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Identifying a set of critical nodes with high propagation in complex

networks to achieve maximum influence is an important task in the field

of complex network research, especially in the background of the current

rapid global spread of COVID-19. In view of this, some scholars believe that

nodes with high importance in the network have stronger propagation, and

many classical methods are proposed to evaluate node importance.

However, this approach makes it difficult to ensure that the selected

spreaders are dispersed in the network, which greatly affects the

propagation ability. The VoteRank algorithm uses a voting-based

method to identify nodes with strong propagation in the network, but

there are some deficiencies. Here, we solve this problem by proposing the

DILVoteRank algorithm. The VoteRank algorithm cannot properly reflect

the importance of nodes in the network topology. Based on this, we

redefine the initial voting ability of nodes in the VoteRank algorithm and

introduce the degree and importance of the line (DIL) ranking method to

calculate the voting score so that the algorithm can better reflect the

importance of nodes in the network structure. In addition, the weakening

mechanism of the VoteRank algorithm only weakens the information of

neighboring nodes of the selected nodes, which does not guarantee that

the identified initial spreaders are sufficiently dispersed in the network. On

this basis, we consider all the neighbors nodes of the node’s nearest and

next nearest neighbors, so that the crucial spreaders identified by our

algorithm are more widely distributed in the network with the same

initial node ratio. In order to test the algorithm performance, we

simulate the DILVoteRank algorithm with six other benchmark

algorithms in 12 real-world network datasets based on two propagation

dynamics model. The experimental results show that our algorithm

identifies spreaders that achieve stronger propagation ability and

propagation scale and with more stability compared to other benchmark

algorithms.
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Introduction

Along with the rapid development of information

technology, high-speed networking is increasingly important

to human society, and systems in many fields are abstracted

as complex networks for research [1, 2]. Many aspects of our lives

are covered by a large number of complex networks, such as

power networks [3], transportation networks [4], and trade

networks [5]. On the one hand, the research applications of

complex networks in different fields have greatly facilitated our

lives. Biomolecular networks [6] analyze the structure of

intermolecular networks and help us understand the

relationship between network structures and functions. Social

networks [7] are analyzed in an effort to explain social

phenomena in psychology and economics and to reveal

influential individuals and their effect on others. Online

trading networks [8] are used to target advertisements and

products to interested groups through complex network

community segmentation. On the other hand, the study of

critical nodes in complex networks can help people to predict

and prevent risk. The normal operation of many systems is

greatly affected by a small number of critical nodes [9–12]. In the

last decade or so, large-scale grid blackouts have occurred in nine

countries around the world, and the maintenance of some critical

nodes in power networks will effectively improve their resistance

to destruction and the robustness of the network [13, 14]. On the

basis of propagation dynamics [15], after the identification of key

nodes in social networks, the spread of epidemics [16, 17] and

rumors [18] can be effectively predicted. In the context of the

global spread of COVID-19, research on controlling the spread of

viruses has received extensive attention from various countries

around the world.

Identifying the influential spreaders in complex networks is

significant for improving the system’s resistance to destruction

and preventing the spread of diseases and rumors. This task is

known as the influence maximization (IM) problem. The IM

problem is defined as sending information to a small group of

nodes in the network, which ultimately maximizes the range of

information dissemination. Many algorithms have been

proposed to solve the IM problem. One method is to evaluate

the node importance by metrics and select the top k nodes as the

initial spreaders. In the early days, many classic ranking methods

were proposed, such as the degree centrality [19], betweenness

centrality [20], closeness centrality [21], eigenvector centrality

[22], K-shell [23], and h-index [24]. The degree centrality is the

most basic local evaluation method, in that it merely takes the

number of neighboring nodes into consideration, but fails to

reflect the importance of the nodes properly. Many researchers

have proposed newmethods based on the degree centrality. Chen

et al. [25] proposed a semi-local method based on the degree

information of nodes and their direct neighbors. Liu et al. [26]

proposed an evaluation method using degree information to

calculate the importance of nodes and edges, called the DIL

method, which can better identify the bridge nodes. Ren et al.

[27] combined degree and clustering coefficient information to

evaluate node importance. Methods based on the global

information of the networks, such as the betweenness

centrality and closeness centrality, need to calculate the

shortest path based on the global network. This renders the

algorithm quite complex and, in large networks, generates an

unbearable amount of computation [26]. The K-shell method

was proposed by Kitsak et al. [23] to divide nodes into layers

according to their locations, but this method is insufficiently

hierarchical. Liu et al. [28] argued that important nodes are closer

to the center of the network. They distinguished the importance

of nodes at the same level by calculating the distance between a

node and the nodes with the largest K-core value in the network.

Wang et al. [29] proposed an improve K-shell method to

distinguish nodes at the same level by information entropy.

Yeruva et al. [30] proposed the Pareto-shell decomposition

method using a Pareto front function based on the K-shell

algorithm. Bae et al. [31] proposed the neighborhood coreness

(NC) and extended neighborhood coreness (ENC) based on the

K-core value of nodes and their neighbors. The h-index method

was first proposed by Hirsch et al. [24] as a method to measure

the research influence of scientists. Lü et al. [32] proposed a

method to evaluate the importance of nodes based on a

combination of the degree, h-index, and coreness methods.

Liu et al. [33] proposed the local h-index method, by taking

the h-index value of neighbors into consideration. With the in-

depth study of complex networks, researchers have proposed

more efficient methods to find important nodes in networks,

such as PageRank [34, 35], LeaderRank [36], and other

algorithms based on random walks. Qian et al. [37] proposed

a new measure of node importance by utilizing a redefined

entropy centrality model. Sheikhahmadi et al. [38] proposed

the MCDE method by mixing the core value, degree centrality,

and entropy of nodes together.

