
On the hardness of quadratic
unconstrained binary
optimization problems

V. Mehta  1,2, F. Jin  1, K. Michielsen  1,2,3* and
H. De Raedt  1,4

1Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich,
Germany, 2RWTH Aachen University, Aachen, Germany, 3AIDAS, Jülich, Germany, 4Zernike Institute for
Advanced Materials, University of Groningen, Groningen, Netherlands

We use exact enumeration to characterize the solutions of quadratic

unconstrained binary optimization problems of less than 21 variables in

terms of their distributions of Hamming distances to close-by solutions. We

also perform experiments with the D-Wave Advantage 5.1 quantum annealer,

solving many instances of up to 170-variable, quadratic unconstrained binary

optimization problems. Our results demonstrate that the exponents

characterizing the success probability of a D-Wave annealer to solve a

quadratic unconstrained binary optimization correlate very well with the

predictions based on the Hamming distance distributions computed for

small problem instances.
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1 Introduction

Optimization is at the heart of problem solving in science, engineering, finance,

operational research etc. The basic idea is to associate a cost with each of the possible

values of the variables that describe the problem and try to minimize this cost. Of

particular importance is the class of so-called discrete optimization problems in which

some or all the variables take values from a finite set of possibilities. Discrete optimization

problems are often NP-hard [1] which, in practice and in simple terms, means that solving

such a problem on a digital computer will require resources that increase exponentially

with the number of variables.

Many discrete optimization problems can be reformulated as quadratic unconstrained

binary optimization (QUBO) problems [2, 3]. Solving a QUBO amounts to finding the

values of the N binary variables xi = 0, 1 that minimize the cost function

Cost x1, . . . , xN( ) � ∑
1�i≤j�N

Qi,jxi xj, xi � 0, 1, (1)

where Qi,j = Qj,i is a symmetric N × N matrix of floating point numbers.

The interest in expressing discrete optimization problems in the form of QUBOs has

recently gained momentum by the development of quantum annealers manufactured by
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D-Wave systems [4, 5]. In theory [6], quantum annealers make

use of the adiabatic theorem [7] to find the ground state of the

Ising model defined by the Hamiltonian

H � ∑
1�i<j�N

Ji,jSi Sj +∑N
i�1

hiSi, (2)

Substituting Si = 1 − 2xi = ±1 in Eq. 2 yields

H � Cost x1, . . . , xN( ) − C0, (3)

where the relations between theQ’s in Eq. 1 and J’s, h′s, and C0 in

Eqs 2 and 3 are given in Appendix A.

Obviously, the transformation Si = 1 − 2xi = ±1 does not

change the nature of the optimization problem. In other words,

minimizing the cost function of a QUBO Eq. 1 or finding the

ground state of the Ising model Eq. 2 are equally difficult.

Currently available quantum annealer hardware often finds

ground states of Eq. 2 for fully-connected problems with

about 200 variables or less in about micro seconds [4, 5],

which is quite fast, suggesting that as larger quantum

annealers become available, they have the potential to solve

large QUBOs in a relatively short real time.

Although the transformation Si = 1 − 2xi = ±1 does not

change the nature of the optimization problem, the formulation

of a particular optimization problem in terms of a QUBO can.

For instance, 2-satisfiability problems (2SAT) [1] (see Section

2.1) can be solved with computational resources that increase

linearly with the number of binary variables [8–10]. However, the

special features of 2SAT-problem that permits its efficient

solution are lost when it is expressed as a QUBO/Ising model.

In fact, the equivalent QUBO becomes notoriously hard to solve

by e.g., simulated annealing [11]. On the other hand, it is also not

difficult to construct Ising models of which the ground state is

very easy to find.

In view of the potential of quantum annealers for solving

large QUBOs in the near future, it is of interest to gain some

insight into the degree of success by which a quantum annealer is

expected to solve a QUBO/finding the ground state of

corresponding Ising model, without actually performing the

experiment.

