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Ultracold atoms in optical lattices are a powerful tool for quantum simulation,

precise measurement, and quantum computation. A fundamental problem in

applying this quantum system is how to manipulate the higher bands or orbitals

in Bloch states effectively. Here wemainly review ourmethods for manipulating

high orbital ultracold atoms in optical lattices with different configurations.

Based on these methods, we construct the atom-orbital qubit under

nonadiabatic holonomic quantum control and Ramsey interferometry with

trapped motional quantum states. Then we review the observation of the

novel quantum states and the study of the dynamical evolution of the high

orbital atoms in optical lattices. The effective manipulation of the high orbitals

provides strong support for applying ultracold atoms in the optical lattice in

many fields.
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1 Introduction

Ultracold atoms confined in optical lattices are a powerful tool for quantum

simulation [1–3, 3–6], precision measurement [7], and quantum computation [8]. An

optical lattice is formed by the interference of laser beams, creating a spatially periodic

potential for ultracold atoms. The periodic potential generates the Bloch bands and Bloch

states corresponding to different orbitals. Different to the study of ground band of optical

lattice, by effectively manipulating the orbital degrees of freedom of ultracold atoms in the

optical lattice, novel quantum states are found [9–12], and new qubits [8] and

interferometers [13] based on the atomic orbitals are realized. In applying these high

orbital ultracold atoms in optical lattices, a fundamental problem is how tomanipulate the

orbitals. Unlike internal states of atoms, the effective manipulation of Bloch states in

optical lattices is complex because of the lack of selection rules [14]. Recently, methods to

effectively manipulate Bloch states and high orbitals of optical lattices have been

proposed, such as stimulated Raman transitions [15], shortcut method [14, 16–21],

phase imprint [22], moving lattices [23], and band swapping technique [9, 11, 12, 24].

In this paper, we review our practical methods for manipulating high orbital atoms in

optical lattices. These methods contain the shortcut method [14], band swapping technique [9,

11, 12, 24], and the amplitude modulation method to manipulate atoms in optical lattices [25].
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The shortcut is a nonadiabatic coherent control composed of lattice

pulse sequences [14]. The band swapping technique refers to quickly

switching the structure of deep and shallow composite lattice,

realizing the inversion of Bloch bands, and pumping atoms to the

target band [9]. The manipulation of atoms in an optical lattice by

amplitude modulation is another flexible way to control Bloch states

coherently. In this method, the modulation with more than one

frequency is applied to the lattice, couples the different orbitals, and

realizes a large-momentum-transfer beam splitter [25]. We can

manipulate any Bloch state of optical lattices with different

configurations based on these methods. All the experiments in

this paper are based on a Bose-Einstein-Condensate (BEC) of
87Rb prepared in a hybrid trap with the harmonic trap

frequencies (ωx, ωy, ωz) = 2π × (28, 55, 60) Hz [21]. The

FIGURE 1
Schematic diagram and band structure of optical lattices. (A) is a 1D optical lattice with the lattice constant d. (B) The band-gap structures of 1D
optical lattice for lattice depth V = 5Erwith laser wavelength 1,064 nm. (C) is a triangular optical lattice, with the corresponding band structure (D) for
lattice depth V = 3Er.

FIGURE 2
(A) Experimental result of atoms in D-band after band mapping process. The white hexagon is the boundary of the first Brillouin zone of the
triangular lattice. The atoms are mainly distributed in the fourth Brillouin zone. (B) TOF quantum state tomography process. The initial state is a
superposition Bloch state of the 1D optical lattice. After different evolution time tevo, the atom number proportion at 0Zk and ± 2Zk are shown by the
green and yellow points. (C) The momentum distribution of atoms at tevo = 11.5μs and 86.5μs. The lattice depth is V = 5Er.
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experiments are mainly carried out in one dimensional (1D) and two

dimensional (2D) triangular optical lattices. For 1D lattice, atoms are

confined in more than 50 discrete pancakes with each pancakes

containing 2000 atoms on average [10]. For triangular lattice, there

are around 800 tubes with each tube containing 60 atoms on

average [12].

The structure of this review is organized as follows. In section 2,

we introduce the Bloch bands of atoms in optical lattices and review

three methods for manipulating high orbital atoms in optical lattices.

Then, we review the related applications based on these methods in

section 3, including the atom-orbital qubit under nonadiabatic

holonomic quantum control, Ramsey interferometry with trapped

motional quantum states of the optical lattice. In section 4, we review

the observations of exotic quantum states of p-orbital ultracold atoms.

In section 5, we analyze the dynamical character of high orbital atoms

in optical lattices. Finally, section 6 is the summary of this paper.

2 Manipulation of high orbital atoms
in optical lattices

2.1 Bloch bands of atoms in optical lattice

An optical lattice is formed by the interference of a set of laser

beams with electric field amplitude �Ei, which provides a spatially

periodic potential for atoms:

V r( ) � α∑
i,j

Ei · Ej cos ki − kj( ) · r + βi − βj( )( ) (1)

where ki is the wave number and βi is the initial phase of laser

beams i, and α is the coefficient related to detuning, atomic

energy level, etc. For red detuned beams, α is negative. After

neglecting the interactions between atoms, the Hamiltonian for

single atom in optical lattice is Ĥ � p̂2

2m + V(r). According to the

Bloch’s theorem, the periodic potential can generate Bloch bands

and Bloch states Ψn,q, which can be expressed by

Ψn,q r( ) � un,q r( )eiq·r , (2)

where n = 1, 2, 3 . . . is the index of the Bloch bands, q is the quasi-
momentum, and un,q is a periodic function. The bloch statesΨn,q,

or the eigenstates of Ĥ can be projected onto a series of

momentum eigenstates:

Ψn,q � ∑
ℓ1 ,ℓ2 ,ℓ3

cn,q
ℓ1 ,ℓ2 ,ℓ3 |Z ℓ1b1 + ℓ2b2 + ℓ3b3( ) + q〉 (3)

where bi is the reciprocal lattice vector.