The above ranking algorithms solve the IM problem by

identifying key nodes in the network, but they cannot

guarantee that the selected nodes are widely distributed in the

network. In the process of maximizing the spread of influence, it

is often necessary to identify a set of spreaders, and it is desirable

that these spreaders are sufficiently dispersed in the network so

that the nodes achieve the maximum coverage of the network

during the spread. Zeng et al. [39] verified that the distance

between the spreaders in a network has a crucial influence on

influence maximization. This provides a new way of thinking

about the IM problem: selecting influential nodes widely

distributed in the network. Zhang et al. [40] proposed a novel

method based on a voting mechanism, called VoteRank, to select

decentralized critical nodes in the network which the initial

spreaders filtered out are more widely distributed, and avoid

leading to an unnecessary waste of time and influence. Sun et al.

[41] proposed an extension to VoteRank for weighted networks,

calledWVoteRank. Kumar et al. [42] argued that the node voting
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ability needs to reflect the position of the node in the network and

introduced neighborhood coreness to optimize the VoteRank

algorithm; their optimized algorithm is called NCVoteRank. Guo

et al. [43] proposed the EnRenew algorithm, which uses the node

information entropy as the node voting ability.

The VoteRank algorithm puts forward a new approach to

solve the IM problem in the above studies, but the algorithm also

has some flaws. First, the VoteRank algorithm treats the initial

voting ability of all nodes in the network as the same and does not

differentiate between nodes based on their importance. Second,

in the voting process, the node scores are obtained only by

summing up the voting ability of the neighbors, which fails to

reflect the contribution of different neighbors. In Addition, the

VoteRank algorithm weakens the voting ability of only the

nearest neighbors after selecting the winning node in each

round, which does not take into account the effect of non-

directly connected nodes and does not guarantee that the

identified spreaders are widely distributed in the network.

In response to the above shortcomings, some scholars have

made partial improvements. The EnRenew algorithm uses the

information entropy as the initial voting ability of a node, but

does not propose improvements to calculating the node’s voting

score. The NCVoteRank algorithm treats the initial voting ability

of nodes as the same and introduces the NC value of nodes in the

calculation process of node scores for improvement. However,

the NC value does not better reflect the importance of the nodes

in the network. To address the above issues, we propose an

improved algorithm of VoteRank called DILVoteRank, the main

improvements were made as follows:

(i) The initial voting ability of a node is redefined using the

degree value, so that the initial voting ability of a node can

reflect the importance of the node to some extent.

(ii) The calculation of the node voting score in the VoteRank

algorithm is improved by introducing the DIL method,

which better reflects the importance of the node in the

network local, making the node identified by the improved

algorithm have more influence on the network.

(iii) The weakening mechanism of the VoteRank algorithm is

optimized to weaken the nearest and next nearest neighbors’

information of the nodes selected in each round of voting, so

that the initial spreaders selected by our method are more

widely distributed in the network, so that a larger

propagation range is achieved in the network.

In the experimental part of this paper, we first compare the

DIL method with other different types of traditional importance

ranking methods, comparing the computational complexity of

the different methods and the correlation with the ranking results

obtained by using the node deletion method (NDM) to

demonstrate the superiority of the DIL method in reflecting

the importance of nodes. Afterwards, we compare our

DILVoteRank algorithm with other benchmark algorithms

using 12 real datasets under the SIR model and linear

threshold model. The experimental results demonstrate that

the DILVoteRank algorithm outperforms other benchmark

algorithms in terms of both propagation speed and

propagation size, as well as stability.

The framework of this paper is as follows. Section 2 reviews

some related works. Section 3 describes the steps of the proposed

algorithm and the main innovation points. Section 4 presents the

performance metrics chosen for the experiment in this paper.

Section 5 provides the experimental results and discusses them,

and Section 6 concludes the paper.

Related work

There are many methods to evaluate the importance of

nodes. A relatively simple method is to use the degree

centrality, which considers nodes with more neighbors to be

more important than those with fewer neighbors. However, in

some cases, nodes located in the center of the network do not

necessarily have a high degree value [25, 26]. Therefore, many

novel and valid methods have been proposed to evaluate the

importance of nodes. In this section, we present some effective

methods for evaluating node importance in complex networks, as

well as a brief description of the VoteRank algorithm and its

improvements.

Assuming that an undirected and unweighted complex

network can be characterized as G(V, E), where V �
{v1, v2,/, vn} and E � {e1, e2,/, em} denote the set of nodes

and the set of edges in the network, respectively, and n and m

denote the number of nodes and edges, respectively. In Addition,

Γ(v) is used to denote the set of neighbors of node v and kn is

used to denote the degree value of node vn.

Semi-local method

The semi-local centrality was a method proposed by Chen

[25] to evaluate the importance of nodes by considering the

number of nearest and next-nearest neighbors, by weighing the

low relevance of degree centrality and the large calculating

complexity of global methods. The local centrality CL(v) is

defined as:

Q(u) � ∑
w∈Γ(u) N(w) (1)

CL(v) � ∑
u∈Γ(v) Q(u) (2)

where N(w) is the nearest and the next-nearest neighbors of

node w, respectively. The semi-local centrality is more effective

than the degree centrality at identifying key nodes because it

utilizes more information about the nodes. Also it has much

lower calculation complexity than the betweenness and closeness

centralities.
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DIL method

Liu et al. [26] proposed a new method, called the DIL

method, which computes the importance of a node by

using the degree centrality and the importance of lines.