In this paper, we show, using three classes of problems, that

the following two factors are well correlated:

1. The success probability a D-Wave annealer finds the ground

state of the Ising model/solves the QUBO.

2. The distribution of Hamming distances between the ground

state and the lowest excited states computed for relatively

small, representative problem instances.

We demonstrate that the differences between the Hamming

distance distributions are correlated with the size-dependent

scaling of the success probabilities with which D-Wave

quantum annealers find the ground state.

The structure of the paper is as follows. Section 2

introduces the three different classes of QUBO problems

that we analyze. In section 3, we briefly review the three

different methods by which we solve the QUBO instances.

Section 4 and Section 5 present and discuss our results for the

Hamming distance and level spacing distributions, and

quantum annealing experiments, respectively. In Section 4,

we summarize our findings.

2 Quadratic unconstrained binary
optimization problems

2.1 2-Satisfiability problems

The problem of assigning values to binary variables such that

given constraints on pairs of variables are satisfied is called 2-

satisfiability [1]. 2SAT is a special case of the general Boolean

satisfiability problem, involving constraints on more than two

variables. In contrast to e.g. 3SAT which is known to be NP-

complete, 2SAT can be solved in polynomial time. The most

efficient algorithms solve 2SAT in a time which is proportional to

the number of variables [8–10].

A 2SAT problem is specified by N binary variables xi = 0, 1

and a conjunction of M clauses defining a binary-valued cost

function

C � C x1, . . . , xN( )
� L1,1 ∨ L1,2( ) ∧ L2,1 ∨ L2,2( ) ∧ . . .∧ LM,1 ∨ LM,2( ), (4)

where the literal Lα,j stands for either xi(α,j) or its negation �xi(α,j),
for α = 1, . . . ,M and j = 1, 2. The function i (α, j) maps the pair of

indices (α, j) onto the index i of the binary variable xi. A 2SAT

problem is satisfiable if one can find at least one assignment of the

xi’s which makes the cost function C true.

Solving a 2SAT problem is equivalent to finding the ground

state of the Ising-spin Hamiltonian [2, 11, 12].

H2SAT � ∑M
α�1

h2SAT εα,1Si α,1( ), εα,2Si α,2( )( ), (5)

where εα,j = +1 (−1) if Lα,j stands for xi (�xi) and
h2SAT Sl, Sm( ) � Sl − 1( ) Sm − 1( ), Sm, Sl � ± 1. (6)

Grouping and rearranging terms, Eq. 5 reads

H2SAT � ∑
1≤i<j≤N

Ji,jSiSj +∑N
i�1

hiSi + C1, (7)

where C1 is an irrelevant constant. Therefore, solving a 2SAT

problem Eq. 4 is equivalent to solving the QUBO problem

defined by Eq. 7. It may be of interest to mention that if one

is given a QUBO problem without knowing that it originated

from a 2SAT problem, it is not clear that the QUBO can be solved

in a time linear in N.
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Constructing 2SAT problems is easy but finding 2SAT

problems that have a unique known ground state and a highly

degenerate first-excited state quickly becomes more difficult with

increasing N [11]. We have generated 15 sets of 2SAT problems

that have a unique known ground state and a highly degenerate

first-excited state, each set corresponding to anN, withN ranging

from 6 to 20 with the number of clauses M = N + 1. The graphs

representing these problems are not fully connected, that is not

all Ji,j’s are different from zero. For our sets of 2SAT problems, the

hi’s and Ji,j’s can take the integer values between −2 and 2.

2.2 Fully-connected spin glass

The spin glass model is defined by the Hamiltonian Eq. 2.