Figure 1 shows two different configurations of optical lattices,

1D lattice and triangular lattice. As for the 1D lattice in Figure 1A,

the lattice constant is d = λ/2 and the band spectrum is shown in

Figure 1B (when lattice depth V = 5Er, where Er = Z2k2/2m is the

recoil energy and k = 2π/λ). From the bottom to the top of the

spectrum, the Bloch bands are S-, P-, D-, F-, and G-band,

corresponding to n = 1, 2, 3, 4, 5, respectively. In Figure 1C,

the triangular lattice with lattice constant 2/3λ, is constructed by

three laser beams. The spectrum of this triangular lattice is

different from that of the 1D lattice, where Bloch bands split

FIGURE 3
(A) The timing diagram of the shortcut. (B) The band mapping result of D-band (top) and G-band (bottom) with zero quasi-momentum for 1D
optical lattice. (C) The parameters of shortcut for different target states and optical lattice. The red time parameter is for the sequence of
misplacement lattice for the P-band and F-band sequences. The quasi-momentum of all target states in this figure is zero. This symbol X indicates
that there is no pulse.
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into some different bands, as shown in Figure 1D (when the

lattice depth is 3Er).

Before introducing the manipulation of the atoms in

Bloch bands, we review the methods used in our

experiments to probe the Bloch states. The first method is

the band mapping technique [14, 15, 26–28]. In the

experiment, if we switch off the lattice adiabatically within

around 1 ms, the atoms in different bands can be mapped to

different momentum components, measured after the time

of flight (TOF). In addition, the value of quasi-momentum

can be obtained from the position of atoms in corresponding

Brillouin zones after the band mapping process and TOF.

Figure 2A shows the band mapping result of atoms in a

triangular lattice. Atoms are mainly distributed in the fourth

Brillouin zone, corresponding to the D-band.

The band mapping method is easy to implement in the

experiment, and the atomic population of different Bloch

bands can be obtained. However, in this mapping process, the

phase information of the Bloch state is lost. Then we use a TOF

quantum state tomography (TOFQST) method to extract full

information about the Bloch states [8]. For example, we use the

TOFQST to detect the superposition of Bloch states in a 1D

optical lattice with depth V = 5Er. In the experiment, we let the

state evolve in the static lattice for a certain time tevo. Then we

turn off the lattice diabatically and measure the momentum

distribution after 31 ms TOF, which is shown in figure 2BC. By

fitting the experimental data, we can obtain the full information

of the states ψ � �����
0.493

√
Ψ1,0 +

�����
0.507

√
ei·0.987πΨ3,0.

2.2 Shortcut to manipulating atoms in
optical lattice

2.2.1 Introduction of the shortcut method
This section demonstrates a shortcut method for manipulating

atoms in different Bloch bands [14, 16–21]. This method is

characterized by short time and high fidelity, which can directly

transfer ultracold atoms from the ground state in the harmonic trap

to any Bloch state, and accurately manipulate atoms of different

orbitals in optical lattices. The shortcut is composed of a series of

optical lattice pulse sequences, which is shown in 3A. Each pulse

pulse-i consists of two parts. First, the lattice is turned on for tonj , and

then the interval is toffj . The time {tonj , toffj } are optimized to achieve

the goal of manipulating quantum states.

We consider a general situation for transferring an arbitrary

initial state |ψi〉 to a target state |ψt〉, where the states |ψi〉 and |ψt〉
can be the Bloch eigenstates or the superposition states. This shortcut

applied to the initial state can be expressed as an evolution operator

Ûs � ∏1
j�MÛ

tonj ,toffj
j . Here Ûj represents evolution operator of the jth

pulse, Ûj � e−i(Ĥ
on
j tonj +Ĥoff

j toffj ), with Ĥ
on
j � p̂2

2m + V(r) and Ĥ
off
j � p̂2

2m.

The final state after the shortcut is |ψf〉 � Ûs|ψi〉. Then we define

the fidelity F of the manipulation

F � |〈ψf|ψt〉| � |〈ψf|∏1
j�M

Û
tonj ,toffj

j |ψi〉|. (4)

By optimizing the pulse sequences {tonj , toffj } to maximize F, the

operation process with high fidelity for manipulating Bloch states

or high orbital atoms in an optical lattice is obtained.

FIGURE 4
(A) From the bottom to the top, the solid lines represent themomentum distributions of different states (S-bandwith q= −0.8Zk, initial BECwith
p = 0, S-, P-, D-, F-, and G-band with zero quasi-momentum). (B) Two 1D lattices with a d/4 position shift. (C) Population oscillations around
momenta − 2Zk (red points) and 0Zk (blue stars). The solid lines are the fitting curves. (D) The experimental images: from top to bottom, the images
are for the initial BEC with p = 0, the BECs with p0 = −0.8Zk after acceleration, and the final states Ψ1,−0.8Zk.
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To verify the effectiveness of the shortcut, we

demonstrate some experimental results in Figures 2, 3. In

Figure 3C, we list some pulse sequences for manipulating

Bloch states, where the initial states are all the ground states

of the harmonic trap, |p = 0〉 zero momentum state. For 1D

optical lattice, we achieve to transfer atoms from zero

momentum state to D-band, G-band, and the

superposition states of S and D band with zero quasi-

momentum, which corresponds to Figure 3B1B2, and

Figure 2BC, and this theory fidelity is more than 99% [14].

For the D-band of the triangular optical lattice with depth V =

3Er, we give the shortcut sequence with 99.95% fidelity in

Figure 3C, and the experimental band mapping results is

shown in Figure 2A [21].

FIGURE 5
(A) Time sequence: after the first two pulses and the 30 ms holding time in the optical lattice, the state becomes the superposition of the Bloch
states in S-band with quasi-momentum taking the values throughout the first Brillouin zone, denoted as |ψ(0)〉. (B) The superposition of Bloch states
of S-band spreading the whole S-band. (C) The comparison of the experimental results between tOL = 0 ms and tOL = 30 ms. These results are
obtained after the sequence in (A) but without pulse-3. (D) Patterns with ten main peaks for the experimental measurements (the red circles)
and the theoretical curves (the solid blue line).

FIGURE 6
The arrangement of the laser beams forms the honeycomb (A) and triangular (B) lattice. The two groups of sublattices form a composite
hexagonal lattice (C), which consistsA and Bwells. (D) and (E) represent the wave function distributions in the real space of the ground band and the
second band with zero quasi-momentum, respectively. (F) The wavefunction overlap with different lattice depth and light intensity ratios.
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2.2.2 Manipulating bloch states with different
symmetries

The symmetry of Bloch states with different energy bands

and quasi momentum is different. For example, in the 1D optical

lattice, Eq. 3 is rewritten as

Ψn,q � ∑
ℓ

cn,q
ℓ
|ℓ · 2Zk + q〉. (5)

The parity of Bloch states on S-, D-, and G-bands with zero

quasi-momentum is even, which is shown in Figure 4A. On

the contrary, the P- and F-bands with zero quasi-momentum

FIGURE 7
(A) Schematic diagram of the polychromatic amplitude modulation lattice. (B) Two special cases in detecting the transfer population spectrum.
In case 1, absorption of photons with ω1 or ω2 is resonant with D-band. In case 2, two frequencies are equal. Spectrum for the population on ± 4Zk
states with increasing of modulation frequency ω1 for (C) V0 = 5Erwith V1 = 1.4Er, V2 = 1.6Er, modulation time t= 300μs, and for (D) V0 = 14Erwith V1 =
V2 = 2.5Er, and t = 150μs. (E) A large-momentum-transfer beam splitter with a separation of 12Zk.

