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The present communication is designed to elucidate the flow attributes of

micro-polar non-Newtonian liquid over stretching/shrinking surfaces. In

addition, we have observed the stagnation aspect along with the velocity slip

condition on the momentum field. The Fourier law of heat conduct, along with

a physical aspect of stratified and heat generation absorption, are then used to

model the temperature equation. The Buongiorno nanofluid model is used to

study additional transport features. After a discussion of PDEs using similarity

transformation, mathematical formulations of the given problem are supported

in the form of an ordinary differential system. The solution of modeled

governing equations containing physical effects is simulated by using the

shooting method in conjunction with RK- Method. The significant effects of

flow parameters that are associated with velocity, temperature, and

concentration distribution for low and upper branch solutions are revealed

through graphs and tables. Quantities of engineering concerns like skin friction

coefficient and Nusselt number are also compared with previous results of

critical values. Furthermore, it should be considered that as the micro-pole

parameters are increased, the local skin friction coefficient and the local Nusselt

number amplitude also rise.
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1 Introduction

Magnetic fluid dynamics is the foundation for improving the progression of high

conductivity fluids in the direction of the magnetic field. The study of magnetic field flows,

both Newtonian and non-Newtonian, has an extensive variety of applications in industry

and engineering. The cooling system fluid metal, MHD generators, liquid beads and

OPEN ACCESS

EDITED BY

Kh. S. Mekheimer,
Al-Azhar University, Egypt

REVIEWED BY

Oluwole Daniel Makinde,
Stellenbosch University, South Africa
Noreen Sher Akbar,
National University of Sciences and
Technology (NUST), Pakistan
Sankar M. University of Technology and
Applied Sciences, Oman

*CORRESPONDENCE

Y. Khan,
yasirkhan@uhb.edu.sa
Afraz Hussain Majeed,
chafrazhussain@gmail.com

SPECIALTY SECTION

This article was submitted to Statistical
and Computational Physics,
a section of the journal
Frontiers in Physics

RECEIVED 30 May 2022
ACCEPTED 08 July 2022
PUBLISHED 19 August 2022

CITATION

Khan Y, Majeed AH, Rasheed MA,
Alameer A, Shahzad H, Irshad S and
Faraz N (2022), Dual solutions for
double diffusion and MHD flow analysis
of micropolar nanofluids with slip
boundary condition.
Front. Phys. 10:956737.
doi: 10.3389/fphy.2022.956737

COPYRIGHT

© 2022 Khan, Majeed, Rasheed,
Alameer, Shahzad, Irshad and Faraz. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 19 August 2022
DOI 10.3389/fphy.2022.956737

https://www.frontiersin.org/articles/10.3389/fphy.2022.956737/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.956737/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.956737/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.956737/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.956737&domain=pdf&date_stamp=2022-08-19
mailto:yasirkhan@uhb.edu.sa
mailto:chafrazhussain@gmail.com
https://doi.org/10.3389/fphy.2022.956737
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.956737


sprays, accelerators, atomic reactors, nutrient preparation, the oil

industry, microelectronics equipment, geothermal energy

extraction equipment, and so on are all examples of MHD

applications. Many scientists believe that it has great uses in

micro-skipping and slip velocities explored the fluid analysis of

small horizontal heat shifts. Sliding flow plays a key role in small-

scale instruments, hard disk scale valves, and micro-scale wells.

[1] explain the two parallel bands between the secondary fluid

magnetic flow force serialized stream. [2] the semi-inverse

solution of nanometer uniform magnetic flow on the stretched

surface of the secondary fluid was studied. [3] observed an

irregular magnetic-fluid-dynamic hybrid convector of a

secondary nanofluid caused by thermal radiation in a

stretched plane. Recently, [4] analysis of the magnetic flow of

the two nanofluids due to non-linear stretching of the surface. [5]

examines the magnetic flow of nanofluids in tubes. [6] considered

the entropy generation of nanofluids and MHD streams on non-

linear stretched surfaces was studied. [7] discuss the rotational

flow of water-based nanofluids in parallel plates. [8] analyzed the

influence of pseudoplastic fluids loaded with antiparticles on the

heat transfer of MHD flow. [9] a three-dimensional MHD stream

of Maxwell nanoflow was analyzed by convection boundary. [10]

speculate on the magnetic flow of the secondary fluid above the

stretching plane. [4] the magnetic fluid dynamics of the

secondary nanofluid were analyzed due to the non-linear

stretching of the surface. [11] also studied the computational

aspects of MHD streams near rotating disks. Many comparative

investigations are considering the significance of fluid motion

through various physical phenomena that can be found in

[12–14].

