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Prior studies have revealed that nonzero odd viscosity is an essential property

for chiral active fluids. Here we report that such an odd viscosity also exists in

suspensions of non-active or non-externally-driven but chirally-shaped

particles. Computational simulations are carried out for monolayers of dense

ratchets in simple shear and planar extensional flows. The contact between two

ratchets can be either frictionless or infinitely-frictional, depending on their

teeth and sliding directions at the contact point. Our results show that the

ratchet suspension has the intermediate shear/extensional viscosity as

compared with the suspensions of smooth and gear-like particles.

Meanwhile, the ratchet suspensions show nonzero even and odd

components of the first normal stress coefficient regarding the flow rate,

which indicates the mixed feature of conventional complex fluids and chiral

viscous fluids.
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1 Introduction

Chiral active fluids are typical nonequilibrium systems consisting of self-spinning

constituents [1–3]. In recent years, they have attracted increasing attention because of

intriguing dynamics and collective behaviors such as turbulence [4], phase separation

[5–7], surface wave [2, 8], and unidirectional edge current [9–13]. One essential property

to explain such behaviors is the so-called Hall or odd viscosity, which stems from the

inherent breaking of parity and time-reversal symmetries and does not produce any

entropy or heat as dissipative viscosity [14, 15]. Prior work on the odd viscosity ranges

from phenomenological to topological and rheological scopes. In most of such work, the

self-spinning constituents are sufficiently small, so that the chiral active fluids are treated

as continuum phases. Then their behaviors can be described by hydrodynamic equations

with an additional assumed odd term, where the odd viscosity physically characterizes the

orthogonal stress response of the system to the imposed flow (i.e., eigendirections of the

rate of deformation tensor) [16–22].

OPEN ACCESS

EDITED BY

Ramon Planet,
University of Barcelona, Spain

REVIEWED BY

Mehdi Bouzid,
UMR5521 Sols, Solides, Structures,
Risques (3SR), France
Corey OHern,
Yale University, United States

*CORRESPONDENCE

Ryohei Seto,
seto@ucas.ac.cn

SPECIALTY SECTION

This article was submitted to Soft Matter
Physics,
a section of the journal
Frontiers in Physics

RECEIVED 24 May 2022
ACCEPTED 08 August 2022
PUBLISHED 10 October 2022

CITATION

Zhao Z, Yang M, Komura S and Seto R
(2022), Odd viscosity in chiral
passive suspensions.
Front. Phys. 10:951465.
doi: 10.3389/fphy.2022.951465

COPYRIGHT

© 2022 Zhao, Yang, Komura and Seto.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 10 October 2022
DOI 10.3389/fphy.2022.951465

https://www.frontiersin.org/articles/10.3389/fphy.2022.951465/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.951465/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.951465&domain=pdf&date_stamp=2022-10-10
mailto:seto@ucas.ac.cn
https://doi.org/10.3389/fphy.2022.951465
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.951465


In the field of rheology, the first normal stress difference, as

one of viscometric functions, has been widely studied [23–25]. It

also describes the orthogonal stress response to the imposed flow,

but is commonly discussed for conventional complex fluids such

as viscoelastic fluids and dense suspensions. We have clarified the

relation between the odd viscosity and the first normal stress

difference in the recent work [7]. In general, the latter can be

decomposed into even and odd components. The even one

results from the microstructures constructed by interacting

fluid constituents, whereas the odd one is equivalent to the

odd viscosity, which is nonzero when the parity and time-

reversal symmetries of the system break. Our work reported

that both of such even and odd components were nonzero for

chiral active suspensions, indicating the mixed feature of

conventional complex fluids and chiral viscous fluids [7].

Nevertheless, the understanding of rheology of chiral active

suspensions is still lacking. Another open question is whether

a suspension needs to be active (i.e., with self-spinning or

externally-driven constituents) or not to have non-zero odd

viscosity.

In this paper, we examine the odd viscosity in passive

suspensions composed of chirally-shaped particles with finite

size, by carrying out computational simulations in both simple

shear and planar extensional flows [26]. The particles are

modeled by ratchets with unidirectional (clockwise or

anticlockwise) teeth and supposed to undergo asymmetric

contact interactions. This means the contact can be either

frictional or frictionless depending on the teeth and sliding

directions of the particles. In Section 2, we detail the main

simulation methods, including the modeling of particle

dynamics and background flows, simulation parameters and

conditions, and rheological characterization. Section 3

presents the simulation results in terms of average contact

number of the particles, reorientation angles, and even and

odd components of essential rheological coefficients.