This method initially considers that the importance of the

edges in the network as being proportional to the connectivity

of the edges and inversely proportional to the alternative

ability of the connected nodes. For example, if edge emn

connects node vn and node vm, the importance of edge Imn

can be defined as:

Imn � U

λ,
(3)

where U � (km − p − 1)(kn − p − 1) reflects the connectivity of

the edge emn; λ is the alternative ability index of edge emn, which

is defined as λ � p
2 + 1, and p indicates the number of triangles

formed by the edge. After calculating the importance of the

edge, the weight of the contribution to the node is calculated

based on the degree of the node. For instance, the weight of the

importance contribution of edge emn to node vm can be

defined as:

Wvmvn � Imn · km − 1
km + kn − 2

(4)

Then the importance of node vm can be defined as:

Lvm � km +∑
vn∈Γ(m) Wvmvn (5)

Nodes with larger Lvm values are considered to be more

important in the network. This method can better identify the

bridge nodes utilizing local characteristics.

NC method

Bae et al. [31] argued that important nodes have

more neighbors located at the center of the network, and

proposed NC by taking the K-core value of neighbors into

consideration:

NC(v) � ∑
w∈Γ(v) ks(w) (6)

where ks(w) denotes the K-core value of node w. Further, the

ENC was proposed based on the NC:

ENC(v) � ∑
w∈Γ(v) NC(w) (7)

where NC(w) is the neighborhood coreness of neighbor w.

VoteRank algorithm

Zhang et al. [40] proposed the VoteRank algorithm, based on

a voting mechanism, to select the most influential nodes based on

the scores of the nodes in each round of voting. Each node in the

network contains two attributes, {Sv, Vav}, where Sv is used to

record the voting score of nodes after each iteration, and Vav

indicates the voting ability of the nodes during each iteration.

The voting score of a node is equal to the sum of its neighbors’

voting ability, and the VoteRank algorithm goes through the

following five steps:

Step 1: Initialize. Initialize the voting score Sv and voting

ability Vav of all nodes in the network to 0 and 1.

Step 2: Vote. In this phase, each node votes on their

neighbors, and each receives all votes from its neighbors. The

voting score of a node Sv in the Tth round of voting can be

expressed as:

Sv(T) � Sv(T − 1) +∑
i∈Γ(v) Vai(T − 1) (8)

Step 3: Select. The node with the highest voting score

is selected based on the results of the current round of

voting. The selected node VTmax will not participate in the

next round of voting, thus changing the voting ability of this

node to 0.

Step 4: Update. In order to make the selected nodes as diffuse

as possible, the voting ability of the selected node’s neighbors

needs to be diminished. The diminished node voting ability can

be defined as:

Vav � {Vav − δ if Vav − δ > 0
0 otherwise

(9)

where δ � < k> /(< k2 > − < k> ) denotes the reduction

coefficient of the node voting ability, and < k> denotes the

average degree of the network.

Step 5: Repeat. Repeat the process from Steps 2 to 4 until the

top k initial spreaders are filtered out.

NCVoteRank algorithm

Kumar et al. [42] argued that the voting ability of nodes

should be distinguished based on the topological location of

nodes in the network. Therefore, they proposed the

NCVoteRank algorithm to improve the voting ability of

nodes by considering the neighborhood coreness value of

nodes, which is obtained by calculating the node coreness

value by Eq. 6. The NCVoteRank algorithm also first

initializes the voting ability Vav and the voting scores Sv of

all nodes in the network to 1 and 0. The following formula is

used to calculate the node scores in the voting phase:

Sv � ∑
i∈Γ(v)(Vai ·NC(i) · (1 − θ) + Vai · θ) (10)

where θ is an adjustable parameter in the range of [0, 1], which is

used to adjust the weight of the node neighborhood coreness

valueNC(i). After that, the nodes with the highest voting scores

in this round are selected, the nodes and their neighbor node
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information are updated, and the above steps are repeated until

the top k initial nodes are selected.

EnRenew algorithm

Inspired by the VoteRank algorithm, Guo et al. [43] argued

that node information entropy better reflects the position of

nodes in the network. Their EnRenew algorithm thus uses the

node information entropy as the initial propagation ability of a

node. The node information entropy can be calculated by:

Ev � ∑
u∈Γ(v) Huv � ∑

u∈Γ(v) −Puv logPuv (11)

where Puv � du∑
l∈Γ(v)

dl
, and Huv denotes the propagation ability that

node v receives from node u. The EnRenew algorithm selects the

node in the network with the largest propagation ability as the

selected node, and weakens the propagation ability of the node’s

l-length reachable nodes. The weakened propagation ability can

be calculated by:

Hul−1ul � Hul−1ul − 1
2l−1

Hul−1ul

E< k>
(12)

where E< k> � −< k> · < k>
n log < k>

n is the information entropy

of any node in the <k>-regular graph network, ul indicates that

the distance between node ul and the selected node is l.

Proposed work

The VoteRank algorithm selects influential nodes in complex

networks by using a voting mechanism. In the traditional

VoteRank algorithm, however, the initial voting ability of

nodes is set to be the same, and the score contributions of

nodes to their neighbors are their own voting ability. To a

certain extent, then, the final score of the nodes has a greater

correlation with the degree index of the nodes. We believe that

a more suitable node-importance method should be used

to improve the VoteRank algorithm—one that better reflects

the position of the nodes in the network topology during

the voting process. Therefore, we propose an algorithm

called DILVoteRank to identify the key nodes in the network.

We improve the VoteRank algorithm in different aspects, and

the following are the specific details for the proposed

DILVoteRank.

Algorithm steps

The DILVoteRank algorithm proceeds as follows:

(i) Calculating the local importance of nodes. The

local importance of nodes Lvi is calculated based on

the DIL algorithm, according to Eq. 5, and normalized as

follows:

Lvi �
Lvi −min {Lvi}

max {Lvi} −min {Lvi}
(13)

where max {Lvi} and min {Lvi} denote the maximum and

minimum values in the list, respectively.

