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In the ABCD optical system, the propagation properties and the radiation forces

are obtained by studying the cross spectral density of partially coherent self-

shifting cosine-Gaussian beams. A self-shifting phenomenon occurs when the

beams propagate in the strongly nonlocal nonlinear medium. The shifting

parameters could influence the bend characteristics of the propagation

trajectory and the beam center, while the power ratio affects the periods of

the parabolic trajectory. Furthermore, the radiation forces on a Rayleigh particle

in the focusing optical system are studied, and the obtained force distributions

depend on the refractive index, the shifting parameters, and the coherence

widths. What we report here has potential applications in optical

communication and optical tweezing.
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1 Introduction

The study of novel partially coherent related structured light fields and their

generation, transmission, and regulation is a hot research topic in the international

optical field [1, 2]. Partially coherent sources are common in practice. Compared with

completely coherent beams, partially coherent beams are less affected by disturbance [3].

The cross spectral density (CSD) is a significant physical quantity in partially coherent

beams. It should satisfy the quasi-Hermiticity and the non-negative definiteness [4–6].

The experimentally produced partially coherent beams with various complex degrees of

coherence was obtained byWang et al. [7]. Due to the wide applications in ghost imaging,

free space optical communications, particle trapping, and optical scattering [6–10],

partially coherent beams have attracted intensive attention.

In nonlocal nonlinear media, various beams of different degrees have been

reported in many aspects [11–18]. In the case of nonlocal nonlinearity, the

nonlinear responses of the medium under the optical field are related to both the
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point and optical fields around it. Among which, the

phenomenological model under strong nonlocal conditions

is Snyder-Mitchell model [11]. The lead glass and nematic

liquid crystals are strongly nonlocal nonlinear media

(SNNM), which have been demonstrated by some

experimental results [19, 20]. Deng et al. reported the

stable propagation of different types of soliton and beams

in SNNM [11, 12]. Analytical expressions of the

corresponding characteristic parameters for example the

beam size, the center of gravity, the curvature radius, and

linear momentum of Airy beams propagating in SNNM have

been studied [21]. Under the framework of fractional

nonlinear Schrödinger equation, Zhang et al. analyzed the

attractive and repulsion forces between abnormal Airy beams

[22], revealing a new situation of the interaction of Airy beams

and providing an alternative mechanism to control the

generation of breathing solitons. Different types of

spatiotemporal self-accelerating wave packets in SNNM are

also studied. The numerical simulation findings consistent

with their theoretical findings in the strongly nonlocal

requirement, and the numerical simulation under different

perturbation conditions is discussed [23, 24].

With the development of science and technology, people

are no longer satisfied with the observation of microscopic

particles, how to manipulate and control the studied particles

put forward more profound questions, and are committed to

exploring new research methods [25–28]. Piconewton-level

forces optical trapping and manipulating particles with

micrometer-size, while simultaneously measuring

displacement with nanometer-level precision have been

extensively studied [27, 29]. Trapping particles by radiation

pressures in a succession of groundbreaking papers were

reported by Ashkin et al. [25–27]. Without losing of

generality, the optical force is decomposed into the

scattering force and the gradient force. Gradually, optical

trapping techniques continued to improve, then become

better established, and finally have emerged as a formidable

tool with extensive and far-reaching applications. Nowadays,

optical trapping produced by various beams [30–33] such as

Laguerre–Gaussian beams, twist beams, and rotating beams

are reported by many researchers. Guo et al. investigated the

radiation forces on a Rayleigh dielectric particle induced by a

highly focused parabolic scaling Bessel beam [34], the findings

indicate that this beam can trap high-index particles at the

focus and near the focus. Combined with the new light field,

the realization of specific manipulation of nonabsorbing

nanoparticles is a significant development trend of optical

tweezers.

Therefore, we concentrate on the propagation properties and

radiation forces of the partially coherent self-shifting cosine-

Gaussian beams (PCSCBs) in the ABCD optical system. The

power factors, the shifting parameters, and the beam order that

influence the propagation characteristics in SNNM are discussed

in detail. PCSCBs with a self-shifting effect are beneficial for

trapping particles. Therefore, we analyze the radiation forces of

such focused beams with different refractive indexes, shifting

parameters, and coherence widths.

