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The consensus of complex networks has attracted the attention of many

scholars. The graph operation is a common method to construct complex

networks, which is helpful in studying the consensus of complex networks.

Based on the corona networks G1◦G2, this study gives different weights to the

edges ofG1◦G2 to obtain the weighted corona networks ~G1◦ ~G2 and studies the

consensus of ~G1◦ ~G2. The consensus of the networks can be measured by

coherence. First, the Laplacian polynomial of ~G1◦ ~G2 is derived by using the

properties of an orthogonal matrix. Second, the relationship between the first-

order coherence of ~G1◦ ~G2 andG1 is deduced by using the relevant properties of

the determinant and the conclusion of polynomial coefficients and the principal

minors of the matrix. Third, the join operation is introduced to further simplify

the analytical formula of network coherence. Finally, a specific network

example is used to verify the validity of the conclusion.
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1 Introduction

With the development of network science, the research of complex networks has been

extended tomany fields, such as technical networks and transportation networks. Nowadays, the

relevant theoretical knowledge of complex networks has been widely used in physics, computer

science, life science, and other fields, such as consensus [1–5], resistance distance and Kirchhoff

index [6], robustness [7, 8], and network synchronization [9, 10].

As a method of constructing networks, the graph operation can be used to construct more

complex networks. The common graph operations include corona operation, edge corona

operation, and join operation. In recent years, graph operations have attracted extensive

attention of scholars. Y. Shang used the edge corona product to construct a simplicial

network and, based on the degree of network vertices, studied the recently widely

concerned Sombor index [11]. J. Liu presented a kind of weighted edge corona networks

and obtained the Laplacian and signless Laplacian spectra of the weighted edge corona networks,

and a specific application example is given by calculating the number of spanning trees and the

Kirchhoff index [12]. M. Dai used the eigenvector method to obtain the generalized adjacency

and Laplacian spectra of the special weighted corona networks [13].We considered theweighted

corona networks that aremore realistic as the research object to study the consensus of networks.

The consensus of the networks is the key to solve cooperative control amongnodes in complex

networks. The consensus of complex networksmeans that network nodes reach the same level in a
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certain state with the change of time. For example, the direction of

unmanned aerial vehicle formation is consistent during flight. The

research on the consensus of special networks has achievedmany good

results. E. Mackin took the network of networks as the object,

investigated how to connect the subgraph to achieve the optimal

consensus of the networks, and used a specific example to illustrate

it [14]. T. Hu defined three types of tree models with the given

parameters and obtained the leaderless and leader–follower

coherence of three types of network models. The study found that

the leader–follower coherencewasweaker than the leaderless coherence

[15]. J. Wang analyzed the consensus of three different types of

weighted duplex networks and compared the consensus of the three

types of networks [16]. J. Chen showed the consensus of a class of

special topological networks and obtained the relationships between the

network consensus and parameters [17]. X.Wang used the property of

the determinant to calculate the Laplacian polynomial of 5-rose graphs

and investigated the consensus of 5-rose graphs by using the

relationships between polynomial coefficients and eigenvalues [18].

Compared with the aforementioned literature, the innovation

of this study is as follows. This study defines the weighted corona

network model based on the unweighted corona networks. We

used the properties of the orthogonal matrix to transform a high-

order determinant into a low-order determinant and deduced the

Laplacian polynomial of the weighted corona networks. Finally,

the specific analytical formula of the first-order coherence of the

weighted corona networks is obtained according to the

relationship between the coefficient and the principal minor,

which provided a theoretical basis for studying the coherence of

the arbitrary weighted corona network.

This study is arranged as follows. Section 2 introduces the

preliminaries. The characteristic polynomial of ~G1◦ ~G2 is given in

Section 3. Section 4 obtains the first-order coherence of ~G1◦ ~G2.

In Section 5, the specific application example is shown. Section 6

gives the final conclusion.