(ii) Initialize node score and voting ability. We consider that

the voting ability is related to the degree of the node. In

this phase, the node voting score is initialized to 0, and the

voting ability Vai is calculated according to the following

formula:

Vav � log(e + kv
k max

) (14)

where k max denotes the maximum value of the node degree in

the network.

(iii) Voting phase. In the voting phase, each node receives votes

from its neighbors, and sends votes to the neighbors that

voted for them. The score of the current round for each node

can be calculated as:

Sv � ∑
i∈Γ(v)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝Vai ·
Lvi





∑N
j�1L2

vi

√ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (15)

To better reflect the local importance indicators of nodes, we

use the homotopy function u(x) � x/




∑x2

√
to process the

indicators.

(iv) Update node attribute values. Firstly, the node with the top

voting score in this round is selected, and its voting ability is

set to 0. We assume that node vT is the selected node for the

Tth round of voting. Then, we update the voting ability

values of the nearest and the next-nearest neighbors of node

vT as follows:

Vav � {Vav − δ if Vav − δ > 0
0 otherwise

(16)

where δ � 1
< k> ·d(vk,vT) denotes the reduction coefficient of the

voting ability, and d(v, vT) denotes the distance between v

and vT.

(v) Iteration phase. Repeat Steps (iii) to (iv) until the top k initial

spreaders are selected.
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Algorithm description and complexity
analysis

The detailed procedure for DILVoteRank is shown in

Algorithm 1.

Algorithm 1. DILVoteRank

In lines 2–4, we calculate the connectivity of each edge in the

network. We use n and m to denote the number of nodes and

edges in the network, respectively. The time complexity of this

process is O(m), according to Eq. 3. In lines 5–9, we calculate the

local importance of nodes and initialize voting ability. In line 6,

we consider the neighbors of all nodes during the calculation, so

the time complexity is O(n<k>), where <k> represents the

average degree of the network, <k ≥ 2m/n. In lines 11–22, we

first calculate the voting scores of all nodes and choose the nodes

with the highest scores as the selected nodes. Then, we update the

attributes values of the nearest and the next-nearest neighbors.

This process needs to be repeated s times, where s indicates the

number of initial spreaders. So the time complexity of this

process is O(sn<k > 2). In summary, the computational

complexity of the algorithm is O(m + n <k> + sn<k > 2),

which can be expressed as O(n <k> + sn<k > 2). Since the

value of s is much smaller than n, the complexity of the algorithm

can be eventually approximated as O(n<k > 2).

Example explanation

In this section, we use a small example network, shown in

Figure 1, as an illustration to demonstrate the DILVoteRank

algorithm in detail, which has also been adopted by other

scholars [29, 44]. In Figure 1, the node colors are labeled

according to the degree of the nodes. After the first round of

voting, the results of node local importance Lvi, voting ability

Vai, and voting score Si of the nodes are shown in Table 1.

According to the voting score results of the nodes, node 4 is

the selected node generated by the first round of voting. To

prevent node 4 from participating in the next round of voting,

the voting ability of node 4 is set to 0, and the attribute values

of the nearest neighbors {1, 2, 3, 23} and the next-nearest

neighbors {5, 6, 7, 8, 11, 12, 16, 17, 18, 19, 20, 21, 22} of node

4 are weakened, according to Eq. 16. A second round of

voting is then conducted, and node 17 is chosen as the

selected node.

FIGURE 1
An example network to explain DILVoteRank algorithm.

TABLE 1 The importance of the nodes calculated by DIL Lv , initial
voting ability Va, and the voting score of nodes S after the first
round of voting in example network.

Node Lv Va S Node Lv Va S

1 0.35 1.21 1.56 14 0 1.04 0.10

2 0.63 1.31 1.03 15 0.12 1.13 0.07

3 0.20 1.17 1.49 16 0 1.04 0.96

4 0.39 1.17 2.03 17 0.09 1.09 1.05

5 0.26 1.17 0.91 18 0 1.04 0.96

6 0 1.04 0.60 19 0 1.04 0.96

7 0 1.04 0.60 20 0 1.04 0.96

8 0.29 1.17 0.52 21 0 1.04 0.96

9 0 1.04 0.22 22 0 1.04 0.96

10 0 1.04 0.22 23 1.00 1.31 0.40

11 0 1.04 0.60 24 0 1.04 0.05

12 0 1.04 0.60 25 0.06 1.09 0.25

13 0 1.04 0.10 26 0 1.04 0.25
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Performance metrics

Evaluating different ranking methods

There are two approaches to evaluating the accuracy of nodes

selected by different algorithms [45]. One is based on the

propagation dynamics model, with the selected node as the

propagation source. The propagation process is simulated in

the model and analyzed by the initial node influence range. The

other approach is based on the NDM, in which the importance of

a node is judged by the effectiveness of the network after its

deletion. The method based on propagation dynamics can more

intuitively simulate the transmission process of information in

the network, and has less computational complexity than the

NDM. It has become themain method to evaluate the accuracy of

the identification results of different algorithms. Therefore, this

paper adopts two widely used propagation dynamics evaluation

models, and uses the NDM to evaluate the performance of

different algorithms. The details of the above methods are

described as follows.

Susceptible, infected, recovered model
The susceptible, infected, recovered (SIR) model [46] offers

accurate evaluations of the propagation ability of initial

spreaders selected by different algorithms by simulating the

propagation process of viruses, information, etc. in a network.

This model is an effective tool for evaluating complex-network

ranking methods by virtue of its operability and applicability to

large networks. In the SIR model, nodes are divided into three

categories: susceptible nodes (S), infected nodes (I), and

recovered nodes (R). In the starting phase, a small portion of

nodes in the network are selected as infected nodes, which are in

state I, and other nodes are set as susceptible nodes, in state S.

During each subsequent iteration step, the infected nodes have

the ability to transform the susceptible nodes in their

neighboring nodes into infected nodes, with probability β.

