performs the three algorithmic operations just
described (addition, comparison and elimination). The

FIGURE 4 | Trellis related to the analysis of the optimal path for the blue agent based on the preliminary presence of the yellow agent. The highest reward map
states are represented by larger circles. The blue arrows represent the forward propagated projections, while the light gray ones denote the other discarded possibilities.
The optimal path determined by forward propagation within the FGrn is represented in black.
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pseudocode of the forward process for the single ith agent is
shown in Algorithm 2.

Algorithm 2. Algorithm for the forward propagation in a MAS
context using the V-functions

A better understanding of the whole forward propagation
process is perhaps achievable by considering the trellis of
Figure 4, which shows the forward propagation flow for a
“blue” agent given the trajectory decided by the “yellow”
agent. The trellis shows the various steps on the abscissa
(from t1 to t17) and the accessible states of the map on the
ordinate (from s(1) to s(36)), highlighting the states related to the
two different objectives through rectangles of the respective
colors. The blue agent propagates its projections to various
time steps taking into account the possible actions, avoiding
the states already occupied and considering only the paths
with the maximum cumulative reward (the other paths not
chosen are graphically represented in light gray).

From the moment a path to the goal is found (t12), the H
block of Figure 3 performs its tasks by blocking the

propagation of projections that have no chance of improving
the value of the final cumulative reward (all gray circles reached
by an arrow at t12 and in subsequent time steps). 9 This also
means that if another path is able to reach the goal again, then it
will certainly be better than the previous one. In other words,
when the control block clears all projections on the map, then
the last path that was able to get to the goal is chosen as the
preferred trajectory for the agent. In the example of Figure 4,
the blue agent reaches the goal again at t13 and the cumulative
reward is higher than the one obtained at t12, but the
projections can continue through the state s(3) that allows us
to reach the goal at time step t17. Since, at that time step, all the
other projections have been blocked, the path (in black) from
s(24) at t1 to s(9) at t17 is optimal.

4 SIMULATIONS

If the environment is assumed to be fully deterministic, each agent
will have to calculate its optimal trajectory only once and, when all
agents have performed the calculation, the movements can be
performed simultaneously. In such circumstances, a good
scheduling protocol can be obtained by sorting agents according to

max
s∈N s1( )⊆S\Ŝ

V s( )

whereN (s1) is the neighborhood of s1 given the feasible actions of
the agent, and Ŝ is the set of states relative to the initial positions
of all agents. In this way, the agents closest to their respective
goals will move independently from the others, arriving first and
being irrelevant for the subsequent steps necessary for the other
agents. In the various simulations conducted in deterministic
environments, this choice has always proved successful, reaching

FIGURE 5 | Representation of the movement of two agents on a small map in a deterministic environment. Both agents have only four possible actions {up, down,
left, right}. The value function is calculated through the DP and both agents have their own goals.

9Note that the H block actually exists at each step t of the process described, but
since the deletion of projections occurs by comparing the sum with the value
currently present on the target (and since, at the beginning, this value is considered
infinitely negative), the block will practically never delete any projections until the
target is achieved for the first time.
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the maximum total reward for all agents compared to any other
possible scheduling sequence. However, the forward procedure
guarantees the optimal solution for the particular scheduling
sequence chosen. In fact, at each time step, the algorithm
considers the maximum for each possible state-action pair,
blocking all those paths that (even at their maximum) would
never be able to reach the goal. In practice, the upper bound
constituted by the value function allows us to avoid considering
every possible path, but guarantees us that all the excluded paths
are certainly worse. All the paths that the algorithm considers are
therefore certainly the best possible, and for this reason the
optimal path for the agent in that given scheduling sequence
is guaranteed. The overall optimality, in relation to the sum of all
the cumulative rewards obtained by each agent, is, however,
strongly linked to the chosen scheduling procedure, that can
therefore lead to non-optimal solutions, if not appropriately
chosen. 10 A simple simulation with two agents is shown in
Figure 5, where it is assumed that the action space is composed of
only four elementsA � {up, down, left, right} and that the reward
is always equal to −10 except on green states, where it is equal to
−1. It can be seen that the blue agent chooses the longest path
which, however, represents the one with the higher cumulative
reward, due to the presence of a higher reward area. Despite this,
from the beginning, the yellow agent blocks the path of the blue

one, who is therefore forced to move around until it becomes free
(t5). After this time step, the two agents can reach their respective
goals without any interaction. 11 A further example, more
complex than the previous one, is shown in Figure 6. In this
case, the action space is composed of eight elementsA � {top-left,
up, top-right, left, right, down-left, down, down-right} with n = 4
agents present on the map. It is worth noting how the red agent at
t7, t8, t9, t10 wanders around in the region with a high reward in
order to wait for the purple agent to go through the tunnel and
accumulate a higher reward. In the deterministic case, the
computational cost of the online procedure is extremely low,
as it can be evaluated in O(n logNM) in the worst case.