Computing the ground state configuration of the spin glass

problem is, in general, very hard and is proven to be NP-hard

[13]. To verify that a spin configuration has the lowest energy,

one would (in general) have to go through all the 2N − 1 other

configurations to check if it indeed has the lowest energy. The

qualifier “in general” is important here for there are cases, such

when all Ji,j = 0, for which the ground state is trivial to find. To

effectively rule out such trivially solvable problems, we use

uniform (pseudo) random numbers in the range [− 1, 1] to

assign values to all the Ji,j’s and all the hi’s. The probability that

one of the Ji,j’s is zero is extremely small, justifying the term

“fully-connected spin glass”. In the following, we refer to the set

of model instances generated in this manner as RAN problems.

2.3 Fully-connected regular spin-glass
model

In the course of developing an QUBO-based application to

benchmark large clusters of GPUs (see Appendix B), we

discovered by accident that the ground state of the spin glass

defined by Eq. 2 with

Ji,j � 1 − i + j − 2( )/ N − 1( ), i ≠ j,
hi � 1 − 2 i − 1( )/ N − 1( ), (8)

seems to have a peculiar structure. Note that of the order ofN Ji,j’s

are zero.

Although we have not been able to give a proof valid for allN,

up to N = 200 we have not found any counter example for

conjecture that the ground states of the Ising model with

parameters given by Eq. 8 is given by (S1 = −1, . . . , Sk = −1,

Sk+1 = 1, . . . , SN = 1) or, equivalently (x1 = 1, . . . , xk = 1, xk+1 = 0,

. . . , xN = 0) where k is the integer that minimizes

f k( ) � ∑
1≤i≤j≤k

Qi,j � k N − k( ) N − 2k + 2( )
N − 1

. (9)

Thus, although we are solving a fully connected QUBO

problem, if our conjecture is correct, its solution is very easy

to find for any N. We refer to the special, fully-connected regular

spin glass problems defined by Eq. 8 as REG problems.

From Eq. (2), it immediately follows that randomly

reversing a spin i and replacing hj by −hj and Ji,j by −Ji,j for

all j does not change the ground state energy of a QUBO

problem. Applying such “gauge transformation” to sets of

randomly selected spins generated a set of REG problems that

are mathematically equivalent. This feature, in combination

with the fact that the ground state is known (for at least N ≤
200) makes REG problems well-suited for testing and

benchmarking purposes, of both conventional and quantum

hardware.

3 Methods for solving QUBOs

We solve QUBOs using three different methods.

FIGURE 1
(color online) (A) Frequencies of Hamming distances between the ground state configuration and the first 6,036 excited states, obtained by
analyzing a N = 20 2SAT problem. (B) Level spacing distribution, that is the distribution of the energy difference Δ between the first excited state and
the ground state, the second excited state and the first excited state, etc. For the 2SAT problem considered, the first 6,036 excited state are
degenerate, yielding one peak at Δ = 4.
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FIGURE 2
(color online) Same as Figure 1 except that the problem instance belongs to the class ofN = 20 RAN problems and that we only show the results
for the 4,000 states which are closest to the ground state in energy. In this case, the first 4,000 excited energy levels differ by approximately 17 units
whereas for 2SAT, the energy of 6,036 of the lowest excited states are only 4 units of energy higher than the ground state.

FIGURE 3
(color online) Same as Figure 1 except that the problem instance belongs to the class ofN= 20 REGproblems. There are only five distinct energy
differences in this case. The energies of the 4,000 lowest energy levels differ by approximately 24 units.

FIGURE 4
(color online) (A)Mean success probability and its variance as a function of the problem size N, obtained by solving all problem instances of the
REG class on a D-Wave Advantage 5.1 quantum annealer. Solid lines are least square fits to data forN < 80 andN > 80, respectively. (B) Average chain
length as a function of the problem sizeN, ameasure for the average number of physical qubits that is required to represent one variable in theQUBO
problem.
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1. A computer code referred to as QUBO22 which uses GPUs

and/or CPUs to solve QUBOs, Polynomial Unconstrained

Binary Optimization (PUBOs), and Exact Cover problems

(reformulated as QUBOs).QUBO22 simply enumerates all 2N

possible values of the binary variables x1, . . . , xNwhile keeping

track of those configurations of x’s that yield the lowest, next

to lowest and largest cost.QUBO22 obviously always finds the

true ground state. The number of arithmetic operations

required to solve a QUBO is proportional to N(N − 1)2N.