FIGURE 8
(A) The pulse sequence of the holonomic gate. (B) Simulated time evolution of the |0〉 on the Bloch sphere under the holonomic X gate. (C) The
schematic illustration of the quantum process. (D) Process matrices of the implemented holonomic X, Y, Z, Hadamard, and π/8 gates by quantum
process tomography measurements.
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are odd parity. Moreover, the symmetries of Bloch states with

non-zero quasi-momentum are also different from that of zero

quasi-momentum states. On the other hand, the symmetries

of the 1D optical lattice and the initial states |p = 0〉 are even.

Hence, we can easily prepare and manipulate even parity

Bloch states, such as S-, D-, and G-bands with zero quasi-

momentum. However, it is challenging to prepare states with

different parity or change the symmetry. In order to expand

the application scope of the shortcut, we propose two

methods.

The first method is to use two misplacement lattices [10,

14, 18]. In experiments, we realize this configuration through

a reflective optical path and two laser beams with frequency

difference δf, as shown in Figure 4B. When the distance L

between BECs and mirror and laser frequency f are fixed, we

can realize the misplacement of d/4 of the two sets of standing

wave optical lattices by adjusting the frequency difference δf.

Because δf ≪ f, the lattice constants of the two lattices can be

regarded as the same. As an example, we transfer atoms from |

p = 0〉 to P-band with zero quasi-momentum Ψ2,0. We apply

two sets of shortcut sequences in turn. The first one is of the

lattice with frequency f + δf, and the second is of f. When the

first sequence is switched to the second, each momentum state

component cℓ|ℓ · 2Zk〉 will be attached with a phase and

becomes ei·π2 ℓcℓ|ℓ · 2Zk〉. We design the first sequence to

make cℓ = 0 for ℓ = 2, 4, 6 . . . and keep only cℓ for ℓ = 1, 3,

4 . . .. So the result is that after the first sequence, the quantum

state changes to odd parity, cℓ = −c−ℓ for all ℓ. Finally, we use

the second sequence to adjust this odd parity state to Ψ2,0. In

the experiment, we use TOFQST to detect the final state in the

1D lattice with depth V = 5Er, shown in Figure 4C, and the

experimental fidelity is more than 90%. The parameters of

these sequences are shown in Figure 3C [18]. Similarly, we can

also use this scheme to load atoms into the F-band [14], and

the sequence is shown in Figure 3C.

The second method is to change the symmetry of the initial

state. For example, we demonstrate how to transfer atoms from

initial BEC to non-zero quasi-momentum Bloch state in S-band.

As shown in Figure 4D, the atoms with p = 0 is accelerated to

obtain a momentum p0 = −0.8Zk. Immediately afterward, the

designed shortcut sequence is used to transfer atoms into the

S-band at − 0.8Zk quasi-momentum. The bottom figure of 4D is

the momentum distribution of the final state in the

experiment [14].

Hence, our shortcut method can be applied to manipulate

arbitrary Bloch states in any Bloch band within a very short time

and with high fidelity. Moreover, This shortcut can be applied to

optical lattices with different configurations.

FIGURE 9
(A) Time sequences for the Ramsey interferometry. The atoms are first loaded into the S-band, followed by the RI sequence π/2-pulse, holding
time tOL, and the second π/2-pulse. Finally, bandmapping is used to detect the number of atoms in the different bands. The used sequences designed
by the shortcut method are shown in the figures (unit: μs). (B) The oscillation of the population of atoms in the D-band pD. The images below show
typical time of flight pictures after band mapping. (C) The experimental contrast (black points) and the theoretical calculation for V0 = 10Er. In
theory, we begin with an ideal optical lattice and gradually add the effect of lattice inhomogeneity, transverse expansion of atom cloud, intensity
fluctuation of laser amplitude, quantum fluctuation, and thermal fluctuation. (D) Coherence time τ vs the number of applied π-pulse n with different
temperatures.
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2.2.3 Atomicmomentum patterns with narrower
intervals

The previous method is mainly for the Bloch state with a

certain single quasi-momentum, and the intervals of the

momentum peaks are 2Zk (for 1D optical lattice). The

manipulation of the entire Bloch band and the preparation

of narrow momentum peak distribution will also appear in

many applications, such as the atom interferometer [29–31].

However, the manipulation of this superposition state with

different quasimomenta is seldom studied [19]. In this

section, we expand the shortcut to manipulating the

superposed Bloch states with different quasi-momenta.

Figure 5A shows the time sequence for the manipulating

process of the superposed states. The first challenge is to

prepare the superposition states |ψ(0)〉 with different quasi-

momentum that spread the whole S-band, as shown in

Figure 5B. In the experiment, we first prepare a

superposed state 1�
2

√ (Ψ1,0 + Ψ3,0) by shortcut and hold the

lattice for a time tOL. When tOL = 30 ms, the atoms are almost

all in the first Brillouin zone of S-band, which is due to

collisions during the holding time, as shown in

Figure 5C [19].

The next challenge is how to design the pulse-3 in Figure 5A

for atomic momentum patterns with narrower intervals. First, we

analyze the action of the pulse on |ψ(0)〉. The initial state can be

expressed as

|ψ 0( )〉 � 1��
N

√ ∑Zk
q�−Zk

Ψ1,q. (6)

After the pulse-3 (with interal toff3 and duration ton3 ), the

momentum distribution P (0, q) is

P 0, q( ) ≈ C1 + C2 cos W1,0t
off
3( ) + C3 cos W−1,0toff3( )

+ C4 cos ω1,2t
on
3( ) + C5 cos ω1,3t

on
3( ), (7)

where Ci is the corrresponding amplitudes from the numerical

calculations, Wℓ,ℓ′ = Z2 [(2ℓk + q)2 − (2ℓ′k + q)2]/2m and ωn,n′ =

En,q − En′,q (the band gap between n and n′ band at quasi-

momentum q) corresponds to the energy difference between

different momentum states and Bloch states, respectively. By

designing the toff3 and ton3 , we can get the momentum patterns P

(0, q) with narrower intervals. In Figure 5D, we use the sequence

toff3 � 118μs and ton3 � 19μs, and obtain ten main peaks with

0.6Zk interval for lattice depth 10Er [19].