General behavior does not change in the case in which a non-
deterministic transition dynamics are assumed, i.e., assuming the
agents to be in an environment in which every action does not
necessarily lead to the state towards which the action points;
providing a certain (lesser) probability of ending up in a different
state among those admissible (as if some other action had actually
been performed). 12 What changes, however, is the total

FIGURE 6 | Representation of the movement of four agents in a deterministic environment with eight possible actions {top-left, up, top-right, left, right, down-left,
down, down-right}. The value function is calculated through the DP and the blue and yellow agents share the same goal while purple and red agents have their own goals.

10The search for an optimal scheduling choice is under consideration and will be
published elsewhere.

11It should be noted that a different scheduling choice would lead to the yellow
agent being blocked by the blue agent, obtaining an overall reward for both agents
lower than that obtained.
12To make the concept realistic, one can imagine an environment with strong
winds or with large waves. In general, this reference scenario aims to perform the
control even in the presence of elements that prevent an exact knowledge of the
future state following the chosen action.
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computational cost. Each time the agent takes a step, in fact, if the
step does not fall within the optimal trajectory calculated
previously, then it will be forced to recalculate its trajectory
again to pass it to other subsequent agents.

It must be considered, however, that each calculation has a low
computational cost anyway (definitely much lower than the total
recalculation of the value function) and that, at each step, the
agents get closer and closer to their goals (making the calculation
faster, because it is always less likely to find better alternative
routes). These considerations are obviously strictly linked to the
uncertainty present in the system. To clarify these observations,
in Figure 7 the same diagram of the deterministic environment of
Figure 6 is presented, with the same four agents positioned within
the same map. This time, however, it is assumed to use an action
tensor that results in a random error of 5% equally distributed on
adjacent actions (i.e., close to the action contemplated). A
graphical representation of the action tensor, considering the
agent positioned at the center of each grid cell, is shown in
Figure 8. A comparison with the deterministic case of Figure 6
allows us to understand the behaviors stemming exclusively from
the stochasticity of the environment. For example, it can be
observed how the blue agent is pushed in the opposite
direction to the action taken (from time step 7–11), but

FIGURE 7 | Representation of the movement of four agents in stochastic environment with a 5% chance of error on neighboring actions and eight possible actions
{top-left, up, top-right, left, right, down-left, down, down-right}.

FIGURE 8 | Action probability tensor with an error probability of 5% on
neighboring actions.
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nevertheless correctly recalculates its trajectory to allow others to
take their paths based on the mistakes made. Note that, in the
stochastic case, the optimality on the single execution cannot be
guaranteed, precisely because of the intrinsic stochasticity of the
environment. However, this argument is general and is valid for
any algorithm in a stochastic environment. Furthermore, it must
be said that if it were possible to regenerate an optimal scheduling
sequence at each variation with respect to the previously
calculated trajectory, it could be stated that on multiple
executions (since the algorithm maximizes the likelihood and
since each sub-trajectory would be optimal), the behavior tends
asymptotically to the optimum.

5 CONCLUSION

We have shown how it is possible to unify probabilistic inference
and dynamic programming within an FGrn through specific
message composition rules. The proposed framework allows
various classical algorithms (sum-product, max-product,
dynamic programming and based on mixed reward/entropy
criteria), also by expanding the algorithmic design options
(through generalized versions), only by modifying the
functions within the individual blocks.

Using a path planning problem context, we have also shown
how this framework proves to be decidedly flexible, and how it is
possible to use it even in the multi-agent case. Moreover, the
forward procedure turns out to be very fast in calculating the
optimal trajectory subject to an agent scheduling protocol. The
use of the value function as upper bound allows, in fact, to limit
the propagation of the projections at the various time steps,
accelerating and guaranteeing the achievement of the optimal
solution in deterministic cases (again subject to a specified agent
scheduling protocol). The proposed simulations have shown how
the solution is effective even in a stochastic environment, where
the optimal solution is not reachable on a single example due to
the intrinsic variability of the environment.

We believe that the work presented here provides a
scientifically rigorous algorithmic framework for proactive
agent autonomy. The factor graph-based message propagation
approach to MAS will enable us to investigate the
interdependencies among the key elements of a hybrid team,

such as goals, changing mission environment, assets and threats/
obstacles/constraints. We believe that the interactive
optimization algorithms based on this approach should
provide the tools for producing intelligent courses of action
that are congruent with and overcome bounded rationality
and cognitive biases inherent in human decision-making.
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