2 Simulation method

2.1 Particle dynamics

For N spherical particles that are suspended in liquid solvent,

they experience forces and torques due to Stokes drag (FS and
TS), hydrodynamic inter-particle interactions (FH and TH), and

frictional contact (FC and TC). When the flow time scale is

shorter than the Brownian time scale, we can neglect both inertia

and thermal fluctuations. Such a regime is also accessible in

experiments [27–29]. As a result, the force and torque balances

on particle i (= 1, . . ., N) are given by

FS,i + FH,i +∑
j≠i

FC,ij � 0, (1)

TS,i + TH,i +∑
j≠i

TC,ij � 0. (2)

Here, the Stokes force and torque are given by

FS,i � −6πη0a U i − U∞ xi( )( ), (3)
TS,i � −8πη0a3 Ωi −Ω∞ xi( )( ), (4)

where η0 represents the solvent viscosity, a the particle radius, Ui

andΩi the velocity and angular velocity of particle i, respectively,

and U∞(xi) and Ω∞(xi) the velocity and angular velocity of the

background fluid at particle position xi, respectively. For the

FIGURE 1
(A) Schematic of four particle models: ratchets I (with clockwise teeth), ratchets II (with anticlockwise teeth), smooth particles, and gear-like
particles. When two ratchets tangentially contact and their teeth at the contact point are anti-parallel and parallel to their relative velocity, we assume
the contacts are frictionless (μ = 0) and infinitely-frictional (μ = ∞), respectively. The smooth and gear-like particles (for contrast only) experience
zero and infinite friction, respectively. (B) Schematic of stress components and corresponding basis tensors. The black arrows indicate the stress
directions, whereas the orange lines and arrows represent the embedded extensional flow including the contraction (vertical) and extension
(horizontal) axes.
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inter-particle hydrodynamic interactions, we assume that they

only arise from lubrication effects. This is justified for dense

suspensions subjected to contact forces, where the far-field or

many-body hydrodynamic interactions play minor roles. The 6N

lubrication force and torque vectors (FH ≡{FH,1, . . ., FH,N} and TH

≡{TH,1, . . ., TH,N}) are coupled with the 6N particle velocity and

angular velocity vectors (U ≡{U1, . . ., UN} and Ω ≡{Ω1, . . ., ΩN})

in the form of

FH

TH
( ) � −RL · U − U∞ x( )

Ω −Ω∞ x( )( ) + RL′: E∞, (5)

where RL and RL′ are the configuration-dependent resistance

matrices for the hydrodynamic lubrication, and E∞ denotes the

rate-of-strain tensor [30]. In the current work, the resistance

matrices are simply described by the leading terms of the pairwise

short-range lubrication interaction [31].

For two particles in contact, their interaction is described by a

simple spring-and-dashpot model [32, 33], where the normal and

tangential components of the contact force are given by

F n( )
C,ij � knhijnij + γnU

n( )
ij , (6)

F t( )
C,ij � ktξ ij. (7)

Here, kn and kt are the normal and tangential spring constants,

respectively, hij and nij represent the surface separation and

center-to-center unit vector between the particles, respectively,

γn is the damping constant, U(n)
ij ≡ nijnij · (U j − U i) is the

relative normal velocity, and ξij denotes the tangential stretch

FIGURE 2
(A) Average contact number Z as a function of particle areal fraction ϕ for various particle models. (B) Average number of frictionless (Z×) and
infinitely-frictional (Zo) contacts as a function of particle areal fraction ϕ for ratchets I and II. In (A) and (B), error bars are not shown because they are
smaller than the symbols. (C) Schematic of contact interaction between ratchets in the dense limit, where frictionless and infinitely-frictional
contacts emerge simultaneously. Here U1, U2, and U3 denote the velocities of three contacted particles, whereas μ1,2 and μ2,3 represent the
static friction coefficients for particles 1 and 2 and for particles 2 and 3, respectively. (D) Representative snapshots of force chain distribution (top) and
corresponding polar plot of the angular contact distribution (bottom) in simple shear flows, for particle areal fraction ϕ = 0.65 and various particle
models. Inserts denote the particle type and the velocity gradient of the simple shear flow. The radial axis of the polar plots represents the distribution
probability P(θ).
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vector. The contact forces fulfill Coulomb’s friction law

|F(t)
C,ij|≤ μ|F(n)