2 Preliminaries

2.1 Definitions of the weighted graph
operations

The topology of networks is the key to study the consensus of

complex networks. It is a common method to construct complex

networks by using graph operations. Next, we introduced two

graph operations.

Definition 1 [19, 20]: Let G1 and G2 denote the two graphs

with n1 and n2 vertices, respectively. The corona of G1 and G2 is

described as the graph G1◦G2 obtained by taking one copy of G1

and n1 copies of G2 and then joining the ith vertex of G1 to every

vertex in the ith copy of G2 (i = 1, 2, 3, . . . , n1).

The weighted corona graphs ~G1◦ ~G2 mean that on the basis of

G1◦G2, the edges of G1 and G2 have weights r1 and r2,

respectively. The edges between G1 and G2 have weight r3.
~C6◦ ~K2 is shown in Figure 1.

Definition 2 [21]: Let the join of two disjoint graphs G1 and

G2 be G1 ∨ G2, the vertex set ofG1 ∨G2 be V (G1 ∨G2) = V (G1) ∪
V (G2), and the edge set of G1 ∨ G2 be E (G1 ∨ G2) = E (G1) ∪ E

(G2) ∪ (xy) (x ∈ V (G1), y ∈ V (G2)).

The weighted join graphs ~G1 ∨ ~G2 mean that on the basis of

G1 ∨ G2, the edges of G1 and G2 have weights r1 and r2,

respectively. The edges between G1 and G2 have weight r3.

2.2 Network coherence

The network model of the system with noise is defined as

follows [4]:
dx t( )
dt

� −Lx t( ) + χ t( ), (1)

where L = D − A is the Laplacian matrix, D = diag (d1, d2, . . . , ds)

denotes the degree matrix, di (i = 1, 2, . . . , s) is the degree of the

ith node of the network. A � (aij)s×s is the adjacency matrix,

where aij � 1, if i connected j
0, otherwise

{ , and x(t) denotes the

dynamic variable of the network nodes. χ(t) indicates that all nodes

in the network are affected by Gaussian white noise at time t. The

Gaussian white noise means that the instantaneous value of noise

obeys Gaussian distribution. It is an ideal model for noise analysis.

Under the influence of noise, it is difficult for all nodes in the

network to converge in a certain state. In order to describe the

consensus of the networks, the concept of first-order coherence is

introduced. It is defined as follows [4]:

H 1( ) � 1
s

∑s
i�1

lim
t→∞ var xi t( ) − 1

s
∑s
j�1

xj t( )⎧⎨⎩ ⎫⎬⎭. (2)

The output of system (1) is denoted as follows:

y t( ) � Kx t( ), (3)

where K is the projection operator, K � I − 1
s 11

T , and 1 is the s-

vector of all nodes. H(1) is given by the H2 norm of the systems

defined in Eqs 1 and 3.

H 1( ) � 1
s
tr ∫∞

0

e−L
TtKe−Ltdt⎛⎜⎜⎝ ⎞⎟⎟⎠. (4)

The research shows thatH(1) is closely related to the non-zero

eigenvalues λi (i = 2, 3, . . . , s) of the Laplacian matrix L [18],

H 1( ) � 1
2s

∑s
i�2

1
λi
. (5)

The Kirchhoff index (Kf) is also closely related to the non-

zero eigenvalues of the Laplacian matrix L, Kf � s∑s
i�2 1λi �

2s2H(1).
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3 Laplacian polynomial of ~G1◦ ~G2

In this section, the Laplacian polynomial of ~G1◦ ~G2 is

obtained by using the properties of the orthogonal matrix.

Lemma 1: Let the Laplacian eigenvalues of G be 0 = v1 < v2 ≤
v3 ≤ / ≤ vn; there is an orthogonal matrix

P � (pij)n×n, PTL(G)P � diag(v1, v2, . . . , vn). Then,

p1 � �
n

√
, p2 � p3 � / � pn � 0, where pi (i = 1, 2, . . . , n) is

the sum of the ith column of the matrix P.