The infected nodes in the network nodes in the network

may also recover to become recovered nodes, with

probability λ. The infected probability has a threshold βth.

When the infected probability is set to less than βth,

information cannot spread in the network. Therefore, in

order to make the information spread more rapidly in the

network, we set the infected probability β � 1.5βth, where

βth � < k>
< k2 >−< k> . The infection rate is defined as the ratio of

the node infection probability to the recovery probability, ζ � β
λ,

which has a high impact on the dissemination of network

information.

Under the SIR model, in each iteration step, infected nodes

infect neighboring susceptible nodes to achieve propagation in

the network. At the same time, infected nodes have a certain

probability of becoming recovered nodes in the propagation

process, so the number of infected nodes in the network will

gradually increase with time and then decrease. When the

number of infected nodes decreases to 0, only susceptible

nodes and recovered nodes are left in the network and the

network stops spreading. Based on this, we can use F(t) to

denote the ratio of infected nodes and recovered nodes to the

total number of nodes, which is a curve that changes with time

during network propagation. It can be used as an indicator to

evaluate the propagation ability of the initial spreaders. F(t) can
be expressed as:

F(t) � nI(t) + nR(t)
n

(17)

where nI(t) and nR(t) denote the number of infected nodes and

recovered nodes in the network, respectively, at time t. When the

number of infected nodes drops to 0, F(t) reaches its maximum

value F(tc), which can be expressed as:

F(tc) � nR(tc)
n

(18)

where tc indicates that the number of infected nodes drops to 0 at

the moment tc. This can be used as a metric to evaluate the

propagation scale of the initial spreaders.

Linear threshold model
The linear threshold (LT) model [44] is also an evaluation

model based on propagation dynamics, which is different from

the SIR model in terms of propagation mechanism. In the LT

model, each node in the network has two states of active and

inactive, and an activation probability (ti, ti ∈ [0, 1]) is set to

indicate the activation difficulty of a node. In this paper, we set

the activation probability of each node to be a random number

evenly distributed between 0 and 1. For an undirected network, it

is defined that when there is an edge between node vi and node vj
, the influence of vi on vj is the inverse of the number of

neighbors of vj, that is, Iij � 1/kj. When the degree value of a

node is less, its single neighbor has more influence on it. In the

initial stage, the model also sets some nodes as the first activated

nodes. In the process of simulation propagation, if the sum of the

influences on a node is greater than its activation probability, the

node is activated. The number of active nodes grows over time

and eventually stabilizes. Therefore, the number of active nodes

in the network in the final stable stage can be used as an

evaluation index for the propagation ability of nodes.

Network efficiency
Through the NDM, we can calculate the proportion of the

decrease in network efficiency after the deletion of nodes and

effectively evaluate the importance of nodes. Network

efficiency reflects the connectivity of the network: the

higher the network efficiency, the closer the network is

connected and the more quickly information can spread in

the network. The network efficiency η is calculated by the

shortest distance of any node pair in the network, which can

be expressed as follows:
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η � 1
n(n − 1) ∑vi≠vj

ηij (19)

where ηij denotes the connectivity efficiency between nodes vi
and vj ηij � 1/dij, and dij denotes the shortest distance between

nodes vi and vj. The deletion of nodes in the network causes a

decrease in network efficiency, so the rate of decrease in network

efficiency μ can be used as an index to evaluate the importance of

nodes:

μi � 1 − ηi
η0

(20)

where η0 denotes the network efficiency before removing nodes,

and ηi denotes the network efficiency after removing node vi.

Network efficiency can be used to evaluate not only the

importance of individual nodes but also the importance of a

certain set of nodes. However, the network efficiency requires the

shortest path algorithm in the calculation process, which has high

computational complexity and is therefore unsuitable for node

evaluations of large networks.

Correlation coefficient

Based on the network efficiency, the NDM can produce a

convincing ranking of node importance. However, the shortest

path algorithm is required to calculate the network efficiency,

and the computational complexity is nonlinearly related to the

number of nodes, which is not applicable to large network

structures. Therefore, this method is not generally used to

solve IM problems in real networks, although the calculation

results of this method can provide a better reference for

evaluating other algorithms. Calculating the correlation

between the ranking derived from different algorithms and

the ranking based on the NDM can be used to evaluate the

performance of the algorithms. There are many coefficients used

in statistics to measure the correlation of variables, such as the

Pearson, Spearman, and Kendall correlation coefficients, and the

selection of appropriate evaluation coefficients according to the

type and distribution of variables can make the results more

reliable. The Spearman correlation and Kendall correlation are

more suitable for the correlation evaluation of ranking

algorithms.

Spearman correlation coefficient for ranking
data

The Spearman rank correlation coefficient is widely used to

evaluate the correlation between two different indicator rankings.

It is calculated based on the difference between the different

indicator ranking levels, which can be expressed as:

ρ � 1 − 6∑d2
i

n(n2 − 1) (21)

where di denotes the level deviation of different indicators on the

ith sample, and n denotes the number of samples, which can be

considered as the number of nodes when applied to complex-

network ranking methods. The value of the Spearman correlation

coefficient is in the range of [−1,1]. A negative result indicates a

negative correlation, a positive result shows a positive correlation,

and the larger the absolute value of the result, the stronger the

correlation. The Spearman correlation coefficient is widely

applicable and does not require much data. As long as the

measured values between different indicators appear in pairs,

the Spearman correlation coefficient can be used for research.

Kendall correlation coefficient
The Kendall correlation is significantly different from the

Spearman correlation. The Kendall correlation classifies all node

pairs in the network into concordant pairs and discordant pairs,

and evaluates the relevance of different ranking methods by the

number of different types of node pairs. For any node pair {vi, vj}
in the network, {vi, vj} is said to be a concordant pair if both

methods A and B consider the former to be more (or less)

important than the latter, and vice versa for discordant pairs. The

Kendall correlation coefficient can be calculated as:

τ � 2(Nc −Nd)
n(n − 1) (22)

where Nc denotes the number of concordant pairs, and Nd

denotes the number of discordant pairs. The values of the

Kendall correlation are also in [−1,1].

