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Raw data generation for several existing and planned large physics experiments

now exceeds TB/s rates, generating untenable data sets in very little time. Those

data often demonstrate high dimensionality while containing limited

information. Meanwhile, Machine Learning algorithms are now becoming an

essential part of data processing and data analysis. Those algorithms can be

used offline for post processing and post data analysis, or they can be used

online for real time processing providing ultra low latency experiment

monitoring. Both use cases would benefit from data throughput reduction

while preserving relevant information: one by reducing the offline storage

requirements by several orders of magnitude and the other by allowing ultra

fast online inferencing with low complexity Machine Learning models.

Moreover, reducing the data source throughput also reduces material cost,

power and data management requirements. In this work we demonstrate

optimized nonuniform scalar quantization for data source reduction. This

data reduction allows lower dimensional representations while preserving

the relevant information of the data, thus enabling high accuracy Tiny

Machine Learning classifier models for online fast inferences. We

demonstrate this approach with an initial proof of concept targeting the

CookieBox, an array of electron spectrometers used for angular streaking,

that was developed for LCLS-II as an online beam diagnostic tool. We used

the Lloyd-Max algorithm with the CookieBox dataset to design an optimized

nonuniform scalar quantizer. Optimized quantization lets us reduce input data

volume by 69% with no significant impact on inference accuracy. When we

tolerate a 2% loss on inference accuracy, we achieved 81% of input data

reduction. Finally, the change from a 7-bit to a 3-bit input data quantization

reduces our neural network size by 38%.
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1 Introduction

Detectors for large physics and light source experiments now

produce data much faster than acquisition systems can collect,

triage and store it [1, 2]. The current approach of saving all raw

data requires a large amount of cabling, power and downstream

storage, beyond what the architecture or budget can allow [1].

Thus, several current and planned experiments would benefit

from data reduction at the source. Furthermore, the initial data

preparation steps before analysis tend to be very similar over time

- deletion of invalid events, baseline corrections and initial

information extraction, such as calculating timestamps or

energy. Moving these steps at the edge–near the

detector–would reduce data at the source and thus lightening

the load of the high speed communication system and high-speed

storage. Even so, several of this initial analysis requires complex

mathematical operations which require many sequential steps,

an iterative approach, and significant computational resources.

This limits the capacity for true real-time data reduction [3, 4].

One strategy exploits ultra low latency Edge Machine

Learning (edgeML); the deployment of inference models near

the detector capable of real-time analysis, veto and compression

of incoming data. Machine Learning (ML) models like neural

networks (NN) can be trained to emulate arbitrary mathematical

operations while using simpler addition and multiplication

operations that can be greatly accelerated using appropriate

hardware [5]. This strategy of moving much of the data

preparation steps at the source enables to reduce both data

velocity and data volume, resulting in resource savings in

term of data transfer, processing and storage.

The LCLS-II built at SLAC National Accelerator Laboratory

is capable of generating coherent x-ray shots at a 1 MHz rate [1,

6]. The experimental hutches host several dozen different

instruments to capture the maximum information about each

event. However, the system must be run at a lower rate to collect

the data from all these instruments and send it to disk [1]. To

achieve continuous full rate experiments, a first proof of concept

targeting the Cookiebox detector demonstrated that deploying

ML inference models on FPGA can reduce data velocity in real-

time [7].

The Cookiebox is a diagnostic detector which non-

destructively samples each x-ray shot to reconstruct the single

shot time–energy profile via the method of attosecond angular

streaking [3]. The reconstructions are to be used to select which

x-ray shots fit particular experimental objectives, rejecting invalid

shots, aggregating simple reference shots, or reserving

complicated shots for deeper covariance-based analysis. Such

a streaming shot evaluation system significantly reduces the raw

data rate from other instruments before it is written to persistent

storage. However, to achieve this, each x-ray shot must be

analyzed with very low latency, within about 100 µs, to avoid

overly large raw data ring buffers. Such low-latency capability of

edgeML has been demonstrated [7] and further work is ongoing

to provide a fully working system. The Cookiebox detector

produces a large volume of data, on the order of 100’s of GB/

s, which itself becomes a challenge when designing low

complexity ML algorithms suited for limited capacity edgeML

accelerators. For that reason, the compression and analysis must

be distributed all along the data path, including prior to the ML

algorithms. In this work, we suggest to optimally quantize the

Cookiebox data before feeding it to our NN inference model. This

compression strategy reduces throughput while preserving

relevant information which enabled for leaner and more

accurate NNs.