Proof: the Laplacian eigenvalues of G are 0 = v1 < v2 ≤ v3 ≤
/ ≤ vn; then, there is an orthogonal matrix

P � (pij)n×n, PTL(G)P � diag(v1, v2, . . . , vn). It is obvious that�
n

√ (1, . . . , 1)T is the unit eigenvector of the eigenvalue

v1 � 0, p1 � �
n

√
. Let ζ i � (p1i, p2i, . . . , pni)T be the unit

eigenvector corresponding to the eigenvalue vi (i = 2, 3, . . . ,

n); from the orthogonality of the eigenvectors, we have (1, . . . ,

1)ζi = 0 (i = 2, 3, . . . , n) and p2 = p3 = / = pn = 0.

Theorem 1: let the number of vertices of G1 and G2 be n1 and n2,

respectively; the Laplacian eigenvalues of G1 and G2 are

0 � η1 < η2 ≤ η3 ≤/≤ ηn1, 0 � μ1 < μ2 ≤ μ3 ≤/≤ μn2. Then, the

Laplacian polynomial of ~G1◦ ~G2 is

Φ λ( ) � ∏n2
i�2

λ − r3 − r2μi( )n1⎡⎣ ⎤⎦ λ − r3n2 − r3( )In1 − r1L1 −r1L1

r3In1 λIn1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣.

(6)
Proof: let Ai (i = 1, 2) be the adjacency matrices of G1 and

G2; Di (i = 1, 2) denotes the degree matrices of G1 and G2;

In1 is the identity matrix of order n1; Jn2 represents all

1 column vector of dimension n2; and 0m×n represents a

zero matrix.

The adjacency matrix of ~G1◦ ~G2 is

A ~G1◦ ~G2( ) � r1A1 r3In1 ⊗ JTn2
r3In1 ⊗ Jn2 In1 ⊗ r2A2

( )
n1+n1n2( )× n1+n1n2( )

.

The degree matrix of ~G1◦ ~G2 is

D ~G1◦ ~G2( ) � r1D1 + r3n2In1 0n1 × n1n2( )
0Tn1 × n1n2( ) In1 ⊗ r2D2 + r3In2( )( )

n1+n1n2( )× n1+n1n2( )
.

The Laplacian matrix of ~G1◦ ~G2 is

L ~G1◦ ~G2( ) � r1L1 + r3n2In1 −r3In1 ⊗ JTn2−r3In1 ⊗ Jn2 In1 ⊗ r2L2 + r3In2( )( )
n1+n1n2( )× n1+n1n2( )

.

Let the Laplacian eigenvalues of G1 and G2 be

0 � η1 < η2 ≤ η3 ≤/≤ ηn1, 0 � μ1 < μ2 ≤ μ3 ≤/≤ μn2.

Then, there are orthogonal matrices

M � (mij)n1×n1, N � (nij)n2×n2, and

MT

In1 ⊗ NT( ) M
In1 ⊗ N

( ) � I, (7)

MTL G1( )M � diag η1, η2, . . . , ηn1( ), NTL G2( )N
� diag μ1, μ2, . . . , μn2( ). (8)

Because similar matrices have the same characteristic

polynomials, the Laplacian polynomial of ~G1◦ ~G2 is

Φ λ( ) � MT λ − r3n2( )In1 − r1L1)[ ]M r3M
TIn1 ⊗ JTn2N( )

r3In1 ⊗ NTJn2( )M In1 ⊗ NT λ − r3( )In2 − r2L2[ ]N
∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣.
(9)

In order to find a specific expression for Φ(λ), we further

investigated r3MTIn1 ⊗ (JTn2N)(n1n2)×(n1n2),

r3M
TIn1 ⊗ JTn2N( ) � r3

m11n1 / m11nn2 mn11n1 / mn11nn2
..
.