Thermal rays play an important role in space technology and

high-temperature operations. When the temperature changes

greatly, the linear thermal radiation can cause significant

errors. To overcome this inaccuracy, non-linear thermal

radiation was taken into account. The chattels of chemical

processes and the flow of thermal radiation to the externally

stretched surface were explored by [15]. Many scientists have

conducted several studies to emphasize the significance of

thermal radiation [16–18].

Natural convection and forced convection combine to form

mixed convection, which is among the transmitting phenomena.

Mixed convection occurs in many natural and engineering

applications during transport. Industrial and technological

processes, including exposure to the wind in the solar central

receiver, fan-cooled electronics, and cooling of nuclear reactors

in the event of downtime. [19] check past mass exchange and

Hall effects semi-infinite vertical band magnetic fluid free heat

transfer flow. [20] studied the influence of conical micro-polar

fluid flow on the stretched surface. Micro-polar fluids are those

that contain micro-components that can be rotated, and whose

appearance can affect the flow of fluid power so that it can be

non-Newtonian. Different types of non-ideal fluids can be seen in

regular life, such as macromolecules, animal blood, and

shampoos.

Analysis of Dual Solutions inMHD Fluid Flow with Heat and

Mass Transfer Past an Exponentially Shrinking/Stretching

Surface in a Porous Medium was studied by [21]. Using a

conducting fluid to pass through a sheet that was

simultaneously stretching and contracting exponentially,

researchers examined the nature of dual solutions in the

hydromagnetic boundary layer. Investigation of the combined

effects of the electrically conducting water-based nanofluid

parameters, thermal radiation, the porous medium, convective

heating, viscous dissipation, magnetic field, and the nanofluid on

the dimensionless velocity, temperature, and rescaled

nanoparticle volume frame is the aim of the current work.

Readers are directed to [22–34] and any cited references

therein for more information.

This study’s objective is to numerically investigate

micropolar nanofluid flow with slip boundary conditions. The

first step in this is mathematical modeling for the MHD

nanofluid flow with a nonlinear condition. Finally, use a

shooting scheme to solve numerical results. The remaining

sections of the document are arranged as follows; in Section 2,

flow configuration and governing equations are described. The

numerical scheme is carried out in Section 3. Section 4 conducts a

thorough analysis of the findings. Section 5 also discusses the

conclusion.

2 Flow analysis and development

This study investigates the steady, 2D, and double stratified

flow of an electrically conductive micropolar nanoparticle on a

stretching/shrinking surface. It is worth noting that the heat and

mass transport phenomena are investigated when velocity slip

and thermal generation/absorption are considered (see Figure 1).

The following are the governing equations for heat and mass

transfer:

FIGURE 1
An illustration of flow analysis.
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The associated practical boundary condition is given as

Aty � 0, u � uw(x) + uslip, v � 0, N � −n zu
zy

, T � Tw(x)
� T0 +m1x, C � Cw(x) � C0 + n1x

Asy → ∞, u → u∞ � bx, N � −n zu
zy

, T � T∞

� T0 +m2x, C � C∞ � C0 + n2x (6)
where

uw(x) � bx, uslip � L*[(μ + k) zu
zy

+ kN]. (7)

While using the similarity transformation

η � ( b

]f
)1

2

y, u � axf′(η), v � (b]f)1
2f(η), N � (b3

]f
)1

2

xg(η),
θ(η)(Tw − T∞) � (T − T∞), φ(η)(Cw − C∞) � (C − C∞).

(8)
Using Eq. into Eqs 2–5 we have

(1 + K)f‴ + ff″ − f′2 +M(1 − f′) + Kg′ + 1 � 0, (9)

(1 + K

2
)g″ + fg′ − f′g −K(2g + f″) � 0, (10)

θ″ − Pr(f′θ − θ′f + ∈1f′) + PrNbθ′φ′ + PrNtθ
′2 + PrQθ � 0,

(11)
φ″ + Sc(f′φ − fφ′ + ∈2f′) + Nt

Nb
θ″ � 0. (12)

The corresponding non-dimensional boundary conditions

are expressed as follows:

f(0) � 0, f′(0) � λ + α[1 + K(1 − n)]f″(0), g(0) � −nf″(0),
θ(0) � 1 − ∈1φ(0) � 1 − ∈2, f′(∞) � 1, g(∞) � 0,

θ(∞) � 0, φ(∞) � 0.