2 Theoretical model of PCSCBs in
ABCD matrix

Here, we choose the PCSCBs [2, 6, 35], which meet the

requirements of Fourier transformability, even magnitude, and

odd phase. In the initial plane (z = 0), its CSD function can be

written as

W0 r1′, r2′( ) � exp −x
′2
1 + x′2

2

σ2
x

− y′2
1 + y′2

2

σ2
y

⎛⎝ ⎞⎠cos Cx x1′ − x2′( )[ ]cos Cy y1′ − y2′( )[ ]
× exp − x1′ − x2′( )2

2δ2x
− y1′ − y2′( )2

2δ2y
⎡⎣ ⎤⎦exp ia x1′ − x2′( ) + ib y1′ − y2′( )[ ],

(1)

where σx and σy are the transverse intensity widths along the x

and y directions, δx and δy are the coherent length, a and b are the

shifting parameters, Cx � ���
2π

√
n/δx, Cy � ���

2π
√

n/δy, n is the

beam order. When n = 0, the cosine-Gaussian functions

reduce to the Gaussian functions. The paraxial approximation,

namely the small-angle approximation, requires light travelling

through the optical system with a small angle to the optical axis of

the system. Therefore, in the paraxial form, based on the

extended Huygens-Fresnel principle, the CSD at z > 0 can be

expressed as

W r1, r2, z( ) � ∫∫W0 r1′, r2′( )Hp
z r1, r1′( )Hz r2, r2′( )d2r1′d2r2′,

(2)
where Hz is based on the ABCD matrix,

Hz r, r′( ) � −ike
ikz

2πB
exp

ik

2B
Ar2 − 2rr′ +Dr′2( )[ ]. (3)

When r1 = r2 = r, the spectral density and the CSD of the PCSCBs

at the output plane are associated by the formula as

I r, z( ) � W r, r, z( ). (4)
After substituting Eqs 1–3 into Eq. 4, we can express the spectral

density as

I r, z( ) � k2

16a1a2a3a4B
2 exp

iaB + iBCx + ikx

2a1B
( )2

+ ibB + iBCy + iky

2a2B
( )2

+ B2
1

2a3
+ B2

2

2a4
[ ]{

+exp iaB + iBCx + ikx

2a1B
( )2

+ ibB − iBCy + iky

2a2B
( )2

+ B2
1

2a3
+ B2

4

2a4
[ ]

+exp iaB − iBCx + ikx

2a1B
( )2

+ ibB + iBCy + iky

2a2B
( )2

+ B2
3

2a3
+ B2

2

2a4
[ ]

+exp iaB − iBCx + ikx

2a1B
( )2

+ ibB − iBCy + iky

2a2B
( )2

+ B2
3

2a3
+ B2

4

2a4
[ ]},

(5)

where a21 � 1
σ2x
+ 1

2δ2x
+ ikA

2B , a22 � 1
σ2y
+ 1

2δ2y
+ ikA

2B , a23 � 1
σ2x
+ 1

2δ2x
−

ikA
2B − 1

4a1δ
4
x
, a24 � 1

σ2y
+ 1

2δ2y
− ikA

2B − 1
4a3δ

4
y
, B1 � (ia + iCx +
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ikx
B )[ 1

2a1δ
2
x
− 1], B2 � (ib + iCy + iky

B )[ 1
2a3δ

2
y
− 1], B3 � (ia − iCx +

ikx
B )[ 1

2a1δ
2
x
− 1], B4 � (ib − iCy + iky

B )[ 1
2a3δ

2
y
− 1].

In Eq. 5, the exact analytical solution is based on the ABCD

matrix. Now we can analyze the propagation properties in

SNNM and the radiation forces in the focusing system,

respectively.

3 Propagation properties of PCSCBs
in SNNM

In the nonlinear media, the propagation of PCSCBs obeys the

nonlinear Schrödinger equation [12,32]

2ik
zI

zz
+ z2I

zx2
+ z2I

zy2
+ 2k2

Δn
n0

I � 0, (6)

where Δn = n1 ∫N (r − r′)|I (r′, z)|2d2r′ is the nonlinear

perturbation of the refraction index, n1 is the nonlinear

index coefficient, n0 is the linear refractive index of the

medium, and N is the symmetrical real spatial response

function of the medium [24]. In addition, the Gaussian

function w2
0/(2πw2

m) exp[−r2/(2w2
m)] is selected as the

nonlocal response function [13, 24], where wm is the

characteristic length of the response. In the strong

nonlocality condition [13], wm → ∞, the length of the

beam is very short when compared with the length of the

response function, Eq. 1 can be written as the

Snyder–Mitchell model [11–13].