1 ..
.

/ ..
.

1 ..
.

m1n1n1 / m1n1nn2 mn1n1n1 / mn1n1nn2

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠,

(10)

where nj � ∑n2
i�1 nij is the sum of the jth column of the orthogonal

matrix N. By Lemma 1 and Eq. 10, we obtained

FIGURE 1
(A) Circle graph C6, (B) complete graph K2, and (C) weighted corona graph ~C6◦~K2.
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r3M
TIn1 ⊗ JTn2N( ) � r3

m11
��
n2

√
/ 0 mn11

��
n2

√
/ 0

..

.
1 ..

.
/ ..

.
1 ..

.

m1n1

��
n2

√
/ 0 mn1n1

��
n2

√
/ 0

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠. (11)

By Eq. 8,

MT λ − r3n2( )In1 − r1L1)[ ]M �
λ − r3n2 0 / 0

0 λ − r3n2 − r1η2 / 0

..

. ..
.

1 ..
.

0 0 / λ − r3n2 − r1ηn1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n1×n1

, (12)

NT λ − r3( )In2 − r2L2)[ ]N �
λ − r3 0 / 0
0 λ − r3 − r2μ2 / 0

..

. ..
.

1 ..
.

0 0 / λ − r3 − r2μn2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n2×n2

. (13)

By formulas (9), (11), 12) and (13), the row and column of

element λ − r3 − r2μi (i = 2, 3, . . . , n2) are all 0 except itself. We

expanded them according to the row; then,

Φ(λ) � [nn12 ∏n2
i�2

(λ − r3 − r2μi)n1 ] MT[(λ − r3n2)In1 − r1L1]M r3M
T

r3M (λ − r3)In1/n2
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
� nn12 ∏n2

i�2
λ − r3 − r2μi( )n1⎡⎣ ⎤⎦

× λ − r3n2( )In1 − r1L1 r3In1
r3In1 λ − r3( )In1/n2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

� ∏n2
i�2

λ − r3 − r2μi( )n1⎡⎣ ⎤⎦ λ − r3n2 − r3( )In1 − r1L1 −r1L1

r3In1 λIn1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣.

4 First-order coherence of ~G1◦ ~G2

In this section, according to theorem 1, the first-order coherence

of ~G1◦ ~G2 is calculated by using the relationship between characteristic

polynomial coefficients and the principal minors the of matrix.

Theorem 2: the first-order coherence of ~G1◦ ~G2 can be

described as follows:

H 1( ) ~G1◦ ~G2( ) � 1
2n1 n2 + 1( )

1
r3n2 + r3

+ n1 − 1
r3

+ 2n1 n2 + 1( )
r1

H 1( ) G1( ) + ∑n2
i�2

n1
r2μi + r3

⎛⎝ ⎞⎠.

(14)

Proof: according to theorem 1, the Laplacian polynomial of
~G1◦ ~G2 is

Φ λ( ) � ∏n2
i�2

λ − r3 − r2μi( )n1⎡⎣ ⎤⎦ λ − r3n2 − r3( )In1 − r1L1 −r1L1

r3In1 λIn1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣.

However, the Laplacian matrix of ~G1◦ ~G2 must contain a zero

eigenvalue, and r3 + r2μi ≠ 0 (i = 2, 3, . . . , n2).

Therefore, let 0 � λ1 < λ2 ≤ λ3 ≤/≤ λ2n1 be the eigenvalues

of ψ(λ),

ψ λ( ) � λ − r3n2 − r3( )In1 − r1L1 −r1L1

r3In1 λIn1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

� a2n1λ2n1 + a2n1−1λ
2n1−1 +/ + a2λ

2 + a1λ.

By [16], we have

∑2n1
i�2

1
λi
� −a2

a1
.

Just for the sake of calculation, let B*(i) and B*(i, j) be

the submatrices of matrix B by removing the ith row, and

ith and jth rows. B†(i) and B†(i, j) are the submatrices of

matrix B by removing the ith column, and ith and jth

columns.