With the supercomputers that are available to us, the

exponential increase with N limits the application

QUBO22 to problems of size N ≤ 58.

In order to compute the Hamming distance between excited

states and the ground state and level spacing distributions, it is

necessary to keep track of a large number of different states.

To this end, we use another code, also based on full

enumeration, which in practice, can readily handle

problems up to N = 20.

2. Heuristic methods can solve QUBOs in (much) less time than

QUBO22 can. However, heuristic methods do not guarantee

to return the solution of the QUBO problem (although they

very often do). In our work, we use qbsolv, a heuristic solver

provided by D-Wave, to compute the ground states of all

problem instances. For those problems which QUBO22 can

solve, the ground states obtained by qbsolv and QUBO22

match. For all RAN and REG problems up to N = 200, the

ground states obtained by qbsolv and the D-Wave Advantage

4.1 Hybrid solver are also the same.

3. We have used the D-Wave Advantage 5.1 quantum annealer

to solve all problem instances. We calculate the success

probabilities by using the ground states obtained by

qbsolv. Note that in no case could the D-Wave annealer

find states with lower energies than that obtained from

qbsolv. The data for the success probabilities is then used

to analyse the scaling behavior as a function of the problem

size N.

It should be noted that the ground states of the large

problems (N > 58) belonging to the REG and the RAN class

are obtained heuristically by qbsolv and D-Wave Hybrid

solver in this work. In principle, the states obtained in

such a way might not be the true ground states, but for

the size of the problems considered here (N < 200), that is

unlikely to be the case.

4 Hamming distance and level
spacing

The Hamming distance between two bitstrings (or strings of

S’s) of equal length is defined as the number of positions at which

the corresponding bits (S’s) are different. For each of the

problems in our set, we use exact enumeration to find at most

6,037 states with the lowest energies. With this data we compute

the Hamming distances between the ground state and these

excited states.

FIGURE 5
(color online) Same as Panel 5 except that the problem instances belongs to the RAN class.

FIGURE 6
(color online) Same as Figure 4A except that the problem
instances belongs to the 2SAT class.
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In this section, we only present results for one representative

N = 20 problem taken from the 2SAT, RAN and REG class,

respectively. The plots for other N = 20 instances look similar,

and the corresponding average Hamming distance distributions

are given in Appendix C.

FromFigure 1we draw the following conclusions. Recall that the

first excited states used to generate Figure 1A all have the same

energy. By construction, according to Eq. 6, the level spacing

distribution Figure 1B is nonzero for Δ = 4 only. Now imagine

that the search process (in e.g., simulated annealing) for the ground

state ends up in one of these excited states. From Figure 1A it then

follows immediately that the probability to reach the ground state by

single-spin flipping will be very low. Indeed, most of these excited

states have a Hamming distance 10–15 and it would require a

miracle to have a particular sequence of single-spinflips reducing the

Hamming distance to zero. In summary, from Figure 1 it is easy to

understand why this particular class of 2SAT problems is very hard

to solve by simulated annealing [11, 12].

From Figure 2 we conclude the following. In contrast to

Figure 1A, most of the weight of the Hamming distance

distribution is centered around five. Also the level spacing

distribution Figure 2B is very different from that of the 2SAT

problems. This suggests that five or less spin flips may suffice to

change the excited state into the ground state. Thus, in

comparison with the class of 2SAT problems that we have

selected, the RAN problems are expected to be much more

amenable to simulated and quantum annealing.

The Hamming distance and level spacing distribution of a

REG problem (see Figure 3) are very different from the

corresponding ones of the 2SAT or RAN problems. There are

only five distinct energy level spacings for these problems and the

Hamming distance distribution shows that many of the excited

states differ from the ground state by only a few spin flips.