Average distance between spreaders (Ls)

The average distance is an important index to evaluate the

dispersion of the initial spreaders, which has an important

impact on maximizing influence. With the limited number of

initially selected nodes, we want the selected nodes to be as

dispersed as possible in the network to improve the coverage

area during propagation. In most real networks, the node

distribution shows the phenomenon of community

aggregation [47], and if the selected spreaders are too

concentrated, it is difficult to spread the information to

other communities effectively. The average shortest path

can be found by the distance between any two nodes in the

node set, which is calculated as follows：

Ls � 2∑vi≠vj∈S Dij

s(s − 1) (23)

where S denotes the initial spreaders selected by different

algorithms, s denotes the number of nodes in S, and Dij

denotes the shortest distance between nodes vi and vj. Larger

values of Ls indicate that the spreaders are more widely

distributed and have better coverage in the network.
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Datasets and result analysis

In this section, to verify the performance of DILVoteRank

compared to other benchmark algorithms, we first compare the

DIL with other node-importance evaluation methods to illustrate

the superiority of the DIL method at reflecting the importance of

nodes. Second, we compare DILVoteRank with other algorithms

in a real-world network based on the SIR model in a dataset and

analyze the experimental results.

DIL compared with other centralities

In this section, we use six node-importance ranking

methods—the betweenness centrality (BC), closeness centrality

(CC), semi-local centrality (SL), DIL, NC, and ENC—and the

NDM to rank the nodes in the network of Figure 1. The ranking

results are shown in Table 2. The nodes in this table are sorted

according to the results of the NDM. Table 3 shows the

categories, the computational complexity, the Spearman

correlation ρ, and the Kendall correlation τ of the six different

ranking methods.

From the results of the correlation coefficients in Table 3, the

correlation between DIL and the NDM is better than the other

methods (except the BC method) in both correlation indexes. In

terms of computational complexity, the BC and CC methods

calculate the importance of nodes through the global information

of the network, and the computational complexity is much

higher than the other four algorithms, such that the

computational burden is unfeasible for large networks. The

DIL method is based exclusively on the local information of

the nodes in the network, and the computational complexity

is linearly correlated with the number of nodes in the

network. Compared to other methods of the same

complexity, the DIL method has the greatest correlation

with the sorting results of the NDM, and even

outperforms the CC method, which is much more complex

than the DIL method. From the above results, it can be seen

that the DIL algorithm can evaluate the local importance of

nodes in the network more accurately by virtue of less

computational complexity.

Data description

To test the performance of the algorithm, we performed

operations using 12 real network datasets, selected with different

data sizes and data sources. These datasets are frequently used in

research on complex networks. The following is a description of

the datasets used for the tests. 1) Karate: a small social network

dataset containing interpersonal relationships and

interconnections among 34 members of the Karate Club of

America [48]. 2) Dolphin: an undirected social network that

portrays the interactions and community distribution of

62 dolphins [49]. 3) Jazz Music: this dataset contains the

interactions of a network of jazz musicians [50]. 4) CEnew: a

biological metabolic network [51]. 5) Email: a network of email

exchanges among members of Rovira i Virgili University [52]. 6)

Netscience: a coauthorship network of scientists working on

network theory and experiments [53]. 7) USAir: a network of

the US air transportation system in 2010 [54]. 8) Hamster: a

friendship network between users of the website hamsterster.com

[55]. 9) Facebook Social: a crowd-sourced dataset containing

information about the social circles of Facebook users [56]. 10)

Power: a power grid network in the USA [57]. 11) Astro-ph: a

collaboration network of scientists posting preprints on the

astrophysics archive at www.arxiv.org [58]. 12) Cond-Mat: a

coauthorship network between researchers on the topic of

TABLE 2 The ranking of the nodes in the example network is
calculated by the BC, CC, SL, DIL, NC, and ENCmethods, as well as
by the ranking of the nodes and the rate of decrease in the efficiency
of the network after node deletion using the NDM.

Node BC CC SL DIL NC ENC NDM

rank η

23 1 2 6 1 4 7 1 0.536417

4 2 1 1 3 4 3 2 0.404337

2 3 2 3 2 1 1 3 0.346284

8 4 7 7 5 6 6 4 0.221985

17 5 8 8 9 14 12 5 0.199715

5 7 6 5 6 6 5 6 0.195491

15 7 19 23 8 8 23 7 0.154821

1 6 2 2 4 2 2 8 0.111961

25 10 20 19 10 8 19 9 0.109321

3 9 5 4 7 3 4 10 0.09841

6 11 9 9 11 8 8 11 0.072405

7 11 9 9 11 8 8 11 0.072405

11 11 9 9 11 8 8 11 0.072405

12 11 9 9 11 8 8 11 0.072405

16 11 9 13 11 18 13 15 0.072268

18 11 9 13 11 18 13 15 0.072268

19 11 9 13 11 18 13 15 0.072268

20 11 9 13 11 18 13 15 0.072268

21 11 9 13 11 18 13 15 0.072268

22 11 9 13 11 18 13 15 0.072268

9 11 20 21 11 14 20 21 0.062707

10 11 20 21 11 14 20 21 0.062707

26 11 23 20 11 14 20 23 0.061064

13 11 24 24 11 18 24 24 0.052392

14 11 24 24 11 18 24 24 0.052392

24 11 26 26 11 18 24 26 0.050994

In this table, the nodes are ranked according to the results of the NDM method

calculation.
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condensed matter [54]. Some of their basic network properties

are listed in Table 4.

