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The application of hybrid nanomaterials for the improvement of thermal efficiency of base
fluid has increasingly gained attention during the past few decades. The basic purpose of
this study is to investigate the flow characteristics along with heat transfer in an unsteady
three-dimensional flow of hybrid nanofluid over a stretchable and rotatory sheet (3D-
UHSRS). The flowmodel in the form of PDEs was reduced to the set of ordinary differential
equations utilizing the appropriate transformations of similarity. The influence of the rotation
parameter, unsteadiness parameter, stretching parameter, radiation parameter, and
Prandtl number on velocities and thermal profile was graphically examined. A reference
solution in the form of dataset points for the 3D-UHSRSmodel are computed with the help
of renowned Lobatto IIIA solver, and this solution is exported to MATLAB for the proper
implementation of proposed solution methodology based on the Levenberg–Marquardt
supervised neural networks. Graphical and numerical results based on the mean square
error (MSEs), time series response, error distribution plots, and regression plots endorses
the precision, validity, and consistency of the proposed solution methodology. The MSE
up to the level of 10–12 confirms the accuracy of the achieved results.

Keywords: Lobatto IIIA, hybrid nanofluid, unsteadiness parameter, stretching parameter, Prandtl number

INTRODUCTION

In the recent past, improvement in heat transfer for various engineering and industrial applications
remains the main topic of research for scientists. Improvement in the heat transfer ability can be
done through different methods such as use of microchannel, extended surface and through
vibrating the surface. Thermal conductivity plays the most important role among all other
characteristics of fluid for judging its heat transfer ability. Thermal conductivity of any
nanofluid depends on the type, as well as the shape of nanoparticles. There will be less energy
loss with the improved thermal efficiency of the fluid, which can further reduce the cost and increase
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the production in industrial applications. Various conventional
fluids, such as water, kerosene oil, and ethylene glycol, are
commonly used in many industrial and engineering
applications (e.g., chemical manufacturing, water distillation,
HVAC systems, medicine, and power-generation systems), but
due to inadequate thermal transfer ability, these ordinary fluids
lack good efficiency in systems having large thermal transfer
requirements. As it is well known, the ability to conduct heat for
metals is hundred times greater than that in liquids, which is why
it is appropriate to use them in thermal systems [1–5]. Thus, the
use of nanoparticles <100 nm not only improved the thermal
capabilities of the fluid, but also positively improved the other
rheological properties. Initially [6] was the first work to discuss
the nature and characteristics of nanofluids. [7] compared the
performance of heat transfer between the nanofluid comprised of
a single wall and multiwall carbon nanotubes in a
magnetohydrodynamic (MHD) flow under the influence of
radiative flux.

A new type of nanofluids known as “hybrid nanofluids” is
made by dispersing two different types of nanoparticles into
base fluid to obtain various synergetic effect of both types of
nanomaterial. The development of hybrid nanofluidic system
is currently undergoing and under the evaluation to enhance
the strength of thermal effects for different flow dynamics.
Performance in terms of thermal energy utilization is being
tested and assessed by various researchers. Due to its
marvelous heat transfer abilities, this new type of nanofluid
attracted the attention of researchers and scientists to
investigate it in many of the industrial and engineering
problems. Hybrid nanofluid have extensive range of
application in scientific, industrial, engineering, and
medical fields like medicine manufacturing, heating
systems, transfer cooling, electronic chips, and solar panels
[8]. Of late, several studies have been conducted to analyze the
improvement of heat transfer capabilities for hybrid
nanofluids as compared to conventional single-particle
nanofluids [9–13]. The flow over rotating surfaces has
many practical applications such as electrical appliances,
cutting discs, data-storing devices, and heavy machinery
parts. Song et al. [14] implemented a numerical shooting

methodology to analyze the effects of various physical
parameters on the velocity and thermal fields in the
stagnation point flow of a hybrid nanofluid over a rotatory
disc under radiative and activation energy effects. [15]
numerically evaluated the three-dimensional MHD flow of
hybrid nanofluid over a rotating and stretching sheet. In
addition, the behavior of velocity and temperature profile
depending on different physical factors has been
highlighted through graphs and numerical results.