C,ij| with the static friction coefficient μ. In

addition, we note that ξij = 0 in the absence of contact (hij >
0). After the particles contact at time t0 (hij ≤ 0), the

tangential stretch vector evolves as ξij(t) � ∫t

t0
U(t)

ij dt,

with the relative tangential velocity defined by

U(t)
ij ≡ (I − nijnij) · [U j − U i − (aΩi + aΩj) × nij]. Here I is

the identity tensor. Then the tangential contact torque in Eq.

2 is obtained by

TC,ij � anij × F t( )
C,ij. (8)

2.2 Simulation parameters and conditions

Our work takes into account four different types of particles,

i.e., ratchet-like particles with clockwise teeth (ratchet I), ratchet-

like particles with anticlockwise teeth (ratchet II), smooth

particles, and gear-like rough particles (see Figure 1A). In

computational modeling, all of these particles are spheres

without any physical teeth or bumps. They differ from each

other only in terms of different mathematical models for the

inter-particle contact. For example, we assume the smooth

particles are frictionless, i.e., μ = 0, and their contact

interactions are only along the normal direction. In contrast,

the gear-like particles are infinitely-frictional, i.e., μ = ∞, and

their contact sliding is constrained. For ratchet-like particles,

imaginary and chiral-directional ratchet teeth are endowed.

Namely, the contact is infinitely-frictional when a ratchet

slides in the same direction with its tooth at the contact point,

and is frictionless otherwise.

Suspensions of the particles of the same type are exposed to

simple shear and planar extensional flows, which are constructed

with the Lees–Edwards [34] and Kraynik–Reinelt periodic

boundary conditions [26, 35], respectively. The velocity field

of the simple shear flow can be expressed as

U∞(x) � Ω∞ × x + E∞ · x. When the shear rate _γ is constant,

we have the nonzero elements U∞
x � _γy, Ω∞

z � − _γ/2, and

E∞
xy � E∞

yx � _γ/2. For the planar extensional flow, on the other

hand, the velocity field is given by U∞(x) � E∞ · x and a

constant extensional rate _ε leads to the nonzero elements

U∞
x � _εy, U∞

y � − _εx, and E∞
xy � −E∞

yx � _ε.

Simulations are carried out for N = 3000 bidisperse particles

(with radii a and 1.4a and with equal areal fractions) that are

constrained in a monolayer (x-y plane). The constants _γ and _ε are

taken to be positive. We set kn and kt (only for the cases of μ =∞)

to sufficiently large values that keep both the maximum overlap

and tangential displacement smaller than 5% of the particle

radius. The particle areal fraction varies in the range of 0.3 ≤
ϕ ≤ 0.75. For each set of simulation conditions and parameters,

FIGURE 3
(A) Relative shear viscosity η/η0 and (B) ratio of non-dissipation response function to shear viscosity λ/η and corresponding reorientation angle θ
as a function of particle areal fraction ϕ for various particle models. (C) Even and odd components of the ratio λ/η as a function of ϕ for ratchet
particles. (D) Scaled first normal stress coefficient as a function of ϕ for various particle models. In the figures, error bars are not shown because they
are smaller than the symbols.
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five parallel runs are performed starting from different random

initial configurations.

2.3 Rheological characterization

The stress tensor of passive suspension can be obtained as

σ � 2η0E
∞ − 1

V
∑
i>j

rij FH,ij + FC,ij( ), (9)

where V and rij represent the total volume of the suspension and

center-to-center vector between particles i and j, respectively.

According to the theoretical framework discussed in reference

[36], the stress tensor in two-dimensional systems can be

decomposed in terms of basis tensors as

σ � −pI + _s ηD̂ + λĜ + ζÂ( ), (10)

where p represents the pressure (including the isotropic stress due to

contact forces), η the suspension viscosity, _s (� _γ or 2 _ε) the flow rate,

and λ and ζ the non-dissipative response function and rotational

viscosity, respectively. The basis tensors are defined as

D̂ ≡ eexteext − econecon, Ĝ ≡ eextecon + econeext, and

Â ≡ eextecon − econeext, where eext and econ are the unit vectors for

the extension and contraction axes of the imposed flow. We note

that the basis tensors are orthogonal to each other and their

corresponding stress components are shown in Figure 1B.