C � (r3n2 + r3)In1 + r1L1 r1L1
−r3In1 0n1

( ). Here, |C(i)| represents

the (2n1 − 1)-order principal minors of matrix C by removing
the ith row and column, and |C (i, j)| represents the (2n1 − 2)-
order principal formula of matrix C by removing the ith and
jth rows, and ith and jth columns. Ei is the diagonal matrix,
where the ith element is r3n2 + r3, and the remaining
elements are all 0.

First, we calculated a1, and we obtained it from algebra,

a1 � −1( )2n1−1 ∑n1
i�1

|C i( )| + −1( )2n1−1 ∑2n1
i�n1+1

|C i( )|.

When 1 ≤ i ≤ n1, the (n1 − 1 + i)-th row of |C(i)| is all 0;

then, ∑n1
i�1 |C(i)| � 0,

a1 � − ∑2n1
i�n1+1

|C i( )| � −∑n1
i�1

r3n2 + r3( )In1 + r1L1 r1L
†
1 i( )

−r3Ipn1 i( ) 0n1−1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

� −1( )n1 −1( )n1−1rn1−13 ∑n1
i�1

r3n2 + r3( )I†n1 i( ) + r1L
†
1 i( ) r1L1 + Ei

In1−1 0pn1 i( )
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
� −rn1−13 ∑n1

i�1
|r1L1 + Ei|

� −rn1−13 ∑n1
i�1
(|r1L1| + (r3n2 + r3)|r1L1(i)|)

� −rn1−11 rn1−13 (r3n2 + r3)n1t(G1),

(15)

where t (G1) is the number of spanning trees of G1.

Second, we calculated a2,

a2 � ∑
1≤i<j≤2n1

|C(i, j)|
� ∑

1≤i<j≤n1
|C(i, j)| + ∑

1≤i≤n1

j> n1 ,j≠n1+i

|C(i, j)| + ∑
1≤i≤n1

j�n1+i

|C(i, j)|

+ ∑
n1+1≤ i< j≤ 2n1

|C(i, j)|.

(16)

If 1 ≤ i < j ≤ n1, the (n1 − 2 + i)-th and (n1 − 2 + j)-th rows of |

C (i, j)| are all 0; then, ∑
1≤i<j≤n1

|C(i, j)| � 0.

If 1 ≤ i ≤ n1, j > n1, j ≠ n1 + i and the (n1 − 1 + i)-th row of |C (i,

j)| is all 0, then ∑
1≤i≤n1

j> n1 ,j≠n1+i

|C(i, j)| � 0.

By Eq. 16,
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a2 � ∑
1≤i≤n1

j�n1+i

|C i, j( )| + ∑
n1+1≤ i< j≤ 2n1

|C i, j( )|, (17)

where

∑
1≤i≤n1

j�n1+i

|C(i, j)| � ∑n1
i�1

(r3n2 + r3)In1−1 + r1L1(i) r1L1(i)
−r3In1−1 0n1−1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

� (−1)n1−1r3n1−1 ∑n1
i�1

(r3n2 + r3)In1−1 + r1L1(i) r1L1(i)
In1−1 0n1−1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣..

By the properties of the determinant, we can obtain

∑
1≤i≤n1

j�n1+i

|C(i, j)| � (−1)n1−1r3n1−1 ∑n1
i�1

| − r1L1(i)|

� r1
n1−1r3n1−1 ∑n1

i�1
|L1(i)| � r1

n1−1r3n1−1n1t(G1),

(18)
∑

n1+1≤ i< j≤ 2n1
|C(I, j)| � ∑

1≤i<j≤n1

(r3n2 + r3)In1 + r1L1 r1L
†
1(i, j)

−r3Ipn1(i, j) 0n1−2

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

� (−1)n1−2r3n1−2 ∑
1≤i<j≤n1

(r3n2 + r3)In1 + r1L1 r1L
†
1(i, j)

Ipn1(i, j) 0n1−2

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣.