2ik
zI

zz
+ z2I

zx2
+ z2I

zy2
− k2β2 x2 + y2( )I � 0, (7)

where β � ��������
n1γP0/n0

√
is related to the power ratio, the input

power at the initial plane is P0, γ represents the material

parameter associated with N [13]. When the degrees of

nonlocality approaching infinity, Eq. 7 is in the case of the

nonlinearity limit, the field can change the refractive index of

the medium while propagating, this produce a structure similar

to the graded-index fiber. The ABCD matrix for this system is

A B
C D

( ) � cos βz( ) sin βz( )/β
−β sin βz( ) cos βz( )( ). (8)

After substituting Eq. 8 into Eq. 5, we can obtain the spectral

density of PCSCBs. We set the parameters in SNNM as σx =

1mm, σy = 0.3mm, δx = 1mm, δy = 0.3mm, and a = b.

In SNNM, Figure 1 displays the change of the spectral density

for PCSCBs with the propagation distance in different shifting

parameters and beam orders. The transverse distributions of the

PCSCBs change from unimodal distribution to bimodal

distribution, and with the increase of propagation distance z,

the center peak decreases. We notice that positive shifting

parameters in Figures 1B,D bring negative linear shifting

along the x direction, while the negative one in Figures 1A,C

behaves in the opposite direction. It is found that the larger the

beam order is, the faster the spectral density decays.

Figure 2 illustrates that the trajectory evolution of the

PCSCBs changes periodically in SNNM, and the period is L =

2π. Different shifting parameters change the structure of the

trajectory bending trend. The evolution initially broadens

because beam diffraction initially overcomes beam-induced

refraction. Different beam orders do not affect the trajectory

evolution period, but the trajectory profiles behave differently.

FIGURE 1
The distributions of the spectral density at the selected
propagation distances in SNNM with β = 1. (A) n = 1,
a = −10mm−1, (B) n = 1, a = 10mm−1, (C) n = 2, a = −10mm−1, and
(D) n = 2, a = 10mm−1.

FIGURE 2
Propagation trajectory of the PCSCBs in SNNM with β = 1.
(A)n=1, a=−10mm−1, (B)n=1, a=10mm−1, (C)n=2, a=−10mm−1,
and (D) n = 2, a = 10 mm−1.
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To further discover the effect of the shifting parameters, we

discuss the beam center [29], which can be given as

<x> � ∫∫∞

−∞
x | I x, y, z( )|2dxdy/∫∫∞

−∞
| I x, y, z( )|2dxdy,

(9)
<y> � ∫∫∞

−∞
y | I x, y, z( )|2dxdy/∫∫∞

−∞
| I x, y, z( )|2dxdy.

(10)
In Figure 3, the beam center distributions undergo a parabolic

trajectory. The beam center changes vividly with different β, the

period is L = 2π with β = 1, and L = π with β = 0.5. Though the

beam center undergoes a parabolic profile, the shifting

parameters change their bends characteristics. As the PCSCBs

behave with interesting features, it is meaningful to explore the

potential applications in optical trapping. Thus, we discuss the

radiation forces generated by the focused PCSCBs next.

4 Radiation forces produced by the
focused PCSCBs

The research of the optical radiation force has a profound

impact onmanymicro manipulation technologies [25, 28]. In the

following, the radiation forces of the PCSCBs acting on a

nonabsorbent Rayleigh dielectric particle are studied. When

the particle radius r0 is sufficiently small compared with the

wavelength (i.e., r0 ≤ λ/20), it can be seen as a point dipole in the

light field. Considering the propagation of the PCSCBs through a

lens system, where z is the distance from the input plane to the

output plane, f is the focal length, and z1 is the axial distance from

the focal plane to the output plane, the ABCD matrix for this

focusing system [30] is

A B
C D

( ) � 1 z
0 1

( ) 1 0
−1/f 1

( ) � 1 − z/f z
−1/f 1

( ). (11)

After substituting Eq. 11 into Eq. 5, we can got the intensity of the

PCSCBs in the focusing system. Light forces depend not only on the

physical properties of the particle but also on the properties of the

light field (e.g., amplitude, phase, polarization, etc.) are closely related.