Comparison with benchmark algorithms

In this part, we compare the DILVoteRank algorithm with six

benchmark algorithms—DC, DIL, K-shell, VoteRank, EnRenew,

and NCVoteRank—in real networks to test the performance of

different algorithms under different experimental conditions and

evaluation metrics. Figure 2 shows the network infection scale F(t)
change curve over time under the SIR model with different

algorithms. The experimental results are taken as the average of

1,000 calculations, setting β � 1.5βth, infected rate ζ � 1.25, and

initial node selection ratio ρ � 0.02. The purpose of this experiment

is to test the propagation speed of initial spreaders selected by

different algorithms under the same conditions and the final

infection scale. The results show that the DILVoteRank

algorithm has a stronger propagation ability compared to other

algorithms under the same number of initially infected nodes.

Specifically, in the CEnew, Email, USAir, Hamster, Facebook,

and Power networks, the DILVoteRank algorithm has a larger

slope compared with other algorithms, which means that the

initial nodes selected by this algorithm have faster propagation

speed in the network and can reach stability more quickly. On

the other hand, except for Netscience, the DILVoteRank algorithm

achieves themaximumpropagation size in all other networks, which

means that the spreaders selected by this algorithm have stronger

propagation ability. From the results, we can also conclude that the

DILVoteRank algorithm outperforms other algorithms in terms of

stability. In Dolphins and Jazz, there is little difference between the

spreaders selected by different algorithms in terms of propagation

speed and propagation ability. This is probably because, with a

small number of network nodes, the initial propagation nodes

selected by different algorithms have higher repetition. The

NCVoteRank algorithm performs better than other algorithms

in Karate, CEnew, and Hamster (except our algorithm), but it

ranks fourth in Netscience, USAir, Facebook, Astro-ph, and

Cond-Mat. Similarly, the EnRenew algorithm has good

performance in Email, Netscience, Power, and Cond-Mat,

but even lower performance in Facebook than the degree

centrality. Thus, our algorithm not only outperforms other

algorithms in terms of propagation speed and propagation

ability but also has more stability.

We selected three node-importance-based ranking algorithms,

DC, DIL, and K-shell, as references in our experiments. From the

experimental results, compared to other algorithms based on voting

mechanisms, the performance of these three algorithms is poor. This

may be due to the fact that these three algorithms rely excessively on

the nodes’ own information, and the selected nodes do not surely

have high propagation ability in the global network. Further, these

algorithms are based on the local information of the nodes and

ignore the weakening of the importance of the surrounding nodes of

the selected node in the process of node selection, thus causing the

initial set of nodes to have a high clustering coefficient. In particular,

the K-shell algorithm is more susceptible to the rich club

phenomenon, which is detrimental to the propagation of the

initial nodes in the network [38]. Algorithms based on voting

mechanisms weaken the voting ability of the neighbors of

selected nodes to reduce the aggregation of the initial spreaders,

and therefore have better performance in the experiments.

TABLE 3Categories and computational complexity of the sixmethods and their correlation coefficients of the ranking results using theNDMmethod,
where ρ and τ denote the Spearman correlation coefficient and the Kendall correlation coefficient, respectively, and n denotes the number of
nodes in the network.

Methods Category Computational complexity ρ τ

BC Global O(n3) 0.879 0.798

CC Global O(n2) 0.836 0.727

SL Local O(n) 0.819 0.715

DIL Local O(n) 0.865 0.744

NC Hybird O(n) 0.811 0.656

ENC Hybird O(n) 0.795 0.680

TABLE 4 Basic characteristics of the 12 complex network datasets,
where <k> denotes the average degree of the network, and βth
denotes the threshold of infected probability in the SIR model.

Network n m <k> βth

Karate 34 78 4.59 0.148

Dolpin 62 78 5.13 0.172

Jazz 198 2,742 27.70 0.027

CEnew 453 2,025 8.94 0.026

Email 1,133 5,451 9.62 0.057

Netscience 1,461 2,742 3.75 0.168

USAir 1,574 17,215 21.87 0.009

Hamster 2,426 16,631 13.71 0.024

Facebook Social 4,039 88,234 43.69 0.009

Power 4,941 6,594 2.67 0.348

Astro-ph 16,706 121,251 15.11 0.023

Cond-Mat 23,133 93,497 8.08 0.047
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Figure 3 shows the variation curve of the final infection scale

with the initial infected node ratio. The results of this experiment

take the average of 1,000 calculations, with the infected rate

ζ � 1.25, because the Karate, Dolphins, and Jazz networks are too

small. For the initial spreaders, we set the ratio in [0.02, 0.16], and

the other network ratio is set in [0.005, 0.04]. The purpose of the

FIGURE 2
The infection scale F(t) change curve over time under the SIRmodel with different algorithms. The experimental results are taken as the average
of 1,000 calculations, setting β � 1.5βth , infected rate ζ � 1.25, and initial spreaders selection ratio ρ � 0.02. Subgraphs (A–L) respectively represent
the experimental results of 12 datasets in Table 4.
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experiment is to evaluate the propagation ability of different

algorithms with different initial spreader ratios by the final

infection scale. Figure 3 shows that the final infection scale of

different algorithms all increase with the increase of the initial

node ratio, and the discrepancy between different algorithms is

gradually obvious in the process of increasing the initial node

FIGURE 3
The variation curve of the final infection scale with the initial infected node ratio, the results of this experiment take the average of
1,000 calculations, set the infected rate ζ � 1.25. Subgraphs (A–L) respectively represent the experimental results of 12 datasets in Table 4.
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ratio. From the results of this experiment, it can also be seen that the

DILVoteRank algorithm has better performance compared to other

algorithms with the same initial spreader ratio. In CEnew, Email,

Hamster, and Facebook, our algorithm significantly outperforms

other algorithms at different initial node ratios. The DILVoteRank

algorithm also has better stability in other networks.