The Materials and Methods section begins with an overview

of the CookieBox diagnostic detector, followed by a description

of the quantization algorithm and the NN developed for the

CookieBox. We then present the results for both the optimal

quantizer model and for theMLmodel. Finally, we conclude with

a discussion of how the quantization impacts the data and theML

model.

2 Materials and methods

2.1 Cookiebox

The diagnostic detector that we take as our demonstration

use case is an attosecond angular streaking instrument composed

of an array of 16 electron time-of-flight (ToF) spectrometers,

illustrated in Figure 1 [8]. The spectrometers are placed on a

plane perpendicular to the x-ray propagation. A micrometer

wavelength infra-red laser with a circular polarization modulates

the central electrical field with a period of 10–30 fs [3]. A low

pressure gas is present in the center chamber. When the atoms or

molecules are hit by x-rays, their electrons are ejected and

collected by the electron spectrometers. This instrument can

measure the polarization and the time-energy spectrum of each

individual x-ray shot produced by LCLS-II (diagnostic mode), or

be used to measure numerous features associated with a given

target atom or molecule (experimental mode).

Each spectrometer signal is fed to a 12 bit, 6.4 GS/s analog-to-

digital converter. Thus, the total instrument generates data at a

rate of 1.229 Tb/s. The first data reduction step consists of

identifying the time at which electrons hit the spectrometer

using a peak finding algorithm. The digitized signal is thus

converted into timestamps corresponding to each electron

“hit”. For each x-ray shot, each spectrometer collects

approximately 100 hits, which are converted into 16 bit

timestamps, which results in a data rate of 26 Gb/s. In

experimental mode, this data is collected, however in

diagnostic mode, the data must be analyzed within 100 µs to

select the correct processing for each shot while avoiding large

rapid memory buffers.

We choose this detector since it has recently been shown

compatible with both the signal rates and the energy resolution
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required for the x-ray pulse reconstruction algorithms. The

facility wide interest at LCLS-II has further motivated that

such an instrument provide continuous streaming diagnoses

of x-ray pulses, both time-energy distribution as well as

polarization, at the full MHz repetition rate of the facility. As

such, this instrument is now capable of working with the full data

rate as soon as the LCLS-II ramps up to the highest quasi-

continuous rate to provide offline diagnostic. The present work

aims to move the diagnostic capability on the edge and in real-

time.

2.2 Dataset (CookieSimSlim)

To create the initial training datasets, we use a simple

simulation [9] to generate data via Monte-Carlo simulation of

attosecond angular streaking. The simulation begins with a

Poissonian choice of so-called self-amplified spontaneous

emission (SASE) sub-spikes, forming the x-ray shot, each with

an energy consistent with the few % SASE bandwidth of the FEL

process and a relative temporal delay that is chosen as an even

random choice across the 2π period of the angular optical cycle.

The period of the optical cycle is chosen experimentally by

the choice of dressing optical laser field and is typically in the

regime of few femtoseconds total period for addressing SASE

structures as targeted here [3]. The data generator also allows for

sub-spike polarization variation such that our model is fully

compatible with the recent developments in time-dependent

polarization shaping in SASE FELs [10].

The resulting dataset from the CookieSimSlim generator is an

HDF5 formatted tree of events, or “x-ray shots”, each with a list of

electron hit energies (Xhits) for each detector angle. This list of hit

energies itself is a sampling from a smooth probability distribution

Ypdf that is the sum of the Gaussian energy distributions for each of

the sub-spikes (offset via κ sin(ϕ) where κ is the streaking kick

strength and ϕ ∈ [0, 2π) is the random phase associated with the

sub-spike relative arrival timing. The shot-dependent parameters

such as kick strength, phase, dark-count rate, SASE width and so

on are all produced as attributes of the particular shot in the

HDF5 file. For convenience the output file also includes an “image”

representation of the energy hit histogram Ximg.

The hit energies in Xhits are represented as 32 bit floats from the

generator. This bit depth is considered a “conventional”

representation since in the experiment, the data will be represented

as an energy conversion of an integer arrival time that is typically only

of 16 bit resolution. Allowing 32 bit floating precision for the energy

mapping result is therefore considered a convenient precision for sake

of the arithmetic in producing that calibrated energy for each hit.