Any flow in which all of its parameters are independent of
time is known as steady flow, whereas the time-dependent flow
is known as unsteady flow. Due to excessive applicability in
engineering and industrial applications, steady flow has gained
a lot of concentration of researchers and scholars. However,
recently many studies have been conducted on the behavior
and characteristics of unsteady fluid flow systems,
automobiles, power-generation systems, and aviation
industry [16], explored the influence of variable thermal
conductivity, viscosity, and Joule heating on the velocity
and thermal field in the unsteady flow of 3D Maxwell
nanofluid over a stretching surface. An enhancement in the
velocity of the fluid has been observed with increased viscosity.
[17] numerically investigated the biconvection flow of cross
nanofluid and studied the effects of thermal radiation along
with melting phenomenon over a cylinder. [18] studied the
considerable effect of external magnetic field acting at an
inclined angle on Williamson’s nanofluid over a rotating
stretchable surface. [19] conducted a comparative analysis
of heat transfer over a porous stretching surface between
nanofluid containing nanoparticles of Graphene oxide and
the combination of Ag–graphene oxide in kerosene oil as base
fluid.

[20] described experimental research of various factors
responsible for achieving better thermophysical properties
and more stable results in terms of heat transfer in
nanofluids and ionanofluids. There are a variety of
nanoparticles available for manufacturing of nanofluids and
hybrid nanofluid. Each type of material has its own benefits
and limitations depending on the material’s characteristics.
[21] presented the importance and significance of Aluminum
nanoparticles in the industrial and engineering fields and their
various advantages over other renowned nanomaterials. [22]
explicated an analysis to show the physical and chemical
stability and thermophysical properties based on thermal
conductivity for the nanofluid comprising TiO2

nanoparticles. Furthermore, different experimental results
showing the improvement in thermal properties have also
been tabulated in the research. [23] presented a numerical
investigation to examine the flow behavior, as well as heat
transmission capabilities of a hybrid fluid over a gyrating
surface under the influence of a uniform external magnetic
field. [24] numerically explained the behavior of mass and heat
transfer for the MHD flow of a nanofluid over stretched surface
under the heating effects through the radiation phenomenon.
[25] used state-of-the-art supervised neural network to solve
the hybrid nanofluid flow model with Joule heating and MHD
effects. A comparison with an already available solution has

FIGURE 1 | Geometrical interpretation for magnetohydrodynamic-
HNRD.
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also been made to show the accuracy and performance of
solution methodology. Among several other key factors, the
concentration of nanoparticles also plays an important part in
deciding the thermal capability of nanofluids. [26] presented
experimental research showing a rapid increase in thermal
efficiency of an oil-based nanofluid. In a similar manner, [27]
explained the fact that for a nanofluid with TiO2 nanoparticles
in water, the negative effect of using a lower concentration of
nanoparticles can be overcome by the other important
properties such as critical heat flux. [28] utilized the
Laplace transformation method to solve the flow model of
an incompressible non-Newtonian hybrid nanofluid over
permeable surface revolving with uniform acceleration with
velocity and thermal slip effects. [29] conducted a numerical

analysis of activation energy for the two-dimensional flow of a
hybrid nanofluid under the effect of buoyancy force and
thermal radiation. Furthermore, the influence of key
parameters, such as the Nusselt number and Sherwood
number, on the heat and velocity profiles has also been
investigated.

Most of the researcher used conventional solution
methodologies to explain various fluid models describing the
effects of entropy generation, rotating flow problems, and Joule
heating [30–36]. The application of modern solution
methodologies based on artificial neural networks to solve
such problems is an inventive work. Of late, researcher applied
these modern solutions depending on artificial intelligence to
resolve the problem related to various field such as financial

FIGURE 2 | Working flow chart.
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trading [37], rainfall prediction models [38], bioinformatics [39,
40], fluid dynamics [41, 42], energy, HIV virus spread models [40,
43, 44], and coronavirus perdition model [45] (also see [46, 47,
49]). In this study, the authors intended to solve the 3D-UHSRS
fluid problem for the first time, to the best of our knowledge, by
utilizing the Levenberg–Marquardt supervised neural networks
(LM-SNNs) bases solution technique. Theses modern solution
approaches were based on state-of-the-art computational
algorithms that can easily tackle the nonlinear behavior of
flow model’s equations.