(13)
The material parameter, magnetic parameter, Eckert

number, Schmidt number, Brownian motion number,

Prandtl number, thermophoresis number, thermal

TABLE 1 Skin friction comparison with [21].

k Pr Sc f 99(0)[22] f 99(0) current

I II I II

0.2 1 1 2.5659 1.5877 2.5619 1.5823

0.4 1 1 2.0457 1.3247 2.0416 1.3201

0.6 1 1 1.8255 1.2918 1.8205 1.2910

FIGURE 2
Dual solutions impact on for several M.

FIGURE 3
Dual solutions impact on for several K.
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stratification, and solutal stratification are among the non-

dimensional parameters used in our analysis. The

mathematically defined as:

K � kf
μf
, M � σB2

0

ρb
, Pr � Cpμ

k
, Sc � ]

D
, Ec � u2

w

Cp(Tw − T∞),

∈1 � m2

m1
, Nb �

(ρcp)pDB(Cw − C∞)(ρcp)f]f , Nt �
(ρcp)pDT(Tw − T∞)(ρcp)f]fT∞

,

∈2 � n2
n1
. (14)

3 Physical quantities

The surface shear stress is determined by

τw � ((μ + k) zu
zy

+KN)
y�0

. (15)

Skin friction is defined as

Cf � τw
ρfu

2
w

. (16)

Using eqs. (8)-(10) into eqs. (15)-(16), we have���
Re

√
Cf � [1 +K(1 − n)]f″(0). (17)

and the heat transfer rate is given by

qw(x) � −kf(zT
zy

)
y�0

. (18)

after using similarity transformation we have

qw(x) � −kfm1

��
b

vf

√
xθ′(η). (19)

and local Nusselt number written as

Nux � xqw
kf(Tw − T∞). (20)

by using similarity transformation, we have

Nux � −1
1 − ∈1

θ′(0). (21)

where ∈1 � m2
m1

4 Numerical scheme

Finding a precise solution to the current governance model

equations’ problems is challenging due to their complexity and

high nonlinearity. Therefore, the bvp4c method is used to

FIGURE 4
Dual solutions impact on f′(η)for several.

FIGURE 5
Dual solutions impact on for several n.

FIGURE 6
Dual solutions impact on for several.
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calculate a numerical solution for the ode under boundary

conditions. In this case, we first defined the new variables in

accordance with the control equations’ order and changed the

PDE system into a first-order ode. To adapt to the First-Order

system, we use the following variables.

f �y1, f′ � y2, f″ � y3, g � y4, g′ � y5, θ � y6,

θ′ � y7, φ � y8, φ′ � y9. (22)

Thus, the reduced system of First-Order differential

equations becomes:

y1
′ � y2,y2

′ � y3, (23)

(1 +K)y3
′ + y1y3 − y2

2 +Ky5 +M(1 − y2) + 1 � 0, (24)
y3
′ � 1

1 +K
[ − y1y3 + y2

2 −Ky5 −M(1 − y2) − 1], (25)
y4
′ � y5,(1 + K

2
)y5

′ + y1y5 − y2y4 −K(2y4 + y3) � 0, (26)

y5
′ � 1

1 + K
2

[ − y1y5 + y2y4 +K(2y4 + y3)], (27)

y6
′ � y7, (28)

y7
′ + Pry1y7 − Pry2y6 − Pr∈1y2 + PrNby7y9 + PrNty

2
7 + PrQy6

� 0,

(29)

FIGURE 7
Dual solutions impact on for several M.

FIGURE 8
Dual solutions impact on for several K.

FIGURE 9
Dual solutions impact on for several.