In this paper, the scattering force component is proportional to the

distribution of the intensity, while the gradient force distribution is

given on the basis of its electric field amplitude. Assuming that the

particle is under a steady state, the scattering force and the gradient

force [28, 32] can be expressed as

�Fscat x, y, z( ) � nmζ0
c

I x, y, z( ) �ez, (12)

�Fgrad x, y, z( ) � 2πnmρ0
c

∇I x, y, z( ), (13)

where �ez is a unity vector along the beam propagation, ζ0 �
(128π5r60/3λ

4)[(η2 − 1)/η2 + 2]2, ρ0 � r30(η2 − 1)/(η2 + 2), η �
np/nm is the relative refraction index of the particle, r0 = 15nm,

nm = 1.332 (water) is the refractive index of the medium. np = 1

(air bubble, η < 1) or np = 1.59 (glass, η > 1) is the refractive index

of the particle. Both the gradient force and the scattering force

can be affected by the refraction index η, the shifting parameter a,

the coherence width δ. We set the parameters in the focusing

system as f = 10mm, σx = 10mm, σy = 4mm, δx = 10mm, δy =

4mm, and a = b = 0.01mm−1.

Figure 4 gives information on the radiation forces

produced by the focused PCSCBs on the high-index

particle (η > 1) and the low-index particle (η < 1) on the

trapped plane. To achieve stable trapping, the gradient forces

need to be larger than scattering forces. Because the scattering

forces push the Rayleigh particles along the propagation

direction, while the gradient forces pull the Rayleigh

particles toward the maximum of the transverse optical

field. That is to say, R = Fgrad,z/Fscat ≥ 1, where the ratio R

represents the stability standard. One can find stable

FIGURE 3
The numerical demonstrations of the beam center in SNNM
with different shifting parameters. (A) β = 1, (B) β = 0.5.

FIGURE 4
Effects of the refraction index on the radiation forces. The
high-index particle (η > 1) in solid lines, the low-index particle (η < 1)
in dashed lines. (A), (B) and (D) at the focus, x = 0 μm, (C) at the
points of x = ±0.3 μm.
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equilibrium points in Figures 4A,B,D, where the refractive

index the Rayleigh particle is smaller than the refractive index

of the ambient, the particle can be trapped at the focus point

by the partially coherent PCSCBs. Near the focal plane, the

scattering force is smaller than the longitudinal gradient force.

However, in Figure 4C, the high-index particle can be trapped

at the focus (z1 = 0) when x = ±0.3 μm. These two kind of

particles can be trapped in the mean time at different x

positions of the trapped plane.

Furthermore, we investigate the effect of the shifting

parameter a and the coherent length δ on radiation forces

acting on the low-index particle η < 1 (see Figure 5),

respectively. It is shown in Figures 5A1,A3 that the bigger

shifting parameters bring the stronger scattering forces and

gradient forces along x direction. However, in Figure 5A2,

the gradient forces along the z direction become weaker as a

increases. Nevertheless, it needs to be noted that the gradient

force along the z direction is still bigger than the scatting force

with the same a. In Figures 5B1–B3, one could see that the

gradient force and the scattering force grow up with the increase

of the coherence width, meaning that the trapping stiffness

becomes higher. Moreover, the peak position moves far away

from the focus point as δ increases. We also note that the shifting

parameter and the coherent length do not have an influence on

the position where the PCSCBs capture the particles.

5 Conclusion

To summarize, we have investigated the CSD of the partially

coherent PCSCBs, studied propagation properties through the

SNNM, and researched the radiation forces on a nonabsorbing

nanoparticle in the focusing optical system. In SNNM, the

PCSCBs is transverse self-shifting in different directions as

various shifting parameters. While propagating, we observed

that the spectral density decreases faster as the beam order

increases. The propagation trajectory and the beam center

change periodically. The power factors affect the periods, and

the shifting parameters influence the bend characteristics.

In the focusing optical system, the optical force on a

nonabsorbent Rayleigh dielectric particle has been decomposed

into the scattering force and the gradient force. The radiation

forces generated by the focused PCSCBs on the high-index

particle (η > 1) and the low-index particle (η < 1) are discussed.

These two kinds of particles can be trapped in the mean time at

different x positions on the trapped plane. Specifically, the low-index

particle is trapped at the focus point, while the high-index particle is

trapped at the focus at x=±0.3 μm. It is worthy to note that variation

of the shifting parameter and the coherent length will cause the

radiation force distributions to change but not affect the position

where the PCSCBs capture the particles.

With all of these magnificent properties, the theoretical and

numerical outcomes delivered in this paper could help

understand the behavior of PCSCBs in the SNNM and the

focusing optical system. The results indicate their potential

applications in optical communication and optical trapping

nonabsorbent nanoparticles.
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