2.3 Quantization

All of the information on the x-ray shot is contained in the

timing of the electron hits; that is the 16 bit timestamps obtained

FIGURE 1
Diagram of the data flow of the CookieBox. The ToF spectrometers signals are processed by analog electronics before being digitized. Each
2 digitizers feed into an FPGA that will be hosting the neural network discussed in this article. The central FPGA, circled with a red dotted line, collects
the extracted features from all 8 peripheral FPGA and forwards the inference results to the rest of the DAQ system.
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after the pulse finding step. With CookieSimSlim, this data is

provided in a 32 bit float format. We encode this large set of data

to a small set of optimized values modelled on the probability

distribution function (PDF) of the source detector with a

nonuniform scalar quantizer [11, 12].

The mean-square error (MSE) is used to judge of the quality

of the quantization. The MSE is obtained with Eq. 1:

MSE Y,Q Y( )( ) � 1
N

∑
N−1

i�0
yi − Q yi( )( )2 (1)

where Y is the original discrete dataset and Q(Y) is the quantized

dataset.

The first order entropy of the datasets is used to mesure the

amount of information it contains. The first order entropy is

obtained with Eq. 2:

H Y( ) � − ∑
N−1

i�0
P yi( )log2P yi( ) (2)

where Y a discrete variable, that represent our dataset or

quantized dataset, with possible outcomes y0. . .yN−1 which

occur with probability P(y0). . .P(yN−1) [13]. The base two of

the logarithm function is to gives the entropy in bits.

2.4 The neural networks

The data quantization allows for a much reduced input size for

the convolutional neural network (CNN) which contributes to its

size reduction. The CNN type of architecture is used to reduce the

impact of the input data dimensionality on the model

dimensionality itself. We also design our model to be the

smallest as possible. For that, we use strategies inspired from the

SqueezeNet CNN architecture [14]. However, since our CNN only

has three convolution layers, our strategies boil down to using as few

and as small as possible filters. We only use 3 × 3 filters which is the

smallest kernel size to capture the notion of relative dependencies in

all direction within a 2D space.We gradually double the numbers of

filters between each convolution layer from the beginning to the end

of the network like in the VGG model [15]. We use 10 filters in the

first convolution layer allowing for below or close to 10,000 network

parameters while potentiating the accuracy. The two last layers of the

CNN are fully connected layer with 5 neurons each. For all layers,

except the last one, the activation function is the rectified linear unit

(ReLU) activation function. For the last layer, the Softmax activation

function is used for classification.

A specific CNN is dedicated for each corresponding bit depth

because of the model input size changes according to the number

of bit used for the quantization. Except the input size, all the other

configurations are the same for all CNNs. Figure 4 shows

examples of the CNN input heatmap images in regards of the

number of quantization levels. In this example, each input

heatmap images (Figures 4A–C) requires a specific CNN.

3 Results

3.1 Quantization effect on dataset

Uniform quantization allows for a quick and simple design.

However, optimized nonuniform quantization minimizes the MSE,

but also requires to train the quantizer beforehand. For comparison,

the quantization is done using a uniform quantizer and a PDF-

optimized nonuniform quantizer. In both cases, we quantized to

obtain 5 strategic and realistic bit depths from 3 to 7 bits. This yields

M quantization levels with M = 2n and n the bit depth.

The quantization levels for the uniform quantizer are

uniformly placed within the distribution. For training the

PDF-optimized nonuniform quantizer, we used the Lloyd-

Max (LM) algorithm [11, 12]. The LM algorithm uses an

iterative k-means clustering approach to determine which

quantization level locations minimize the MSE. The initial

estimate for the quantization levels are uniformly placed

within the distribution. The tolerance for change in MSE after

which the LM algorithm converged is set to 1e − 5. For both

quantizer designs, the actual quantization is done bymapping the

input value to its nearest quantization levels. Figure 2A shows the

original data distribution while Figures 2B,C respectively show

the distribution with uniform quantization and optimized

nonuniform quantization.

FIGURE 2
5-bit uniform quantization (B) and 5-bit optimized
nonuniform quantization (C) effect on the original data distribution
(A). The Lloyd-Max algorithm gives more granularity to the ranges
where the data are more occurring within the distribution
which maximizes the entropy and minimizes the mean-square
error when quantizing.
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Figure 3A shows how nonuniform quantization

minimized the MSE compared to a uniform quantization.