2.3 Band swapping tecnique for loading
atoms into high bands

The band swapping technique is another method for loading

atoms into high Bloch bands, which can be used to study the

characteristics of Bloch bands and orbits. This technique is first

proposed in [9] to load atoms into the P-band of a checkerboard

FIGURE 10
(A) Momentum distributions measured at three different holding times tevo = 1, 60, 100 ms, along different directions (with V0 = 5Er). The
corresponding distribution along the x-direction is given in the second row with blue dots. The solid red line gives a full fitting line, while the green
dashed line gives the distribution of the thermal component. The third row shows the atomic distribution in the y-direction for images measured by
probe 2. (B) The time t0 for the atoms to lose coherence in lattice and pancake directions with different optical-lattice depths. The blue
diamonds are for the x-direction (lattice) by probe one and the dotted points are for the y-direction (pancake). The optical lattice is the 1D lattice.
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square lattice and is also applicable to other configurations of

optical lattices. The key to realizing this technology is

constructing a controllable composite optical lattice, including

deep and shallow wells. Compared with the shortcut method, the

band swapping technique is more suitable for the study of ground

state or metastable state.

Here, we take a hexagonal lattice as an example to show

the process of band swapping [12]. We choose triangle lattice

because it is more complex than square lattice, and it is

impossible to separate variables in two directions directly.

Three intersecting far-red-detuned laser beams form the

hexagonal lattice in the x − y plane with an enclosing angle

of 120o. Each beam is formed by combining two linearly

polarized lights with polarization directions oriented in the

x − y plane (denoted as ϵ light) and along the z axis (denoted as
ϵ′ light), respectively. The ϵ light form a honeycomb lattice as

shown in Figure 6A. The ϵ′ light form a triangular lattice as

shown in Figure 6B. The superposition of the two groups of

optical lattices is the configuration shown in Figure 6C, which

consists of two wells with different depths (denoted as A and

B). The optical potential takes the form

V r( ) � −Vϵ′ ∑
i,j

cos ki − kj( ) · r + θj − θi[ ]
+ 1
2
Vϵ ∑

i,j

cos ki − kj( ) · r[ ], (8)

where k1 � ( �
3

√
π,−π)/λ, k2 � (− �

3
√

π,−π)/λ, k3 = (0, 2π)/λ, and

Vϵ (Vϵ′) is the depth of the honeycomb (triangular) lattice. The

depth difference between the two wells A and B can be adjusted

by the ϵ-to-ϵ′ light intensity ratio (denoted as tan2α =Vϵ′/Vϵ), and

the relative phases θ1,2,3. First, we adiabatically load the BEC into

the ground band with zero quasi-momentum of the optical

lattice. The phase differences are initially set to be θ1,2,3 = (2π/

3, 4π/3, 0), for which the B wells are deeper than the A wells. In

real space, atoms mainly reside in the s orbitals of B wells as

shown in Figure 6D. Then we switch the relative phases rapidly to

θ1,2,3 = (4π/3, 2π/3, 0), makingAwells much lower than B. In this
way, the atomic sample is directly projected onto the excited

band. The key is to select appropriate parameters (ϵ′ and ϵ) to
make the distribution of the wave function (Figure 6D) of the

ground band before the switch consistent with that (Figure 6E) of

the second band after the switch (at zero quasi-momentum). In

FIGURE 11
(A) Themeasured time evolution of the atomic population in the ground and the second bands of the hexagonal optical lattice. (B) The averaged
momentum distribution for three symmetries. (C) Theoretical quantum phase transitions varying the orbital Josephson coupling. The energy ε(k) for
a plane-wave condensate at a lattice momentum k. The energy ε(k) has minima at K (M) points for J > Jc (J < Jc). The right figure is the sketch of the
renormalization of the p-orbital couplings to low energy.
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our experiment, the range of parameter selection is in the black

circle of Figure 6F, where the total lattice depth is 30Er and α =

14°. As shown in Figure 11A, after this band swapping process,

the atoms are pumped into the second band [12].

2.4 Manipulation of atoms in optical lattice
by amplitude modulation

The modulation with more than one frequency component

to optical lattices provides a flexible way to control quantum

states coherently [25]. In this section, we demonstrate bi-

frequency modulations, which can be used to couple the S-

and G-band of 1D optical lattice and realize a large-

momentum-transfer beam splitter.

For atoms in an amplitude modulated lattice system along

the x axis, as schematically shown in Figure 7A, the time-

dependent Hamiltonian can be written as

H t( ) � p2
x

2m
+ V0 cos

2 kx( ) +∑
i

Vi cos ωit + ϕi( )cos2 kx( ). (9)

The second term on the right hand represents optical lattice

potential without modulation. The last term is the amplitude

modulation with modulation amplitude Vi, the frequency ωi, and

the phase ϕi of each frequency component [25].

According to the Floquet’s theorem, a bi-frequency

modulation induced two-photon process between S- and

D-band is described by an effective Hamiltonian HSG as

HSG �

ES eiϕ1V1ΩSD eiϕ2V2ΩSD 0 0 0
e−iϕ1V1Ωp

SD ED − Zω1 0 eiϕ2V2ΩDG eiϕ1V1ΩDG 0
e−iϕ2V2Ωp

SD 0 ED − Zω2 eiϕ1V1ΩDG 0 eiϕ2V2ΩDG

0 e−iϕ2V2Ωp
DG e−iϕ1V1Ωp

DG EG − Z ω1 + ω2( ) 0 0
0 e−iϕ1V1Ωp

DG 0 0 EG − 2Zω1 0
0 0 e−iϕ2V2Ωp

DG 0 0 EG − 2Zω2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (10)

where Ωnn′ = 〈Ψn,0| cos
2 (kx)|Ψn′,0〉 with Ψn,0 the Bloch states on

n band at zero quasi-momentum. We include six nearly

degenerate states considering four main process in the

excitation, which are |ES〉, |ED − Zω1〉, |ED − Zω2〉, |EG −

Z(ω1 + ω2)〉, |EG − 2Zω1〉, and |EG − 2Zω2〉. Using this basis

a general state (v1, V2, V3, V4, v5, v6)T gives complex coefficient

of the six dressed states. Population on S-band is |v1|
2, while

population on G-band is |v4ei(ω1+ω2)t + v5e2iω1t + v62iω2t|2, given
by coherent superposition of all G band states dressed with

different Floquet photons. This effective model provides us a

better understanding of the mutiphoton process. However, in the

calculation more states associated with higher order processes

could be included to get a more accurate result.