The basic purpose of this research work is to investigate and
explain the flow feature along with the heat and mass transfer in
3D-UHSRS. The basic feature of purposed solution methodology
for 3D-UHSRS are as follows:

• A state-of-the-art mathematical model for the 3D-UHSRS
problem has been developed and expressed in terms of
PDEs, which are further converted into a set of nonlinear
ordinary differential equations (ODEs) using dimensionless
similarity variables.

• A numerical solution of the 3D-UHSRS problem was
obtained by implementing the Lobatto IIIA solution
methodology based on the bvp4c solver in MATLAB.
The solution datasets of the 3D-UHSRS problem is then
subjected for LM back propagation to carry out the training,
validation, and testing of the data set points.

• Different plots describing the effect of physical constants on
velocity as well as thermal profile have been presented. The
performance, convergence, and accuracy of the solution
approach were validated thorough residual error, the
number of grid points, ODEs, and BCs evaluations.

• Numerical and graphical results in the form of the MSE
curve, error histograms, regression and error plots were
authenticated from the performance, precision, and
convergence of the proposed LM-SNNs methodology.

PROBLEM FORMULATION

Assume a 3D unsteady flow of a hybrid nanofluid over a
stretchable surface, as shown as Figures 1and 2. The surface is
stretched in the xy-plane of the Cartesian coordinate system. The
surface is rotating with a uniform velocity “w” about an axis for
which z � 0. Here, (u, v, w) are the components of velocity in the
direction along (x, y, z). Stretching velocities of the surface and
in x and y direction are represented by u and v. Temperature of
fluid at stretching surface is Tw, whereas the temperature of the
ambient fluid is T∞.

According to abovementioned assumptions, described flow
model can be expressed in term of following set of mathematical
equations (50) and (51):

zu
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(5)

In the above system of equations, qr exhibits radiative heat
flux known as Rosseland approximation, which can be
mathematically expressed as

qr � −4σ
p

3kp
zT4

zy

TABLE 1 | Mathematical expression of various thermophysical quantities.

Properties Mathematical Expression

Dynamic Viscosity μhnf � μf (1 − ϕ1 − ϕ2)−2.5
Density ρhnf � ϕ1ρ1 + ϕ2ρ2 + ρf(1 − ϕhnf )
Thermal Conductivity khnf

kf
� {ϕ1k1+ϕ2k2ϕ1+ϕ2 + 2kf + (k1ϕ1 + k2ϕ2) − 2ϕhnf kf } × {ϕ1k1+ϕ2k2ϕ1+ϕ2 + 2kf − (k1ϕ1 + k2ϕ2) + 2ϕhnf kf }−1

Heat Capacity [ρcp]hnf � ϕ1(ρcp)1 + ϕ2(ρcp)2 + (1 − ϕhnf )(ρcp)f

TABLE 2 | Numerical values for various physical and chemical properties [48, 49].

Material Density Specific Heat Electrical Conductivity Thermal Conductivity

SI unit (Kg/m3) (J Kg−1K−1) (s/m) (W m−1K−1)

Water (H2O) 997 4,179 5.5 × 10–6 0.613
Al Nanoparticles 3,970 765 5.96 × 107 40
TiO2 Nanoparticles 4,250 686.2 2.38 × 106 8.953
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Here kp is the Stephen–Boltzmann constant, and σp represents
the mean absorption coefficient. Expending T4 and ignoring the
higher order terms, we get T4 � 4TT3

∞ − 3T4
∞.