By varying the determinant elementary column, we obtain

∑
n1+1≤ i< j≤ 2n1

|C(i, j)|

� (−1)n1−2r3n1−2 ∑
1≤i<j≤n1

(r3n2 + r3)I†n1(i, j) + r1L
†
1(i, j) r1L1 + Ei + Ej

In1−2 0pn1(i, j)
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
� (−1)n1−2(−1)n1(n1−2)r3n1−2 ∑

1≤i<j≤n1
r1L1 + Ei + Ej (r3n2 + r3)I†n1(i, j)

∣∣∣∣

+r1L†
1(i, j)0n1* (i, j)In1−2|

� r3
n1−2 ∑

1≤i<j≤n1
|r1L1 + Ei + Ej|

� r3
n1−2 ∑

1≤i<j≤n1
[|r1L1| + (r3n2 + r3)(|r1L1(i)| + |r1L1(j)|)

+ (r3n2 + r3)2|r1L1(i, j)|].

Because |r1L1| = 0, then

∑
n1+1≤ i< j≤ 2n1

|C(i, j)| � r1
n1−1r3n1−2n1(n1 − 1)(r3n2 + r3)t(G1)

+r1n1−2r3n1−2(r3n2 + r3)2 ∑
1≤i<j≤n1

|L1(i, j)|.

(19)
By formulas (15), (17), (18), and 19) and the literature [22],

we obtain

−a2
a1

� 1
r3n2 + r3

+ n1 − 1
r3

+ n2 + 1
r1n1

∑
1≤i<j≤n1

|L1 i, j( )|
t G1( )

� 1
r3n2 + r3

+ n1 − 1
r3

+ n2 + 1
r1n1

Kf G1( )

� 1
r3n2 + r3

+ n1 − 1
r3

+ 2n1 n2 + 1( )
r1

H 1( ) G1( ).

From Eq. 5,

H 1( ) ~G1◦ ~G2( ) � 1
2n1 n2 + 1( )

1
r3n2 + r3

+ n1 − 1
r3

+ 2n1 n2 + 1( )
r1

H 1( ) G1( ) + ∑n2
i�2

n1
r2μi + r3

⎛⎝ ⎞⎠.

Since the form of theorem 2 is complicated, we further

optimized the conclusion to obtain theorem 3.

Theorem 3

H 1( ) ~G1◦ ~G2( ) � n2 n1 − 1( )
2n1 n2 + 1( )2r3 +H 1( ) ~G1( ) +H 1( ) ~G2 ∨ ~K1( ).

(20)
Proof: the Laplacian eigenvalues of ~G1 are

0 � r1η1 < r1η2 ≤ r1η3 ≤/≤ r1ηn1.

By Eq. 5,

H 1( ) ~G1( ) � 1
2n1

∑n1
i�2

1
r1ηi

� 1
2n1r1

∑n1
i�2

1
ηi

� 1
r1
H 1( ) G1( ). (21)

Let K1 be the complete graph of order 1. The adjacency

matrix of ~G2 ∨ ~K1 is

A ~G2 ∨ ~K1( ) � r2A2 r3Jn2
r3J

T
n2

0( )
n2+1( )× n2+1( )

.

The degree matrix of ~G2 ∨ ~K1 is

D ~G2 ∨ ~K1( ) � r2D2 + r3In2 0n2 × 1

01×n2 n2r3
( )

n2+1( )× n2+1( )
.

The Laplacian matrix of ~G2 ∨ ~K1 is

L ~G2 ∨ ~K1( ) � r2L2 + r3In2 −r3Jn2
−r3JTn2 n2r3

( )
n2+1( )× n2+1( )

.