In the experiment, we keep the frequences ω1 and ω2

satisfying ω1 + ω2 = ωSG. According to Eq. 10, there are two

cases which would benefit the excitation process (shown in

Figure 7B).

FIGURE 12
(A) The proportion of D-band over the evolution time in 1D lattice. (B) The proportion of the first D-band (D1-band) in the triangular lattice. The
proportions of several main scattering channels are shown in (C) (triangular lattice) and (D) (square lattice). The inserts show the diagram of a square
optical lattice and triangular optical lattice. (E) Schematic diagram of the first four Brillouin zones of a triangular optical lattice. Yellow, green, blue,
and red areas represent 1st, 2nd, 3rd, 4th BZ, respectively. (F) The atomic proportion in S (P1, P2 band, and others), of which the solid lines with
the same color fit lines.
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Case 1: Resonant two-photon process. When ω1 = ωSD or

ω2 = ωSD, atoms are transferred from Ψ1,0 to Ψ5,0 with the

assistance of D band as an intermediate band.

Case 2: Equal frequency two-photon process. When ω1 = ω2 =

ωSG/2, two modulations with the same frequency can be added

together, and the coupling strength of the process is doubled.

In the experiments, we sweep the frequency ω1 for different

lattice depth V = 5Er and 14Er, and measure the population on

momentum states ± 4Zk that relect the transfer rate to G-band.

For V = 5Er, in Figure 7C, two peaks appear at ω1 = ωSD and ω2 =

ωSD follows Case 1. And the central peak at frequency ω1 = ω2 =

ωSG/2 following Case 2 is much lower than Case 1. For V = 14Er,

only one peak is measured in Figure 7D, which meansCase 1 and

Case 2 are fulfilled simultaneously. Under this condition, the

coupling is greatly enhanced. This bi-frequency modulation can

also be applied to realize a large-momentum-transfer beam

splitter, such as a distribution at ± 6Zk. We choose the

frequency ω1 = ωSD = ωDG and ω2 = ωGI (with I the seventh

Bloch band). The experimental result is shown in Figure 7E [25].

This polychromatic amplitude modulation can be further

improved to achieve more complex manipulation. We can control

each period of the modulation waveform separately. Each period can

be regarded as a pulse, which is shown in Figure 8A. The modulation

amplitude Ai, phase ϕi, and frequency ωi are optimized to achieve

more accurate Bloch states manipulation, such as holonomic

quantum control [8], which will be discussed in detail next section.

In this section, we list three methods for manipulating

ultracold atoms of high orbitals in optical lattices. The

shortcut method is characterized by short time and high

fidelity, which can directly transfer ultracold atoms from the

ground state in the harmonic trap to any Bloch state, and

accurately manipulate atoms of different orbitals in optical

lattices. This method can be used to construct atomic orbital

interferometers and qubits and to study the dynamic properties

of high orbital atoms in optical lattices. The band swapping

technique considers the interaction between atoms and the

additional potential trap (such as harmonic trap) besides the

optical lattice, which is more suitable for studying the ground and

metastable states of the system. The amplitude modulation

focuses on coupling different Bloch bands and can be used to

realize quantum gates and the large-momentum-transfer beam

splitter.

3 Application of manipulating high
orbital atoms in optical lattices

3.1 Atom-orbital qubit under nonadiabatic
holonomic quantum control

In section 2.4, we mentioned that the amplitude modulation

pulses could realize the holonomic quantum control. This section

FIGURE 13
Quantum oscillations of the BECs in higher bands of the 1D optical lattice. Experimental results in momentum space with lattice depth (A) 5Er,
(B) 7.5Er, and (C) 15Er. (D) Schematic of extended Bloch bands of the 1D optical lattice.
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demonstrates an atom-orbital qubit by manipulating the s and d

orbitals of BECs in the 1D optical lattice. Moreover, we achieve

noise-resilient single-qubit gates by performing holonomic

quantum control, allowing geometrical protection. The atom-

orbital qubit and quantum control are based on the shortcut and

amplitude modulation methods [8].

As shown in Figure 1A, the band gap between S and D

band (5.23Er) is much smaller than that between D and G

band (11.50Er) for optical lattice depth V = 5Er. With leakage

to other bands neglected, the system corresponds to a two-

level system, defining our atom-orbital qubit, Ψ3,0 and Ψ1,0

being orbital states identified as the qubit basis states |0〉 and |
1〉. The 1D optical lattice potential is Vp(x) = V0 cos2 (kx),

which is formed by 1,064 nm laser beams. We use shortcut

method to initialize the qubit to an arbitrary state, |ψ〉 = cos θ|

0〉 + sin θeiφ|1〉. By TOFQST, we extract the fidelities of initial

states {|0〉, |1〉, 1�
2

√
(|0〉 + |1〉), 1�

2
√ (|0〉 − |1〉), 1�

2
√ (|0〉 + i|1〉), 1�

2
√ (|0〉 − i|1〉)}, and

the averaged fidelity is 99.72 (7)%. The relaxation time and

dephasing time are 4.5 ± 0.1 ms and 2.1 ± 0.1 ms,

respectively [8].

The modulation pulses on potential takes form

ΔV x, t( ) � A sin ωt + ϕ( )Vp x( ), (11)

where amplitude A, phase ϕ and frequency ω programmable in

our experiment. After a rotating wave approximation, we have a

qubit control Hamiltonian H(t)

H t( ) � 1
2
Δσz + 1

2
λ −cos ωt + ϕ( )σy + sin ωt + ϕ( )σx[ ], (12)

with Δ the gap between the S and D bands at zero quasi-

momentum, and the induced coupling by the lattice modulation

λ � A∫ dxVp x( )Ψ3,0 x( )Ψ1,0 x( ), (13)

We implement nonadiabatic holonomic orbital control base on

dynamical invariant of the Hamiltonian in Equation (12). To

exploit the geometrical protection, the dynamical phase has to be

canceled, which corresponds to

FIGURE 14
(A) First row: themeasuredmomentumdistributions of the BEC in the P-band of the 1D lattice at different holding times (0 ms, 2 ms, 5 ms, 7 ms,
and 30 ms), and the white rectangles are the region for us to calculate the proportion of different momentum states; the second row: schematic
illustration of the corresponding population distributions in the Bloch band. (B) Population oscillations around momenta 0Zk (blue stars), − Zk (black
diamonds), and − 2Zk (red dots) with t > 2 ms. The oscillation period is about 14.9 ms with V = 5Er. (C) Population for Zk vs. time tevo. The
experimental results and theoretical simulations with andwithout the interaction correspond to the black dots with an error bar, red solid curves, and
blue dashed curves, respectively.
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λ2 + Δ Δ − ω( ) � 0. (14)

Then, we calculate a control sequence of lattice modulation

frequency, amplitude, and phase, denoted by Θ ≡ (ωi, Ai, ϕi).