In addition, Figure 3B shows how nonuniform quantization

also maximized the entropy. The data are quantized using the

uniform and nonuniform quantizer and then converted as an

heatmap with the bin intervals being the quantization levels.

This result is an input heatmap image of size 16 ×M and it is

the input of the CNN. Each pulse within an x-ray shot will

create a vertical sinusoidal wave where the relative phase

between waves reflects the time interval between the pulses.

Figure 4 shows how quantizing with 5 bits over 3 bits makes

the pulse count less ambiguous, but also how quantizing with

7 bits does not drastically simplify the pulse counting task (for

a human eye).

3.2 Classification accuracy and model size

We trained the CNNs to classify the pulse count in every

x-ray shot event (i.e. heatmap image). A unique and dedicated

CNN is trained for each bit depth and corresponding quantized

heatmap image size. This is because the quantized heatmap

image size determine the input size of the CNN which then

impact the overall CNN dimensionality. However, all the model

parameters (kernel size, number of filters. . .) and initial weights

are kept steady for all CNNs.

The desired pulse count per x-ray shot may change between

LCLS-II experiments. For that reason, we trained the CNNs on a

local GPU (RTX3090) to classify 0, 1, 2, 3 and “many” pulses for

every shots. The “many” class correspond to all events with

FIGURE 3
Mean-square error (A) and entropy (B) as a function of the quantization. We interpret low mean-square error with high entropy as a better
information representation within data.

FIGURE 4
3, 5 and 7 bits quantized data heatmaps for a 2 pulses event [respectively (A–C)]. For a human eye, the 5 bits quantized data heatmaps (B)makes
the two pulses distinction less ambiguous over 3 bits quantized data heatmaps (A). However, the 7 bits quantized data heatmaps does not improve
the distinction for a human eye.

Frontiers in Physics frontiersin.org05

Gouin-Ferland et al. 10.3389/fphy.2022.957128

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.957128


4 pulses or more, which have little value in most experiments and

are generally rejected. The training setup is described in Table 1.

The training set includes 400,000 events and the test set

100,000 events. All the data are generated using the

CookieSimSlim generator. Figure 5 shows the relation between

the CNN weighted prediction accuracy as well as the CNN size

when applying the method in simulation with the test set. We see

that this optimized quantization scheme allows for data

reduction on 5 bits while allowing for more accurate and

leaner inference models then when using 7 bits. Figure 6

shows the confusion matrix of the 5-bit dedicated CNN in

predicting the number of pulses.

4 Discussion

4.1 Quantization

Our goal for using optimized nonuniform quantization over

uniform quantization was to maximize the information

representation of the Cookiebox source on a lower bit

budget. This is what Figure 3 suggest. We saw that while a

nonuniform quantization minimized the MSE compare to a

uniform quantization, it also maximized the entropy which

represent the amount of information carried out by the data.

Nonetheless, we also saw that the gap in performance tends to

shrink for a larger bit depth. This is because the optimized

quantization levels converge towards a uniform distribution as

more levels are created within the same limited interval. We

noticed that this nonuniform quantization is sensitive to

changes in the data distribution; if the source statistic

changes overtime a mismatch effect could occur and change

the quantizer performance. We recommend training the

nonuniform quantizer on a dataset that includes those

variations or to include a calibration step to train the

quantizer before the data acquisition to ensure the quantizer

representativity. Note that the same mismatch effect would

occur to a standalone NN (i.e. without the prior optimized

nonuniform quantization).

Nevertheless, quantization allows to pass from a 16-bit

scalar data representation to a 7, 5 and even 3-bit

representation. This yields a data reduction of 56%, 69 %

and 81%. Even if quantization is a lossy coding, let’s recall

that optimized nonuniform quantization allows for data

reduction while maximizing the information retention. This

method avoids the computational load of lossless coding, which

reduces the acquisition system latency and overall resources

usage.

TABLE 1 CNN training Configurations.

Loss Function Sparse Categorical Crossentropy

Optimizer Adam

Learning Rate 0.001

Batch Size 2042

Validation Split 0.2

FIGURE 5
CNNweighted accuracy and size. Grey bars read on the right
axis and the blue and yellow bars on the left axis. The model shows
higher accuracy with 5-bit depth over 7-bit depth while requiring
fewer model parameters.