Besides, for suspensions without self-spinning elements, as in the

current work, the term with ζ can be dropped.

Then the rotation of principal axes of σ in the flow plane with

respect to those of D̂ is quantified by the reorientation angle

θ ≡ arctan λ/ η +
						
η2 + λ2

√( )[ ], (11)

which is proportional to the ratio λ/η, or equivalently, N1/σxy
[36]. Here the first normal stress difference, N1 ≡ σxx − σyy, is one

typical signature indicating the presence of elasticity in complex

fluids [25, 37]. It can alternatively be characterized through the

first normal stress coefficient Ψ1 defined by

Ψ1 ≡
N1

| _γ| �
_γ

| _γ| λ. (12)

However, when planar extensional flows are imposed, λ does

not depend on the sign of _ε and the characterization in terms of

Ψ1 is unnecessary. Therefore, we only study the non-dissipative

response function λ for the planar extensional flows. In order to

further analyze the effect of shape chirality on any quantity Λ of

interest, we decompose it into the even and odd components in

terms of the flow rate as

Λeven ≡
1
2

Λ _s( ) + Λ − _s( )[ ], (13)

FIGURE 4
(A) Average contact number Z, (B) relative extensional viscosity η/η0, and (C) ratio of non-dissipation response function to extensional viscosity
λ/η and corresponding reorientation angle θ as a function of particle areal fraction ϕ for various types of particles in imposed planar extensional flows.
(D) Polar plot of the angular contact distribution for various types of particles in imposed planar extensional flows. The radial axis represents the
distribution probability P(θ). (E) Even and odd components of scaled non-dissipation response function λ/(2η0) as a function of ϕ for ratchet
particles. In the figures, error bars are not shown because they are smaller than the symbols.
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Λodd ≡
1
2

Λ _s( ) − Λ − _s( )[ ]. (14)

WhenΛ =Ψ1/2, the odd component Λodd corresponds to the odd

viscosity [7].

3 Results

Both simple shear and planar extensional flows can give rise to

particle contacts along the contraction axis. Especially for dense

suspensions, emergent particle microstructures and complex force

chains (or networks) are determinant on themacroscopic rheological

properties [38, 39]. Here, we first focus on the simulations where

simple shear flows are applied and then step to the case of planar

extensional flow. For each flow type, the rheological property is

studied in terms of particle microstructure, (shear or extensional)

viscosity, and non-dissipative response function.
Figure 2A presents the dependence of average contact

number Z on the particle areal fraction ϕ, for the case where

a simple shear flow is imposed. For low areal fractions (ϕ ≤ 0.5),

we see that Z < 1 and the curves of ratchets I and II are in

accordance with the curves of smooth and gear-like particles,

respectively. This observation is expected because the same

contact modes are assigned to the ratchets I and smooth

particles, and to the ratchets II and gear-like particles (refer to

the left column of each particle type in Figure 1A). Besides, the

condition of simple shear flow and low areal fraction causes most

of the particles to get into contact with only one neighbor.

However, the average contact number becomes Z > 1 when ϕ

increases. The curves of ratchets I and II then gradually coincide

and eventually stay in the middle of the curves of the frictionless

and gear-like particles.

In order to explain such a phenomenon, we separately plot

the average numbers of frictionless (Z×) and infinitely-frictional

(Zo) contacts for different ratchet systems. As shown in

Figure 2B, both Z× and Zo increase with ϕ, but the former

becomes preponderant at large values of ϕ. Particularly, unlike

ratchets I for which the frictionless contacts are dominant

throughout the areal fractions studied, ratchets II experience a

switch of the main contact type. For large ϕ values, both Z× and

FIGURE 5
Schematics of response stress of different fluids in simple shear and planar extensional flows. The red arrows represent the principal axes of the
response stress in the flow plane, whereas the black arrows denote the direction of imposed strain. The symbols λeven and λodd denote the even and
odd components of non-dissipative response function λ. The subscripts 1 and 2 indicate the reorientation angles for the positive and negative shear
or extensional rate, respectively.
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Zo are independent of the particle chirality. This result not only

explains the convergence of the curves of ratchets I and II (in

Figure 2A), but also reveals that frictionless and infinitely-

frictional contacts coexist within dense ratchet suspensions.