FIGURE 10
Dual solutions impact on for several n.
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y7
′ � −Pry1y7 + Pry2y6 + Pr∈1y2 − PrNby7y9 − PrNty

2
7

− PrQy6, (30)
y8
′ � y9, (31)

y9
′ � Scy2y6 − Scy1y9 + Sc∈2y2 − Nt

Nb
y7
′, (32)

And the boundary conditions are

y0(0) � 0, y0(2) � λ + α[1 + K(1 − n)]y0(3), y0(4) � −ny0(3),
y0(6) � 1 − ∈1, y0(8) � 1 − ∈2, y∞(2) � 1, y∞(4) � 0, y∞(6)

� 0, y∞(8) � 0. (33)

This is a very effective numerical procedure for handling BVP

problems. This scheme uses a finite difference code to perform a

Level 3 Lobatto IIIa formula. In this approach, we have to select an

appropriate finite value of, say between 10 and 35. On the other

hand, the grid is chosen and error control depends on the residue of

the continuous solution. The current findings are compared to those

found in the literature [21] for validation, as shown in Table 1.

5 Result and discussion

This section analyzes the computational findings in terms of

nondimensional velocities, f′(η), g(η), concentration ϕ(η),

FIGURE 11
Dual solutions impact on for several.

FIGURE 12
Dual solutions impact on for several M.

FIGURE 13
Dual solutions impact on for several K.

FIGURE 14
Dual solutions impact on for several n.
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temperature θ(η), skin friction coefficient, and rate of heat

transfer with distinct values Prandtl numberPr, the material

parameter K, slip parameter α, stratification parameter λ,

Eckert number Ec, magnetic number M, Brownian motion

number Nb, thermophoresis numberNt, Schmidt number Sc,

Temperature proportion ratio parameterQ.

Figures 2–6 show the relationship between boundary layer

thickness and velocity f′(η) against the M, K, and n, while the

other parameter remains constant. Figure 2 is drawn to witness

the impact of magnetic parameters on the dimensionless velocity

distribution f′(η). Curves show that when the magnetic

parameter is increasing, the profiles of velocity distributions in

the first solution are increasing but they have opposite behavior

in the second solution. The significant effect of material

parameters on dimensionless velocity is shown in Figure 3. A

significant decline in the profiles of the first solution as well as in

the second solution when a suitable enhancement happens in the

values of a material parameter. The velocity distribution for

various values of slip constraint is shown in Figure 4. The

graphs show that a dual solution for shrinking flow inside the

boundary layer region exists. In the first solution, growing the

value of the slip parameter improves velocity profiles, whereas

the second solution has the opposite effect. Figure 5 describes the

disparity of velocity distribution with changing values of

stratification parameters. We note that as the stratification

FIGURE 15
Dual solutions impact on for several.

FIGURE 16
Dual solutions impact on for several Q.

FIGURE 17
Dual solutions impact on for several M.

FIGURE 18
Dual solutions impact on for several K.
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parameter rises, there a decline happens in the upper branch

solutions but the outcomes are fairly reversed for the second

solution. Figure 6 shows the comparison of both solutions for

different values of n. It is clear that for the upper branch solution,

with the growth in f′(η), dimensionless velocity profile

upsurges, while the effect is different for the second solution.

The characteristics of angular velocity distribution g(η) are

illustrated graphically through Figures 7–11 for numerous

quantities of physical parameters M,K, α, λ and n. In each Fig,

we observe the dual nature of angular velocity distribution for

shrinking flow. The influence of magnetic parameters on

dimensionless angular velocity inside the boundary layer is

displayed in Figure 7. As expected, the angular velocity curves

show an increasing behavior with an uplifting value of the

magnetic parameter in the first solution, while in the second

solution, the profiles show a decreasing behavior when we grow

the value of theM. The computed result ofg(η) for numerous values

of the K is illustrated in Figure 8. According to this figure, a straight

line is displayed on a graph when K = 0, for both the solution, but

whenK = 1, 3 there is a comparisonmade for dimensionless angular

velocity distributions. It is seen that dimensionless angular velocity

profiles decrease in the case of the first solution due to the magnetic

effect and the results are the same for the second solution. Figure 9

reveals the outcomes of the slip parameter on angular velocity

distribution. As you have seen, the αsignificantly affects the

angular velocity curves and shows an increasing trend for an

upper solution but the results are different in the lower solution.