Therefore, we may expect that of the three classes of problems

considered, problems of the REG class are the least difficult to

solve by simulated or quantum annealing.

5 Quantum annealing experiments

We demonstrate that the conclusions of Section 4, drawn

from the analysis of small problem instances, correlate very well

with the degree of difficulty observed when solving significantly

larger problems on a D-Wave Advantage 5.1 quantum annealer.

In Figure 4A we present the results obtained by solving all

REG-class problems on a D-Wave quantum annealer. For each

N, instances were generated by spin-reversal transformations, as

explained above. As the problem size N increases, the success

probability, that is the relative frequency with which the D-Wave

yields the ground state, decreases exponentially, from O(1) to
O(10−6). Fitting exponentials to the data reveals that the

exponent changes from −0.039 to −0.090 at about N = 80.

The larger the absolute value of the exponent, the more

difficult it is to solve the QUBO by quantum annealing. Since

using brute-force search, the success probability scales as 2−N, we

believe that in the asymptotic limit, the success probability using

quantum annealing should scale similarly at worst, except for a

different prefactor. Therefore, we use exponential functions

linear in N as the fitting functions for the scaling of the

success probability. Other alternatives for the fitting functions

are considered in Appendix D.

With increasing problem size N, it becomes more difficult and

eventually impossible to map the fully-connected QUBO problem

onto the Chimera or Pegasus lattice that defines the connectivity of

the D-Wave qubits. To embed even a small fully-connected problem

onto the working graph of the system, two or more physical qubits

are chained together by means of the relative chain strength

parameter, to represent a logical qubit of the original problem.

For instance, a N = 170 variable REG problem maps onto about

3,964 physical qubits of a D-Wave Advantage 5.1. We quantify this

aspect by computing the average chain length, a measure for the

average number of physical qubits that the D-Wave software uses to

map a variable onto a group of physical qubits. Figure 4B shows the

average chain length, computed from data obtained by solving all

REG problems. Clearly, the average chain length only increases

linearly withN and does not show any sign of the crossover observed

in the scaling dependence of the success probabilities, seen in

Figure 4A. Furthermore, the chain break fraction which, as the

name suggests, is the fraction of chains that are broken in the sample,

remains zero for even the larger problems belonging to the set. Thus,

the embedding of the problem on the D-Wave lattice cannot be held

responsible for the crossover in the scaling of the success probability.

In Figure 5 we present the results obtained by solving all

RAN-class problems on a D-Wave quantum annealer. At first

glance, Figures 4, 5 may look similar but there are significant

differences. First note that there is no data point for N = 90

simply because after 200,000 attempts, the D-Wave did not

return the ground state. For N = 100, we were more lucky but

for N ≥ 110 we were not, in sharp contrast with the case of REG

problems for which the D-Wave Advantage 5.1 returned the

correct solutions up to N = 170. Clearly, the D-Wave Advantage

TABLE 1 Strong- and weak-scaling results for QUBO22 using NVidia
A100 GPUs. The second column gives the number of GPUs used
and the third column lists the elapsed time to solution.

N A100 GPUs Elapsed time (s) Prediction (s) S44(N)

44 4 1,562 1,562 1

50 256 1973 2015 1.29

50 512 987 1,015 0.65

50 1,024 493 500 0.32

54 1,024 9,121 9,451 6.05

56 512 83,502 81,224 52

58 512 353,400 349,888 224

The ratio of arithmetic operation counts defined by S (44) = N(N − 1)2N/(44 × 43 × 244)

(last column), the ratio of the number of GPUs used, and the elapsed time for solving the

N = 44 QUBO are combined to predict the elapsed time (fourth column) for N > 44.
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5.1 quantum annealer finds RAN problemsmore difficult to solve

than REG problems, although both their QUBOs involve fully

connected graphs. This observation is further confirmed by

fitting exponentials to the data. As in the REG case, there is a

crossover, not at N = 80 but at N ≈ 35, with the exponent

changing from −0.102 to −0.162, see Figure 5A.