Using the value of T4 in Eq. (5), we obtain

zT

zt
+ u

zT

zx
+ v

zT

zy
+ w

zT

zz
� 1(ρCp)hnf(khnf + 16σpT3

∞

3kp
) z2T

zz2

(6)

FIGURE 3 | Variation of velocity and temperature profile against β, ω, and, Rd.
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Along with the following boundary conditions of the system:

When z � 0 Then u � uw � cx

1 − αt
, v � 0, w � 0, T � Tw

When z → ∞ Then u → 0, v → 0, T → T∞

(7)

Here, “c” is the stretching coefficient of the surface, qr is the
amount of radiative flux, ω is angular velocity, and T∞ is
temperature of the ambient fluid. Undermentioned linear
transformation is designed to transmute the modeling ODEs
(1–5) into a nonlinear equivalent system of PDEs.

u � ax

1 − αt
f′(η), v � ax

1 − αt
g(η), w � −








a]f
1 − αt

√
f(η),

η �







a/]f
1 − αt

√
z, θ(η) � T − T∞

Tw − T∞
.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(8)

In the above equations, ρhnf is density, μhnf is dynamic viscosity,
and (ρcp)hnf is the heat capacity of the hybrid nanofluid. Whereas
ϕ1 represents the concentration of Al nanoparticles, and ϕ2
represents the concentration of nanoparticles of TiO2. As “hybrid
nanofluid” is a combination of two different types of nanoparticles,
ϕhnf is the total concentration of nanoparticle in the base fluid that
can be calculated as the sum of concentrations of both types of
nanoparticles, i.e., ϕ1 + ϕ2. All mathematical relationships
expressing thermophysical properties are expressed in Table 1 [51]:

Values regarding density, electrical, and thermal conductivity
and specific heat against used nanoparticles and base fluid has
been mentioned in Table 2.

Following important physical terminologies representing the
skin friction and Nusselt number can be written as:

FIGURE 4 | Variation of velocity and temperature profile against λ andPr.

TABLE 3 | Variation of parameters for the unsteady three-dimensional flow of
hybrid nanofluid over a stretchable and rotatory sheet problem.

Scenario C-I C-II C-III C-IV

I β = −1.5 β = −1.2 β = −0.8 β = −0.5
II λ = 0.6 λ = 0.8 λ = 1.0 λ = 1.4
III ω = 2.0 ω = 2.3 ω = 2.6 ω = 3.0
IV Rd = 2.0 Rd = 2.3 Rd = 2.6 Rd = 3.0
V Pr = 6.0 Pr = 6.0 Pr = 6.0 Pr = 7.0
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FIGURE 5 | Internal structure of NAR.

TABLE 4 | Numerical performance indicators for scenario I.

Scenario Cases Number of Neurons Mean Square Error Grad Mu Total Epochs Time (s)

Trng Valid Test

I I 30 1.351e-10 1.713e-10 2.043e-10 9.675e-08 1e-12 71 14
II 30 1.873e-10 1.873e-10 2.180e-10 9.995e-08 1e-11 82 15
III 30 1.452e-10 1.611e-10 3.129e-10 9.045e-08 1e-11 87 15
IV 30 1.314e-10 9.439e-11 1.317e-10 9.287e-08 1e-12 64 14

TABLE 5 | Numerical performance indicators for scenario II.

Scenario Cases Number of Neurons Mean Square Error Grad Mu Total Epochs Time (s)

Trng Valid Test

II I 30 3.835e-11 5.491e-11 6.678e-11 9.675e-08 1e-12 71 14
II 30 2.832e-11 3.725e-11 3.888e-11 9.668e-08 1e-12 64 12
III 35 1.682e-10 1.886e-10 2.093e-10 9.963e-08 1e-11 89 15
IV 30 1.488e-10 1.5190e-10 1.706e-10 9.761e-08 1e-11 90 15

TABLE 6 | Numerical performance indicators for scenario III.

Scenario Cases Number of Neurons Mean Square Error Grad Mu Total Epochs Time (s)

Trng Trng Trng

III I 30 2.201e-11 2.539e-11 2.425e-11 9.935e-08 1e-12 76 14
II 30 2.180e-11 3.142e-11 3.352e-11 9.808e-08 1e-12 70 14
III 30 1.655e-10 1.667e-10 1.929e-10 9.865e-08 1e-11 90 16
IV 30 2.132e-11 2.220e-11 2.958e-11 9.460e-08 1e-12 83 15

TABLE 7 | Numerical performance indicators for scenario IV.