Because of

NT 0
0 1

( ) r2L2 + r3In2 −r3Jn2
−r3JTn2 n2r3

( ) N 0
0 1

( )
� NT r2L2 + r3In2( )N −r3NTJn2

−r3JTn2N n2r3
( ).

|λI − L( ~G2 ∨ ~K1)| � NT(λI − r2L2 − r3In2)N r3N
TJn2

r3J
T
n2
N λ − n2r3

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

�
λ − r3 0 / r3

��
n2

√
0 λ − r3 − r2μ2 / 0

..

. ..
.

1 ..
.

r3
��
n2

√
0 / λ − r3n2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The Laplacian eigenvalues of ~G2 ∨ ~K1 are

r2μi + r3 i � 2, 3, . . . , n2( ), 0, n2r3 + r3.

Then,
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H 1( ) ~G2 ∨ ~K1( ) � 1
2 n2 + 1( )

1
r3n2 + r3

+ ∑n2
i�2

1
r2μi + r3

⎛⎝ ⎞⎠. (22)

By formulas (14), (21), and (22), we obtain

H 1( ) ~G1◦ ~G2( ) � n2 n1 − 1( )
2n1 n2 + 1( )2r3 +H 1( ) ~G1( ) +H 1( ) ~G2 ∨ ~K1( ).

5 Actual example

Let Km(n1−m) be the complete bipartite graph of order n1 and

Cn2 be the cycle of order n2.

The Laplacian spectrum of Km(n1−m) is

0, n1, m︸︷︷︸
n1−m−1

, n1 −m︸''︷︷''︸
m−1

.

The Laplacian spectrum of Cn2 is

0, 4sin2
απ

2n2
( ) α � 1, 2, . . . , n2 − 1( ).

From Eq. 20,

H 1( ) ~Km n1−m( )◦~Cn2( ) � n2 n1 − 1( )
2n1 n2 + 1( )2r3 +H 1( ) ~Km n1−m( )( )
+H 1( ) ~Cn2 ∨ ~K1( ).

From Eq. 21,

H 1( ) ~Km n1−m( )( ) � 1
r1
H 1( ) Km n1−m( )( )

� 1
2n1r1

1
n1

+ n1 −m − 1
m

+ m − 1
n1 −m

( ).
From Eq. 22,

H 1( ) ~Cn2 ∨ ~K1( ) � 1
2 n2 + 1( )

1
r3n2 + r3

+ ∑n2−1
α�1

1

4r2 sin2 απ
2n2

( ) + r3
⎛⎝ ⎞⎠.

Then,H(1)( ~Km(n1 −m)◦~Cn2) � n2(n1−1)+n1
2n1(n2+1)2r3 + 1

2n1r1
( 1
n1
+

n1−m−1
m + m−1

n1−m) + 1
2(n2+1) (∑n2−1

α�1 1
4r2 sin2( απ

2n2
)+r3).

6 Conclusion

For the unweighted corona networks G1◦G2, the

corresponding Laplacian spectra can be obtained by the

eigenvector method, and we can use the relationship between

eigenvalues and coherence to get the network coherence of

G1◦G2. For the weighted corona networks ~G1◦ ~G2, due to the

different weights, it is difficult to obtain the Laplacian spectra,

that is, it is not easy to obtain the network coherence of ~G1◦ ~G2

through the eigenvalue spectra. Based on the Laplacian matrix
~G1◦ ~G2, the Laplacian characteristic polynomial of ~G1◦ ~G2 is

calculated by using the properties of matrix diagonalization

and orthogonal matrix. We further used the relationship

between eigenvalues and characteristic polynomial coefficients

to obtain the network coherence of ~G1◦ ~G2 and found the

relationship between the network coherence of ~G1◦ ~G2 and G1.

The Laplacian spectra of the weighted corona networks are not

obtained in this study. We will conduct further research in future

work. The research on the Sombor index and degree-related

properties of simplicial networks is very meaningful, and we will

try to obtain the Sombor index of the weighted corona networks.
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