Figure 2C illustrates the representative contact scheme for

dense ratchet suspensions, where U1, U2, and U3 denote the

velocities of three ratchet particles in contact. Because of the

particle chirality and irregular local motions, ratchets 1 and

2 undergo the frictionless contact (μ1,2 = 0), whereas ratchets

2 and 3 experience the infinitely-frictional contact (μ2,3 = ∞).

From the representative snapshots of contact network shown in

Figure 2D (top row), one can observe that the ratchet suspensions

of ϕ = 0.65 include profound multi-particle contacts.

Furthermore, we estimate the angular distributions of the

inter-particle contacts, as exhibited at the bottom row of

Figure 2D. The radial axis is the distribution probability given by

P θ( ) ≡ Nc θ( )/ NΔθ( ), (15)

where Nc(θ) represents the contact number at angle θ and Δθ
denotes the angle interval. The result shows that the principal

contact orientation of the gear-like particles is roughly along the

contraction axis (θ = 3π/4 and 7π/4). But those for the other three

particle types skew towards the anticlockwise direction.

Next we characterize the relative shear viscosity for different

suspensions in the simple shear flow. Because of the close relation

between the contact network and viscosity [26], the curves in

Figure 3A show the similar shapes with those presented in

Figure 2A. In details, the relative shear viscosities of ratchets I

and II gradually coincide whenϕ increases and finally take the values

between those of the smooth and gear-like particles. Compared with

the other three types of particles, the gear-like particles show a

dramatic increase of the shear viscosity at ϕ = 0.75. This is explained

by the proximity to the frictional jamming point [40], which

depends on the particle type as well as the value of the static

friction coefficient [33].

Figure 3B shows the ratio of non-dissipative response

function to shear viscosity λ/η, or equivalently, N1/σxy, and the

corresponding reorientation angle θ as a function of ϕ for various

particle suspensions. The curves of the frictionless and infinitely-

frictional particles are in accord with the prior results [37, 41].

Additionally, the θ values at ϕ = 0.65 coincide with the result of

the angular contact distributions (see the bottom row of

Figure 2D), which demonstrates the close relation between the

particle contacts (or microstructures) and responsive stress of the

suspension. However, the curves of ratchets I and II are distinct,

suggesting the dependence of the reorientation angle on the

particle chirality. We employ Eqs. 13, 14 to decompose λ/η into

even and odd components for the ratchet particles. As seen in

Figure 3C, the even component takes negative values and its

dependence on the areal fraction is typical of λ/η for achiral

particle suspensions [42]. In contrast, the finite odd component

shows a completely different behavior, with positive values for ϕ ≤
0.65 and negative values for ϕ ≥ 0.7. The vanishing odd

component is near ϕ = 0.7, where the even component

experiences the minimum point. We emphasize that except

for ϕ = 0.7, the odd component is non-negligible as compared

with the even component.

In Figure 3D, we also calculate the even and odd components

of the scaled first normal stress coefficient Ψ1/(2η0). One can see

that the ratchet particles have the similar even components with

the frictionless particles for ϕ ≤ 0.6, but smaller even components

for ϕ ≥ 0.65. The odd component for the ratchet particles shows

the similar behavior with the odd component of λ/η shown in

Figure 3C. Such results demonstrate that the features of

conventional complex fluids and chiral viscous fluids coexist

in the passive ratchet suspensions.

In the following, we study the suspension rheology in the

planar extensional flows. The average contact numbers Z for

different suspensions are shown in Figure 4A. We observe that

throughout the areal fraction studied, the Z values for ratchets I

and II are similar and intermediate as compared with those for

the frictionless and gear-like particles. Such a phenomenon, not

seen for the simple shear flows, is because the planar extensional

flows are symmetric with respect to the contraction and

extension axes. Therefore, for both ratchets I or II, half of the

particles undergo the frictionless contact and the other half

experience the infinitely-frictional contact. This explains the

phenomena shown in Figure 4B, where extensional viscosities

for the ratchets I and II show the similar behaviors and the

intermediate values with respect to those for the frictionless and

gear-like particles.