Scenario Cases Number of Neurons Mean Square Error Grad Mu Total Epochs Time (s)

Trng Valid Test

IV I 30 1.967e-10 2.059e-10 2.113e-10 9.887e-08 1e-11 88 15
II 30 1.933e-11 2.755e-11 2.328e-11 9.742e-08 1e-12 75 13
III 30 2.201e-11 2.492e-11 3.086e-11 9.716e-08 1e-12 70 13
IV 30 2.158e-11 2.158e-11 2.948e-11 9.783e-08 1e-12 72 13
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Cfx �
μhnf
ρfu

2
w

(zu
zz

)
z�0

, Cfy � μhnf
ρfu

2
w

(zv
zz
)

z�0
, Nux

� − rkhnf

kf(Tf − T∞)(zTzz)z�0
+ x(qr)z, Cfx (9)

The mathematical evaluation of Eqs. 1 and 2)–5 gives

μhnf/μf
ρhnf/ρf f′′′ − f′2 + ff″ + 2Ωg − β(f′ + η

2
f″) � 0, (10)

TABLE 8 | Numerical performance indicators for scenario V.

Scenario Cases Number of Neurons Mean Square Error Grad Mu Total Epochs Time (s)

Trng Valid Test

V I 30 2.241e-11 1.968e-11 2.265e-11 9.827e-08 1e-12 73 14
II 30 1.607e-10 1.982e-10 3.659e-10 9.652e-08 1e-11 92 15
III 30 1.653e-10 1.881e-10 1.780e-10 9.821e-08 1e-11 91 15
IV 30 1.484e-10 3.305e-10 1.700e-10 9.929e-11 1e-11 101 16

FIGURE 6 | Performance and accuracy plots of C-2 S-1.
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μhnf/μf
ρhnf/ρf g″ − f′g + fg′ − 2Ωf′ − β(g + η

2
g′) � 0, (11)

1
Pr

(ρCp)f(ρCp)hnf(khnfkf
+ 4
3
Rd)θ″ − β

η

2
θ′ + fθ′ � 0, (12)

Here, corresponding BCs are

f(η) � 0, f′(η) � λ, g(η) � 0, θ(η) � 1 at η � 0,
f′(η) → 0, g(η) → 0 , θ(η) → 0 when η → ∞ .

} (13)

The physical parameters of 3D-UHSRS flow problem involved
in Eqs. 8–12 are

λ � c

a
, Ω � ωp

c
, Rd � 4σpT2

∞

kpkf
, β � α

a
, Pr �

υf(ρcp)f
kf

� υf
αf

(14)

Here, Rd represents the radiation parameter, Pr is the
Prandtl number, β is the unsteadiness parameter, Ω is the
rotation parameter, λ decides the stretching or shrinking
ability of the sheet, and λ � 0 corresponds to the static
nature of the revolving surface. The nondimensionalized
form of Skin friction coefficient and Nusselt number are as
follows:

CfxRe
1/2
x � ⎡⎣μhnf

μf
⎤⎦f″(0), CfyRe

1
2
x � ⎡⎣μhnf

μf
⎤⎦g′(0)NuxRe

−1
2

x

� −(khnf
kf

+ 4
3
Rd)θ′(0), CfxRe

1/2
x (15)

in which Rer � ux
υf

represent the local rotational Reynold
number.

FIGURE 7 | Mean square error bases performance of second cases for all scenarios.
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RESULTS AND DISCUSSION

Solution of the system of ODE resenting the flow model has
been accomplished in two major phases, in the first phase, set
of nonlinear ODEs along with their relevant boundary
conditions (Eqs. (1)–(7) are transformed into the first-order
ODEs for the solution by using the renowned solution
technique “Lobatto IIIA” with the use of MATLAB
software. Graphical variation of velocity and temperature
profile against various important physical parameters are
shown in Figures 3 and 4. Various scenarios and cases are
generated based on the variation of involved physical
parameters, as described in Table 3.