The class of 2SAT problems analyzed in this paper has

already been studied extensively through computer simulated

quantum annealing and bymeans of D-Wave quantum annealers

[14, 15]. The general conclusion is that, in spite of the small

number (N ≤ 20) of variables, the 2SAT class contains instances

which are very difficult to solve by simulated annealing [11] and

FIGURE 7
(color online) (A)Average of normalized frequencies of Hamming distances between the ground state configuration and all the first excited
states, over all the 100 instances ofN = 20 2SAT problems. (B) Same as (A) except that the problem instances belong to class of N = 20 RAN problems
and that we only show the results for the 4,000 states which are closest to the ground state in energy. For the 2SAT problem considered, all the first
excited state are degenerate.

FIGURE 8
(color online) Scaling of success probability for (A) REG, (B) RAN, and (C) 2SAT classes of problems by fitting exponential functions of second
degree polynomial in N.
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quantum annealing [14, 15]. For completeness, in Figure 6 we

present data for the success probabilities for the set of N ≤ 20

problems, also used to study the Hamming distance and level

spacing distributions. Focusing on problem of size N = 14, . . . ,

20, we find that the success probabilities, obtained by the D-Wave

Advantage 5.1 quantum annealer, decrease exponentially with an

exponent of −0.269, considerable larger in absolute value than the

exponents −0.162 and −0.090 of the corresponding RAN and

REG problems, respectively. Of course, we cannot simply

extrapolate the 14 ≤ N ≤ 20 exponent to larger N’s but, we

believe it is unlikely that this exponent will become smaller as N

increases further.

For our D-Wave experiments, we used the default annealing

time of 20 μs. One may expect that by using longer annealing

times, the success probabilities will increase and more and larger

RAN class problems can be solved.

6 Conclusion

We have analyzed a large number of QUBOs that we have

synthesized in three different ways. The first set of QUBOs was

obtained by mapping a special selection of 2SAT problems onto

QUBOs. These 2SAT problems are special in the sense that they

possess a unique ground state and a large number of degenerate,

first excited states. Findings such 2SAT problems is

computationally demanding, limiting our search to instances

with less than 21 variables.

The second set of problems contains Ising models in which

uniform random numbers determine all the two-spin

interactions and all the local fields. From a statistical

mechanics point of view, such fully-connected spin-glass

models exhibit frustration and computing their ground states

and temperature dependent properties is known to be difficult.

Finally, the third set of problems is also of the fully-connected

spin-glass type but the interaction and field values are given by a

peculiar linear function of the spin indices. Our numerical

experiments suggest that this problem may be solvable for any

number of spins but we have not yet been able to proof this

conjecture mathematically.

We have calculated Hamming distance distributions and

level spacing distributions for small problem instances and

also submitted the small and large QUBO instances to a

D-Wave quantum annealer. Our results demonstrate that the

exponents characterizing the success probability of a D-Wave

annealer to solve a QUBO correlate very well with the predictions

based on the Hamming distance and level spacing distributions

computed for small QUBO instances.

Since for the 2SAT problems, in order to reach the ground

state from one of the first excited states one would need to flip

exactly the same number of bits as the Hamming distance

between them, these problems should be difficult to solve

using classical algorithms like simulated annealing. This has

found to be the case for these problems [12]. On the other

hand, not only does the peak of the Hamming distance

distributions in case of the REG and RAN problems

correspond to a smaller number, meaning a smaller number

of single bit-flip operations to reach the ground state from one of

the low-lying energy states, the presence of many energy levels

between the ground state and the lowest 4,000 excited states

should make these problems easier for the classical algorithms. It

will therefore be of interest to use simulated annealing for solving

the three sets of problems and to study if the Hamming distance

distributions for small problem instances also predict the

effectiveness of simulated annealing in the future.
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Appendix A: Relation between
QUBOs and ising models