Since the first normal stress difference N1 and coefficient Ψ1 are

introduced for simple shear flows, we cannot use them for planar

extensional flows. Instead, we directly investigate the dependence of

the ratio λ/η and the corresponding reorientation angle on the

particle areal fraction ϕ. In Figure 4C, we see that the reorientation

angles for the frictionless and gear-like particles are almost zero.

Nevertheless, the reorientation angles of ratchets I and II increase

and decrease for large ϕ, respectively. This is because the shape

chirality of the ratchet particle breaks the time-reversal symmetry in

the planar extensional flow, resulting in the asymmetric contact

network (or particle microstructures) around the contraction and

extension axes (see Figure 4D). Moreover, by taking the

decomposition of the scaled non-dissipative response function λ/

(2η0) for the ratchet particles, we observe the vanishing even

component but prominent odd component that increases with ϕ

(see Figure 4E). Such a result demonstrates that the reorientation

angle in the planar extensional flows is purely due to the existence of

the odd viscosity.

4 Discussions and conclusion

Although the nonzero odd viscosity is obtained for chiral

passive suspensions, we underline that its dependence on the

particle areal fraction ϕ varies for different flow types. As
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exhibited in the result section, the simple shear and planar

extensional flows give rise to the non-monotonic changes and

monotonic increase of the odd viscosity with ϕ, respectively. This

difference is due to the flow-induced microstructures, which affect

the non-dissipative response function λ and then make the odd

viscosity flow-type-dependent. Besides, we demonstrate that the odd

viscosity can also be characterized when the fluid constituents are

not externally rotated (by active torques or imposed flows).

Applying planar extensional flows is suggested to be a

straightforward examination of the odd viscosity of a fluid.

In order to give a universal framework for the relevant

rheological characterizations, we schematically present in

Figure 5 the responsive stress and the corresponding

reorientation angle for four different fluid systems. Since the

reorientation angle does not rely on the rotational stress

response, our framework only considers the symmetric part of

the stress sym σ. Meanwhile, both the cases of simple shear and

planar extensional flows are taken into account.

As seen in the first column, stable Newtonian fluids have a

uniformdistribution of constituents and thus constant viscosity. The

principal axes of sym σ should align exactly with those of D̂.
However, for sheared conventional complex fluids (including

viscoelastic fluids and dense suspensions), the emergence of

internal constituent microstructures leads the principal axes of

sym σ to differ from those of D̂. Then one will obtain a nonzero

response function λeven (i.e., the even component of the first normal

stress coefficient) and the corresponding reorientation angles

satisfying θ1 = −θ2 ≠ 0. We note that such behaviors are not

typical for planar extensional flows, because both of the flow

field and resultant microstructures are symmetric with respect to

the contraction and extension axes. For chiral viscous fluids, the

principal axes of the responsive stress rotate for both simple shear

and planar extensional flows. However, the origin is purely due

to the intrinsic chirality, leading to the loss of parity and time-

reversal symmetries of the fluid. As a result, the direction of the

reorientation angle is independent of the shear or extensional

rates, i.e., θ1 = θ2 ≠ 0. The response function is the odd

component of the first normal stress coefficient λodd or the

odd viscosity. Finally, in chiral suspensions (either active or

passive), both microstructures and chirality contribute to the

tilted principal axes of the responsive stress from those of D̂.
Thus, the response function is the first normal stress coefficient

(i.e., λeven + λodd) for the simple shear flows, and is λodd for the

planar extensional flows.

In conclusion, by carrying out computational simulations, we

have studies the rheology of passive chiral suspensions in simple

shear and planar extensional flows. The results of the shear and

extensional viscosities show the intermediate values between

those for the smooth and gear-like particles. The dependence

of the shear viscosity on the particle chirality is significant at low

particle areal fractions but negligible for high areal fractions.

Importantly, the chiral passive suspensions show nonzero even

and odd components of the non-dissipative response function,

suggesting the mixed feature of conventional complex fluids and

chiral viscous fluids. Such even and odd components have

comparable contributions to the reorientation angle of the

system stress. We hope our work will extend the field of

rheology and progress the understanding of chiral fluids.
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