Figure 3A ~ c) presented the impact of β (unsteadiness
parameter) on the velocities in x and y directions, as well as on
the temperature of the fluid. It was observed that, initially, the
velocity of the fluid showed a decreasing trend with the
increase in the values of β; after that, a further increase in β

will produce a direct change in the velocity of the fluid because
an increase in β will result in thickening of the velocity
boundary layer. In addition, higher values of β will also
results in the fluid temperature increase. Figure 3D ~ e)
revealed the rising trend of velocities against the increasing
values of ω (the rotation parameter). In reality, centrifugal
forces increase with the increase in ω, which tends the particles
of fluid to move into the y direction. Figure 3F exposed the
influence of ω (the rotation parameter) on the temperature
profile of the fluid. As with the increase in the rotation
parameter, the radial velocity and hence the kinematic
energy of the fluid rises, which produces more heat;
therefore, the overall temperature of the fluid rises.

Figures 4A,B presents the influence of λ (the stretching
parameter) on the velocity and thermal profile of the fluid. It
was observed that initially velocity of the fluid increases with
the increase in values of stretching parameter and the
temperature of the fluid shows a slight decline against the

FIGURE 8 | Fitness performance plots of second cases for all scenarios.
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rising values of stretching parameter. Figure 4C portrayed the
variation in temperature profile of the fluid against the variable
values of Rd (the radiation parameter). It is understood that
radiation parameter expresses the amount of heat contributed
to fluid via thermal radiation. Due to this fact, increasing the
radiation parameter will generate more heat in the fluid.
Figure 4D was drawn to study the effect of the Prandtl
number (Pr) on the temperature profile of the fluid, and it
has been observed that with the rise in the Prandtl number, the
overall temperature of the fluid shows a declining behavior. As
the Prandtl number varies inversely to the thermal diffusivity
of the fluid, therefore, with the rise in the Prandtl number, the
viscosity of the fluid also rises, causing the temperature of the
fluid to drop.

In the second phase, numerical results of the solution
containing datasets for each involved variable against all
scenarios and cases are generated between a fixed domain,
and these dataset points are further subjected to the proper

execution of innovative LM-SNNs-based solution. During the
operation of proposed methodology out of total points, 80%
points were subjected under the network training, whereas the
leftover 10% dataset points were used for the operation of
validation and testing processes. The number of neuron and
delay steps in the calculations were adjusted as per complexity
of the problem and required level of accuracy. A two-layer
internal structure of the LM-SNNs is presented in Figure 5.
Table 4–8 presents the numerical performance indicators
comprising of MSE, gradient, Mu, and the number of
epochs for scenario (I–V), respectively.

Figure 6A ~ d) presents the graphical details of the time
series response, error distribution plot, MSE, and gradient
plots against the second case of the first scenario.
Furthermore, MSE for any computational methodology
represents the mean of square of differences between the
actual value and estimated value. Accuracy and stability of
any method can be judged through the MSE value

FIGURE 9 | Error distribution plots of second cases of all scenarios.
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encountered during the computational process. Smaller MSE
values correspond to a better solution and an accurate and
reliable solution technique. Figures 7A–D were designed to
illustrate the MSE plots of the first case of each scenario for
training, validation, and testing to compare performances
based on MSE for each case.

The reference solution of the problem is available in the form
of dataset points that are further categorized into training,

validation, and testing processes at a specific ratio. In time
series response, a close relationship between target and output
values of training, validation, and testing depict the accuracy and
precision of the solution methodology. Time series response of
any variable is the statistical measure of any characteristics with
respect to time. In addition, time series response help the
researchers to estimate and understand the performance of a
variable through any calculated data. Through these fitness plots

FIGURE 10 | Regression plots of second cases of all scenarios.

Frontiers in Physics | www.frontiersin.org September 2022 | Volume 10 | Article 94990712

Shoaib et al. Intelligent Networks for Hybrid Nanofluidics

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


one can easily observe the separate accuracy of all training,
validation, and testing points as compared to available
graphical solution. Figures 8A–D illustrate the fitness plots for
first cases of all scenarios.