After orbital leakage elimination, the gate fidelity is improved to

above 98% in the multiorbital numerical simulation. The simulated

time evolution of the |0〉 on the Bloch sphere under the holonomic X

gate is shown in Figure 8B. Besides, we also design the holonomic X,

Y, Z, Hadamard, and π/8 gates. We further perform quantum

process tomography to characterize the holonomic quantum

gates, which is shown in Figure 8D. The measured quantum

process fidelities are 98.47(9)%, 98.35(11)%, 97.81(13)%,

98.53(8)%, 98.63(15)%, and 98.63 (15)%, for the X, Y, Z,

Hadamard, and π/8 gates, respectively [8]. There are four main

factors limiting fidelities: a) orbital leakage: although we have greatly

eliminated the band leakage, there are still a small number of atoms

in high bands that affect the current fidelities. b) De-phasing

mechanism: the quasi-momentum broadening of BEC and the

non-uniformity of light intensity of optical lattice will lead to the

de-phasing effect, which causes the decrease of fidelity. c) Atom

interaction: As discussed in section 5.1, atoms in the D band will be

scattered to the ground band due to collision, which will affect the

fidelities. d) Error caused bymeasurement: It is mainly caused by the

vibration of the imaging system during the absorption imaging

process. For a) and b), we can overcome them through super lattice

or more complex lattice. We can construct a more perfect two-level

so that the G-band is far away from the D-band. Further, by

constructing flat bands, the dephasing effect brought by

momentum broadening and non-uniformity of the light can be

suppressed, so as to greatly improve the fidelity. If we want to further

improve the fidelity, we need to consider the factors of c) and d).We

can use Feshbach resonance technology to reduce the atomic

interaction, and reduce the imaging error through the

improvement of the mechanical structure of the imaging system.

3.2 Ramsey interferometry with trapped
motional quantum states of the optical
lattice

Ramsey interferometry (RI) using internal electronic or nuclear

states find wide applications in science and engineering [32]. In this

section, we review a new RI with the S- and D-bands in an optical

lattice [13], similar to Figure 1B (in this section, the laser wavelength

of the optical lattice is 852 nm, and the lattice depth is 10Er). A key

challenge for constructing this RI is to realize π-pulse and π/2-pulse

analogous to those in conventional RIs. In section 3.1, we have

achieved the arbitrary holonomic quantum control, which ensures

the noise-resilient but increases the control time. However, we want

to study the quantum many-body lattice dynamics by this RI, which

requires the time duration of the π-pulse and π/2-pulse to be as short

as possible. Hence, we use the shortcut method to design these pulse

sequences.

The full time sequence for RI with two shortcut π/2-pulses

R̂(π/2) we use in experiments is shown in Figure 9A. First the

atoms in the harmonic trap are transferred into the S-band by

shortcut, then the first pulse R̂(π/2) is applied to prepare an

initial superposition state 1�
2

√ (Ψ1,0 + Ψ3,0). After evolution in the

optical lattice for time tOL and a second π/2-pulse, the final state

can be expressed as Ψf = aSΨ1,0 + aDΨ3,0. Then we apply band

mapping to read out the final state, and obtain the population of

atoms in S (D) band, denoted as NS (ND). We define the signal of

this RI as pD (tOL) = ND/(NS + ND). For the ideal single-atom

system, where the imperfection and decoherence can be

neglected, the signal pD (tOL) = [1 + cos (ωtOL + ϕ)]/2, with ω

corresponding to the energy difference between Ψ1,0 and Ψ3,0.

However, when tOL gets longer, the oscillation amplitude decays,

as shown in Figure 9B. The contrast C (tOL) can be obtained by

fitting the amplitude of oscillation pD (tOL) with

pD tOL( ) � 1 + C tOL( )cos ωtOL + ϕ( )[ ]/2. (15)

In order to improve the performance of the RI, we now

investigate the mechanisms that lead to RI signal attenuation.

The decay of the contrast, shown by the black points in Figure 9C,

mainly comes from de-phasing and de-coherence mechanisms.

These mechanisms are caused by the imperfect design of the π/2

pulse, non-uniform potential distribution of the Gaussian beam

in the radial direction, atom-atom interaction leading to

transverse expansion, intensity fluctuation of the lattice, and

thermal fluctuations of the system. The theoretical calculation

with different mechanisms is shown in Figure 9C, which is

consistent with the experimental results. The expansion leads

to a significant reduction in contrast (blue dashed line in

Figure 9C). In our experiment, the influence of the quantum

fluctuation is not significant.

To further improve the contrast of the RI, we develop a matter-

wave band echo technique. A π-pulse is designed, which swaps the

atom population in the S- and D-band. The π-pulse is inserted into

the center of the evolution process. After implementing one π-pulse,

the intensity fluctuation can be well suppressed. After applying six

echo pulses, the effects of non-uniform lattice potential and

transverse expansion are eliminated. The coherence times τ

(defined as the time when the contrast C (tOL) drops to 1/e) with

different echo pulses are shown in Figure 9D. The coherent time is

increased from 1.3 to 14.5 ms by the echo pulses [13].

4 Exotic quantum states of p-orbital
ultracold atoms in optical lattices

4.1 Observation of a dynamical sliding
phase superfluid with P-Band bosons

The Sliding phase [33], which is introduced to characterize

intricate phase transitions in a wide range of the many-body
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system, appears under extreme conditions for thermal equilibrium

systems or quantum ground states, causing a grievous challenge in

experimental implementation [34–40]. Here, we review the

observation of a sliding phase superfluid in a dynamical system of

ultracold atoms in the P-band [10]. We load the atoms into P-band

with zero quasi-momentum by the shortcut as shown in Figure 4.