The relations between the Qi,j’s, Ji,j’s, hi’s and C0 are given by

Ji,j � 1
4
Qi,j if i ≠ j, Ji,i � 0, (A1)

hi � −1
2

Qi,i + 1
2
∑
j≠i

Qi,j
⎛⎝ ⎞⎠, (A2)

C0 � 1
2
∑N
i�1

Qi,i + 1
4

∑
1≤i<j≤N

Qi,j

� ∑
1≤i<j≤N

Ji,j −∑N
i�1

hi +∑
j≠i

Ji,j⎡⎢⎢⎣ ⎤⎥⎥⎦, (A3)

Qi,j � 4Ji,j − 2δi,j hi +∑
k≠i

Ji,k⎛⎝ ⎞⎠. (A4)

Appendix B: Exact QUBO solver

We briefly discuss the scaling behavior the QUBO solver

QUBO22 with the problem size N and also give an impression

of the resources that are required to solve QUBO problems exactly.

Not only doesQUBO22 gives us the true ground state but it has also

been found very useful to identify processing units that do not

perform according to specifications. This is because the algorithm

can make very close to 100%, sustained use of all available GPUs or

CPUs, putting some severe strain on e.g., the cooling system.

The number of arithmetic operations required to solve a

QUBO is proportional toN(N − 1)2N. The key to “fast” solution is

to distribute the work over many processing units. For full

enumeration, this is close to trivial. We only have to

distribute disjoint, approximately equally large, subsets of the

set {0, . . . , 2N − 1} over the available number M of independent

processes. Each process enumerates its own subset to find the

configurations that corresponds to the lowest, next to lowest and

largest cost. This step takes OpCount (N/M) operations per

process. The results of all processes are then gathered and

used to find the lowest, next to lowest and largest cost of the

full set. The latter step takes O(M) operations.
Solving a N = 40 QUBO using 32 Intel Xeon Platinum

8,168 CPUs with 24 cores each takes about 505 s. Solving the

same QUBO using 4 NVidia A100 GPUs take about 82 s.

Roughly speaking, for solving QUBOs, 1 NVidia A100 GPUs

has the computational power of 49 Intel Xeon Platinum

8168 CPUs. Obviously, using GPUs instead of CPUs

reduces the elapsed time to solve QUBO problems

significantly.

In Table 1 we present strong- and weak-scaling results for

QUBO22 running on the GPUs of JUWELS booster [16]. The

problem instances are fully connected, regular QUBOs with N

variables. Note that the measured elapsed times for 44 < N ≤ 54

are a little smaller than the corresponding predictions based on

the N = 44 elapsed time, demonstrating the close-to-ideal strong-

and weak-scaling behavior of QUBO22.

Appendix C: Hamming distance
analysis for more cases

In Figure 7 we show the normalized Hamming distance plots,

averaged over 100 instances each for the 2SAT and RAN

problems. It can be observed that the resulting distributions

match well with the corresponding Hamming distance

distributions shown in Sec. IV for the individual case. The

average Hamming distance distribution peaks at 12 and 5 in

case of the 2SAT and RAN problems, respectively. The average

Hamming distance for the 2SAT and RAN problems are

11.07 and 8.33, respectively, while the standard deviations are

3.60 and 4.16, respectively. Since the different instances

belonging to the REG class for a fixed value of N, essentially

have the same problem graph, Figure 3 is a representative of all

the problems of this set.

Appendix D: Alternative fittings for
the success probability

In Figures 4–6 we have used exponential functions of degree

1 in N to fit the scaling behavior of the success probability.

However, we cannot, in principle, determine which function best

represents the true scaling behavior of the success probability in

the asymptotic limit. In this appendix, we consider other

possibilities for the fitting functions. We find, upon trying

exponential functions up to fourth degree polynomial in N,

that exponential functions of second degree, i.e., of the kind

exp (aN2 + bN + c) match the scaling behavior well as shown in

Figure 8.
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