FIGURE 6
Confusion matrix showing the performance of the 5-bit
dedicated CNN in predicting the number of pulses (0, 1, 2, 3 or
“Many”) in a single x-ray shot with data optimally quantized using
5 bits. A perfect CNN would have 100% (yellow) in every box
on the diagonal and 0% (dark blue) everywhere else.
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4.2 Convolutional neural network
inference model

The goal of limiting the Cookiebox data dimensionality

was also to reduce the input dimensionality for our inference

model. Fully connected NNs are really sensitive to their input

size and tend to become very large if not contained. We used

a simple CNN architecture to minimize this effect, but

Figure 5 still shows the benefits of a small input size in

term of model dimensionality. For instance, with a

straightforward 16-bit representation and the same

architecture, this CNN would require approximately

2.6 million parameters. By contrast, our 7, 5 and 3-bit

representations shrunk the CNN size to 15,595,

10,795 and 9595 parameters respectively, a reduction of

two orders of magnitude compared to the 16 bit input

model. Within these smaller models, the change from a 7-

bit to a 5-bit input data quantization reduces the CNN size by

31%, with no significant impact on inference accuracy. When

we tolerate a 2% loss, the change from a 7-bit to a 3-bit input

data quantization reduces the CNN size by 38%. Note that

the CNN size reduction is only due to the input

dimensionality reduction and that no optimization (weight

pruning, weight quantization. . .) is done on the model itself.

We saw small improvements in accuracy between

uniform and nonuniform quantization in Figure 5, but as

for the MSE and entropy, the difference tend to plateau

beyond 6 bits. Our simulation data exhibit bimodality

within the distribution for all 16 channels dimensions and

we expect a better gain of nonuniform over uniform

quantization for more complex multimodal distributions.

If the dimensions exhibit different distributions, we

recommend to train and quantized in respect to each

dimensions. With that said, our model still demonstrates

better performances then the first iteration of NN that

tackled the Cookiebox problem while being almost two

orders of magnitude smaller [7].

The drop in accuracy from 6 to 7 bits correlates with a

significant input size growth. Because the number of filters and

kernel size are constant for all bit depth, it limits the learning

potential of the CNN when having larger and more complex

input. A solution to that is to use a bigger CNN. However, we

would also need a bigger dataset to maintain the model

generalization ability. Because our goal was to designed a

small NN and to reduce data generation, we do not consider

going bigger and deeper a viable, sustainable and elegant solution

for edgeML.

Finally, we used scalar quantization as a proof of concept, but

the next step is to use vector quantization with the Linde-Buzo-

Gray algorithm to compress even more multidimensional data

while conserving relevant information [16]. This could be even

more promising for data source reduction and for smaller

edgeML models.

5 Conclusion

Large physics experiments now produce more and more data

at an ever-increasing throughput. Simultaneously, ML is

becoming more popular among the community for its ability

to model complex systems and the growing ML hardware

accessibility. In addition to that, edgeML is a promising tool

for large science experiment online data reduction. However,

edgeML applications face challenges in terms of power efficiency

and for hardware implementation. Moreover, some applications

like the Cookiebox diagnostic detector require ultra low-latency

inference.

In this work, we combined optimized data quantization with

the generalization capacities of NN to reduce data source

throughput while preserving relevant information and thus

reducing material cost, power and data management

requirements. This approach also enables smaller NN for fast

real-time–on the edge–inferencing. The real-time diagnostic

function would be a huge boon for upcoming LCLS-II

experiments.

Beyond energy efficiency for data management system, it is

worth mentioning that the cheapest data is the data which is

never generated. The Jevons paradox showed us that in many

technological area, increasing a process efficiency only tend to

rise its absolute usage. That is already something addressed by the

communication technology community [17]. The scientific

community now have a real opportunity to save in

development, infrastructure and energy cost by using

previously developed models directly at the source to generate

as much useful information and less data.

With the development larger and faster detectors planned

over the next decades in several disciplines such a medical

imaging, particle physics and quantum computing, the data

velocity problem will not go away. There is no universal

approach; each application presents a different set of

challenges. Yet, edgeML is a powerful tool that can take

advantage of the inherent structure of many data types which

makes it a perfect candidate for real-time data reduction in many

fields.
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