The quantum system is driven to a far-out-of-equilibrium but a

phase-coherent state. We hold the condensate in the P-band for a

certain time tevo. Then the TOF images are taken in two probe

directions with probe light along the z-axis (denoted as probe-1) and

along the x-axis (denoted as probe-2). The distribution in different

probe directions is analyzed via a bimodal fitting, as shown in

Figure 10A. We extract the coherent fraction from the bimodal

fitting so that the phase coherence of the dynamical many-body state

can be inferred [10].

From the time evolution, we identify three distinct dynamical

regions. At an early time, the system has superfluid phase in all

directions, as shown in Figure 10A at tevo = 1 ms. In the second

state, the phase coherence of the quantum gas survives partially.

The bimodal fitting in Figure 10A at tevo = 60 ms shows that there

is a finite condensed component in the pancake directions, but no

such component in the lattice direction, which is called the

sliding phase. At the last state, the quantum gas has

rethermalized with a complete loss of phase coherence. The

bimodal fitting shows that all atoms are thermal in the

complete absence of any condensed component. We define

the lifetime t0 for the atoms to lose coherence in lattice and

pancake directions, which is shown in Figure 10B for different

lattice depth. We find that with the total atom number fixed in

the experiment, a critical lattice depth appears beyond which the

sliding phase superfluid starts to emerge. Moreover, we also

verify that P-band is necessary to realize the dynamical sliding

phase in our experiment, and the sliding phase is absent for cold

atoms in the S-band at equilibrium [10].

4.2 Observation of a potts-nematic
superfluidity in a hexagonal sp2 optical
lattice

In this section, we review the observation of a Potts-nematic

quantum state in a system of cold atoms loaded into the second

band of a hexagonal optical lattice [12]. We use the band

swapping method to load the atoms into the second band, as

shown in section 2.3. After the atoms are transferred into the

band maximum of the second band, the phase coherence in the

state will immediately disappear. After a few milliseconds, the

phase coherence reemerges, and the quantum state

spontaneously chooses one orientation, giving rise to a three-

state Potts nematicity. We divide the experimental TOF images

into three classes and take the average within each class [12]. The

post-classification averaged results are shown in Figure 11B.

To gain insight into the mechanism supporting the Potts-

nematic order in the sp2-orbital hybridized band, we provide a

mean-field theory analysis assuming a plane-wave condensate.

The interaction can be expressed as

Hint � 1
2
∑
r∈B

Usŝ
†
r ŝ

†
r ŝr ŝr + ∑

r∈A
J p̂†

x,rp̂
†
x,rp̂y,rp̂y,r +H.c.[ ]{ } + 1

2
∑
r∈A

× ∑
α,β∈ x,y{ }

Up,αβp̂
†
α,rp̂

†
β,rp̂β,rp̂α,r

(16)
where ŝ and p̂ represent quantum mechanical annihilation

operators for s and p orbitals, and the p-orbital couplings are

constrained by Up,xx � Up,yy ≡ Up‖, Up,xy � Up,yx ≡ Up⊥,

J � Up‖−Up⊥
/2. Taking a trial condensate wave function with

〈sr〉 = ϕse
ik·r, 〈px,y,r〉 = ϕx,ye

ik·r, with ϕs, ϕx,y the variational

parameters. For each lattice momentum k, we minimize the

energy by varying ϕs,x,y, and the resultant energy is denoted as

ε(k) and shown in Figure 11C. With the orbital Josephson

coupling J > 0, both the kinetic and interaction energies favor

a condensate at K points which breaks the time-reversal

symmetry but respects the rotation symmetry. With the

Josephson coupling J < 0, minimizing the kinetic and

interaction energies meets frustration, as interaction favors

p-orbital polarization. Figure 11C shows the possible value

range of J considering renormalization effects [12].

5 Dynamical evolution for atoms in
high bands of optical lattices

5.1 The scattering channels induced by
two-body collision of D-band atoms in
optical lattices

Themechanism of atomic collisions in excited bands plays an

essential role in the atomic dynamics in high bands of optical

lattices and the simulation of condensed matter physics [21].

Atoms distributed in an excited band of an optical lattice can

collide and decay to other bands through different scattering

channels [17, 21]. The decay rate and scattering channels of

optical lattices with different configurations are different. Here,

we first compare the lifetime of atoms in the D-band for one-

dimensional lattice and triangular lattice. In experiments, we

utilize the shortcut method to load BECs to the D (D1) band of

the 1D optical lattice (triangular optical lattice). Then the BECs in

the optical lattice evolve for a certain time tevo. Finally, we apply

bandmapping to measure the proportion pD (tOL) of atoms in the

D-band, which is shown in Figure 12A for 1D lattice and 12B for

triangular lattice. We define the lifetime τ of atoms in the D-band

as the proportion pD reduces to 1/e. The lifetime for the triangular

lattice is 5.0 ms, which is much longer than that of the 1D lattice,

2.1 ms. The difference in collisional scattering cross-section leads
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to the difference of a lifetime. Next, we will carefully analyze the

scattering cross-section and the scattering channels [21].

We take triangular and square lattices as examples to study

the difference in the scattering process. We use the scattering

theory to calculate the cross-section of each scattering channel in

those two types of lattices. Two-body collisional scattering cross

section for two atoms initially at the Γ point ((qx, qy)=(0,0)) of

D1 band jumping to band n1 and n2 can be written as:

σ n1, n2( ) � 4πmZ

va
∫dq ×| − 2πi

4πas
m

ζn1 ,n2 0, 0; q,−q( )|2, (17)

where va is the atomic velocity and as is atomic s-wave scattering

length. And the overlapping integral of eigenstates

ζn1 ,n2(0, 0; �q,− �q) is given by:

ζn1 ,n2 0, 0; q,−q( ) � ∫ dr × Ψp
n1 ,q

r( )Ψp
n2 ,−q r( )Ψd,0 r( )Ψd,0 r( )

(18)
where Ψn,q(r) is Bloch function of the eigenstate at quasi-

momentum q in the n band. In the calculation, we assume the

periodic boundary conditions, and consider that

|ζn1 ,n2(0, 0; q,−q)|2 � ∫ dr ×|Ψn1 ,q* (r)Ψn2 ,−q* (r)Ψd,0(r)Ψd,0(r)|2.
After neglecting the scattering channels of higher bands, we

calculate the scattering channels, as shown in Figure 12CD. In

the square lattice, the cross-section of the strongest channel

SS, P1P1 and P2P2 are all around 10% of the total cross-section

respectively. Besides, there are many smaller channels

included in ‘Others.’ There is no significant difference in

scattering cross-section values among the first six channels,

which means no dominant scattering channel in a square

lattice. By contrast, in the triangular lattice, the proportion of

scattering cross-section of the SS channel is 38.5%, while that

of the second strong channel D1S is only 9.8%. Besides, the

proportion of other channels is much lower than that of

channel SS. Consequently, the channel SS is dominant in

the two-body scattering process of the triangular optical

lattice. The experimental results are consistent with the

theoretical results, as shown in Figure 12F. For example, at

time tevo = 12 ms, the experimental proportion of the S-band is

55.8%, which is roughly equal to the theoretical prediction of

57.3% [21].