FIGURE 4
The distribution of the final infection size of the network with different infection rates. The average of the results of 1,000 runs was calculated by
setting the proportion of initial nodes ρ � 0.02 in this experiment. Subgraphs (A–L) respectively represent the experimental results of 12 datasets in
Table 4.
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In the SIRmodel, the node infection rate ζ � β
λ, which is also a

crucial parameter affecting the propagation of information in

the network. In our experiments, we set the infection probability

β � 1.5βth which is adjusted by changing the recover probability

λ. When this value is smaller, it is more difficult for infected

nodes to recover, the rate of decline of infected nodes slows, and

the network propagates more widely. Form Figure 4, we can see

that the final infection scale of the network keeps increasing as

FIGURE 5
The change curve of the number of activated nodes in the stable stage with different initial node proportions, the experimental results are the
average of 1,000 simulations. Subgraphs (A–L) respectively represent the experimental results of 12 datasets in Table 4.
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the infection rate increases, but the ranking of different

algorithms is not much affected by the change of the infection

rate. By analyzing of the experimental results of different

networks, the DILVoteRank algorithm can also maintain

better performance under different infection rates. And it

achieves better stability. For example, the EnRenew algorithm

FIGURE 6
The shortest paths between spreaders selected by different algorithms, with different initial proportions. Subgraphs (A–L) respectively represent
the experimental results of 12 datasets in Table 4.
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has the best performance in Netscience, but there is no surprising

result in the Facebook network.

In addition to using the SIR model, we also use the LT model

to evaluate the propagation ability of nodes. Figure 5 shows the

change curve of the number of activated nodes in the stable

stage with different initial node proportions. The

experimental results are the average of 1,000 simulations.

As can be seen from the figure, except in Netscience, the

DILVoteRank algorithm outperforms other algorithms in

11 other network datasets. The simulation results in the LT

model are consistent with the evaluation results of the SIR

model in Figure 2, which once again verifies that the nodes

identified by the DILVoteRank algorithm have stronger

propagation ability.

By the way, in the two propagation models, the ratio of the

number of propagated nodes to the total number of nodes in

the network is the most important indicator to measure the

propagation ability of the node. The larger the ratio, the

stronger the propagation ability of the node. Figures 3, 5

respectively describe the variation curve of the propagation

scale with the proportion of initial nodes based on two

different propagation models. As can be seen from both

sets of graphs, the algorithms performance ranking changes

continuously with the proportion of initial nodes, and there

are also differences in different networks. This may be because

each network has differences in community distribution,

aggregation degree, degree distribution, etc., and different

algorithms have different ideas and optimization indicators,

therefore, the performance of the algorithm varies with the

change of the initial node ratio and the network. In general,

under the influence of the above two factors, the DILVoteRank

algorithm can maintain better performance in most cases than

other algorithms, which shows stronger applicability and

stability.

Figure 6 shows the shortest paths between spreaders selected

by different algorithms with different initial proportions. The

average shortest path of the initial spreaders considerably

influences network propagation, and we want the selected

initial nodes to be distributed as widely as possible in

different communities so as to reach the maximum coverage

area of the network. This can be evaluated by the average shortest

path of the initial node set. From Figure 6, we can see that the set

of nodes selected by the DILVoteRank algorithm always achieves

a larger average shortest path in different networks. In CEnew,

Email, Hamster, Facebook, and Cond-Mat, our proposed

algorithm has an obvious advantage over other algorithms,

which means that the node set selected by the DILVoteRank

algorithm has a wider distribution in the network. This further

indicates that the node set selected by the algorithm has superior

propagation ability.

The propagation ability of nodes depends on its importance

and dispersion in the network. Therefore, the Ls cannot be used

as a direct indicator for evaluating the propagation ability of the

identified node. The larger Ls value, does not necessarily

correspond to a greater propagation ability, and the influence

of nodes importance needs to be considered. The idea of the

DILVoteRank algorithm is to make the identified nodes as widely

distributed in the network as possible under the premise of

ensuring the importance of the identified nodes. Taking the

Power network in Figure 6 as an example, the average

shortest distance of nodes identified by the DILVoteRank is

smaller than DC, VoteRank and EnRenew, but as can be seen

from Figures 2–5 the propagation ability of the nodes identified

by the DILVoteRank is better than the other three algorithms.

This shows that the nodes identified by our method can achieve

greater propagation ability under the smaller Ls value, which also

point out that the nodes identified by our method have greater

importance in the network.

Conclusion

In this paper, we proposed an algorithm called

DILVoteRank that selects spreaders with stronger

propagation ability in complex networks. The algorithm uses

a voting mechanism to determine the influence of nodes in the

order in which they are selected from voting. In this algorithm,

we believe that the voting ability of nodes in the voting process

should reflect the local importance of the nodes to some

extent, rather than treating all nodes the same. For this

reason, we selected the DIL as the initial metric to evaluate

the importance of nodes. We compared the DIL method with

other methods and found that the DIL reflects the importance

of nodes in the network more accurately and with less

computational complexity than other algorithms. Then, we

optimized the node voting ability based on the local

importance of nodes calculated by the DIL method. The

propagation was simulated in 12 real network datasets

based on the SIR model and LT model. The experimental

results showed that the proposed DILVoteRank algorithm

outperformed other algorithms in terms of the propagation

rate, propagation scale, and algorithm stability in different

propagation conditions and datasets. Furthermore, we

confirmed that the initial spreaders selected by the

DILVoteRank algorithm have excellent propagation ability.

As such, our algorithm has application value for finding

influential nodes in networks, preventing the spread of

diseases and rumors, and improving the anti-destructive

properties of network systems.
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