Figure 10 display the variation of dimensionless angular velocity

profiles within the boundary layer for numerous values of

stratification parameters. It is seen from this figure that all curves

approach the far-field boundary conditions asymptotically. From the

FIGURE 19
Dual solutions impact on for several

FIGURE 20
Dual solutions impact on for several Sc.

FIGURE 21
Dual solutions impact on against for several M.

FIGURE 22
Dual solutions impact on against for several K.
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curves, a comparison is made for dimensionless angular velocity

profiles with different values of stratification parameters. In the case

of the first solution with amagnetic effect, the angular velocity profile

increases but the results are quite opposite in the case of the second

solution. Figure 11 illustrates the dual g(η)for different α. Again, we
notice a similar behavior in both solutions with uplifting values of

g(η).
Figures 12–16 portray the characteristics of θ(η) are illustrated

graphically for several values of physical parametersM,K,n,Pr and

Q Figure 12 reveals the dual θ(η) for different M. As expected, a

decline in temperature profile is seen for growing values of θ(η) in
the first solution, while an inverse is noted in the second solution. The

temperature distribution θ(η) with differentKare is demonstrated in

Figure 13, which displays that as the material parameter boosts the

θ(η)show an increasing trend in both solutions. The effects of various

n values on temperature profiles, for shrinking cases, are shown in

Figure 14. Furthermore, the first solution’s curves demonstrate a

decline in energy distribution as n increases, but the results for the

second solution, which promotes a higher thermal flow rate between

the surface and fluid, are noticeably different. The dual θ(η)for
specific entries of the Prandtl number Prare shown in Figure 15.

With the rise of θ(η), a decline is seen in the upper branch solution,

while the inverse behavior happens in the case of the lower branch

solution. The variation of dual θ(η) for changing values temperature

proportion Q is plotted in Figure 16. We analyzed that, as the Q is

upsurges the temperature distribution increases in both solutions.

The dual concentration distributions are displayed in Figures

17–20 for different values of parameters Q and Sc. The impact ofM

and K on concentration profiles is demonstrated in Figures 17, 18 by

other parameters keeping fixed. We observed that the larger M gives

the decline ofQ in the case of the first solution. Furthermore, we see a

growing trend in concentration distribution ϕ(η) or larger M. In

addition, it is extracted from Figure 18 that the concentration profiles

increase by uplifting values ofmaterial parameterK in both solutions.

The variation of nondimensional concentration distributions ϕ(η)
along with numerous values of n and Sc are illustrated in Figures 19,

20 respectively. It is found in Figure 19 that the ϕ(η)decline with the
growing values of n for the first solution. However, an inverse

behavior is noted for the second solution. Similarly, the same

behavior is noticed in concentration distributions for various

values of Schmidt number Sc, as shown in Figure 20. Moreover,

Figures 21, 22 are drawn with different values ofM and K. Figure 21

draws to witness the effect of M on wall shear stress. A massive

enhancement in critical values is noted with larger values ofMwhich

enhances the existence domain of dual solution. The impact of

K on skin friction ϕ(η)against the stratification parameter is

exhibited in Figure 22. Moreover, we described the existence of

a dual solution in the case of shrinking flow. As the K is

increased, the magnitude of critical values grows.

Furthermore, a substantial enhancement in skin-friction

coefficient is examined for growing values of K, as depicted

in Figure 23. The variation in heat transfer rate at the surface

ϕ(η)against shrinking parameters for numerous values of K and

M are demonstrated through Figures 23, 24.

6 Conclusion

In this research work, we erect a dual solution close to the

stagnation point of themicro-polarfluid under the action of nonlinear

tensile/shrinkage sheetmagnetics. Graphical results and discussion for

fluid particles micro-floating, tensile/contraction parameters, and

magnetic parameters invoke the thermal flow rate. For

computational purposes, using MATLAB bvp4c scheme. As can

be seen, MATLAB bvp4c is time-saving, efficient, durable, and fast

convergence, and has good consistency with earlier studies. It should

also be esteemed that the local skin friction coefficient and the local

Nusselt number amplitude increase with increasing micro-pole

parameters. The range of skin friction and solution is expanded by

the application ofmagnetic force. Thefluidmovesmore quickly when

FIGURE 23
Dual solutions impact on against for several K.

FIGURE 24
Dual solutions impact on against for several M.
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nonlinear stretching and contracting parameters are used. As the

material parameter K rises, resistance close to the surface increases.
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