5.2 Quantum dynamical oscillations of
ultracold atoms in the F and D bands

Here we review the observation of quantum dynamical

oscillations of ultracold atoms in the F and D bands of the

1D optical lattice [20]. We can control the Bragg reflections at the

Brillouin-zone edge up to the third order and observe three

different types of quantum oscillations [20].

The BECs is initially loaded in the G band, where the

atoms mostly populate at momenta 4Zk, as shown in

Figure 3B(2). Then the atoms fall into the F-band due to

the small gap between G- and F-bands. The following trace of

the atoms is shown in the extended band structures as shown

in Figure 13D. Once the BECs are in the F-band, it loses

momentum while gaining potential energy from the harmonic

confinement (A1 → A2). Once arriving A2, the atoms face

different dynamics depending on the lattice depth. When the

depth is small (~ 5Er), and the Bragg reflections at A2 are

weak, the BECs will continue into the D-band by a Landau-

Zener transition and reach A3. Then the atoms will be Bragg

reflected to A4 and reverse its dynamics (A4 → A5 → A6). This

oscillation is shown in Figure 13A. When the lattice is strong

(~ 15Er), and the gap at A2 is large, the Bragg reflection can

dominate the dynamics, forbidding the atoms from tunneling

from the F band to the D band. Instead, the atoms at A2 will

transfer to A5 and oscillate only within the F-band, which is

shown in Figure 13C. For intermediate depth (~ 7.5Er), these
two oscillation modes exist simultaneously, as shown in

Figure 13B [20].

5.3 Nonlinear dynamical evolution for
P-band ultracold atoms in 1D optical
lattice

The dynamical evolution for atoms in P-band is different

from that of F- and D-bands [18]. After loading the BECs into the

P-band with zero quasi-momentum for the lattice depth 5Er, we

hold the BECs for time tevo and then measure the momentum

distribution. The momentum distributions at different holding

time tevo are shown in Figure 14A. We use the normalized

populations Wℓ(tevo) of momentum states |ℓ · 2Zk + q〉 to

better quantify the dynamical evolution of atoms. At the

beginning of the evolution process tevo < 1.5 ms, we find

Wℓ(tevo) oscillating rapidly, as shown in Figure 4C and

Figure 14A(1) [2]. Then, after a short transition time, a

different type of oscillation begins to emerge around tevo =

2 ms. The period of this oscillation is 14.9 ms, which is shown

in Figures 14A,B [3-5].

The short-period oscillations shown in Figure 4C are

beating signals due to the coherent superposition of

different bands. From the numerical analysis, the

superposed state is close to

|ψ(tevo � 0) � ���
0.9

√
Ψ2,0 +

����
0.05

√
Ψ1,0 +

����
0.05

√
Ψ3,0. The rapid

oscillations disappear at about 1.5 ms. Then a long-period

oscillation begins to emerge at around 2 ms. There are five

cycles of the long-period oscillation in Figure 14C. The long-

period oscillation reflects the random phase between

neighboring lattice sites, which can be well captured by the

simulation with the Gross-Pitaevskii equation (shown by the

red line in Figure 14C). This experiment paves the way to study

the long-time dynamical evolution of the high orbital physics

for other novel quantum states, such as the sliding phase [18].
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6 Discussion and conclusion

In this review, we concentrate on the methods to prepare and

control the BEC in optical lattices linked to one-body physics.

The many-body interactions also play an important role in the

system of ultracold atoms in the optical lattices. For the control

methods mentioned in this review, such as the shortcut method,

amplitude modulation, and nonadiabatic holonomic control, the

operation time (< 1 ms) is much shorter than the time when the

interaction has a significant effect. Therefore, the control

schemes designed ignoring the influence of many-body

interaction is still very successful. The effects of the

interaction mainly occur in the long-term evolution process in

the optical lattice after we manipulate or prepare the Bloch states,

such as the de-coherence in the Ramsey interferometry with

motional states, the two-body collision of D-band atoms, and the

emergency of the exotic quantum states of p-orbitals. On the

other hand, we can also utilize the interactions to expand the

methods of atomic manipulation in optical lattices. For example,

a two-qubit gate can be achieved by adapting the interaction

scheme based on the method shown in section 3.1. Considering

two nearby sites, denoted as a and b, the orbital states are |sasb〉, |
dadb〉, |dasb〉, |sadb〉. The relevant interactions between

neighboring sites contain this term U0(s†ad†bdbsa + d†as
†
bsbda).

A
�����
swap

√
gate control can be reached by letting atoms

interact for a time duration πZ/(4U0). In a word, we can use

these control methods to observe the special dynamic mechanism

and novel quantum states produced by the interaction of

different orbitals of optical lattices, and we can also use the

interactions to achieve more manipulation.

In summary, we review our practical methods for

manipulating the high orbitals of ultracold atoms in optical

lattices. The shortcut method is characterized by short time

and high fidelity, which can directly transfer ultracold atoms

from the ground state in the harmonic trap to any Bloch state,

and accurately manipulate atoms of different orbitals in optical

lattices. This method can be used to construct atomic orbital

interferometers and qubits and to study the dynamic properties

of high orbital atoms in optical lattices. The band swapping

technique considers the interaction between atoms and the

additional potential trap (such as harmonic trap) besides the

optical lattice, which is more suitable for studying the ground and

metastable states of the system. The amplitude modulation

focuses on coupling different Bloch bands and can be used to

realize quantum gates and the large-momentum-transfer beam

splitter. Based on these methods, the atom-orbital qubit under

nonadiabatic holonomic quantum control and Ramsey

interferometry with trapped motional quantum states of the

optical lattice can be constructed. Many exotic quantum states

of the high orbital atoms have been observed. Then we study the

quantum dynamical evolution of atoms in high bands. The

effective manipulation of the high orbitals provides strong

support for applying the ultracold atoms in the optical lattice

in quantum simulation, quantum computing, and quantum

precision measurement.
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