Error histograms are another way to measure the closeness of
predicted values with the reference values. These histograms are
actually the distribution of errors of all these computed values from a
zero error point. Errors in term of all the achieved values are
classified into 20 portions, which are aligned across a line
representing the zero error line. More values that lie close to the
zero error line indicate more accuracy and precision of the solution
methodology. Figures 9A–D were designed to illustrate a
comparison of error histograms for first cases of all scenarios.

Regression is a graphical way to present the precision of the
predicted values to the reference values separately for training,

validation and testing points. In these plots, an available
reference solution has been shown by a straight line,
whereas the predicted values are shown by dots or small
circles. Accuracy and precision of the computation can also
be judged through the numerical value of regression. R =
1 means that the predicted values are very close to reference
values, and R = 0 means there is a very poor relationship
between reference and predicted values. Figures 10A–D
exhibit a comparison of regression plots between first cases
of all scenarios.

Gradient is actually a vector responsible for guiding the
network in the right direction with an accurate magnitude to
reach the required solution as early as possible, whereas mu is a
factor that controls a certain algorithm. The value of mu
directly portraits the convergence of the solution. Figures

FIGURE 11 | Plot for gradient and mu of second cases of all scenarios.
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11A–D reflect a comparison between the gradient and mu
plots of first cases of all scenarios.

Figure 12 portrays the graphic comparison of proposed
LM-SNNs base solutions with the already available solutions

for all scenarios, and additional comparison of errors for all
cases of each scenario are also placed opposite showing the
accuracy and precision of the proposed solution
methodology.

FIGURE 12 | Comparison of the Levenberg–Marquardt supervised neural network solution with reference solution along with relative errors for various scenarios.
(a), (b).
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CONCLUSION

Here, we employed a numerical study using a novel LM-
SNNs–based methodology to investigate the 3D-UHSRS by
modeling it in terms of PDEs, which were further reduced to

ODEs. A well-renowned solution technique “Lobatto IIIA”
was implemented to solve these sets of equation. The
influence of various involved physical parameters on
velocity and thermal performance are visualized and
studied. The solution in respect of each variable in the

FIGURE 12 | Comparison of the Levenberg–Marquardt supervised neural network solution with reference solution along with relative errors for various scenarios.
(a), (b).
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form of dataset points are acquired and placed in MATLAB
for proper operation of the LM-SNNs solution by training,
validation, and testing of these dataset points at 80%, 10%, and
10%, respectively. Accuracy, precision, and cogency of the
solution were validated through various graphical results
consisting of time series, MSE, error distribution, and
regression plots.

Followings are few important research outcomes:

• Higher values of ω (rotational velocity) will make the fluid
velocity to decrease, whereas temperature of the fluid shows
an increasing trend for a similar change.

• An increase in velocity and decline in the temperature field
were observed with the increasing values of λ (the stretching
parameter).

• A boost in the fluid temperature was observed with
increasing values of Rd (the radiation parameter)
whereas reverse behavior has been noted for the Pr.

Solution methodologies working on the principle of artificial
intelligence and machine learning can be more beneficial and
valuable in solving the problems related to nano [52–54] and
micro fluids [55–61].
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NOMENCLATURE

Symbols
Ω (rad s−1) Angular velocity

ρ (kgm−3) Density

u, v, w (ms−1) Velocity components

CP (m2s−2K−1) Specific heat

λ (m−1) Stretching coefficient

T (K) Temperature

K (mkgs−3K−1) Thermal conductivity

μ (kgm−1s−1) Viscosity

Abbreviations

LM Levenberg–Marquardt

SNN Supervised neural networks

C Case

S Scenario

nf Nanofluid

hnf Hybrid nanofluid

f, g Dimensionless velocity components

θ Dimensionless temperature

Nu Nusselt number

ϕ Nanoparticle concentration

Re Reynolds number

η Transformed coordinate

Ω (rad s−1) Angular velocity Transformed angular velocity

SWCNTs Single wall CNTs

MWCNTs Multiwall CNTs

MSE Mean square error

MHD Magnetohydrodynamics

ODEs Ordinary differential equations

PDEs Partial differential equations
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