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In the Large Hadron Collider, the beam losses are continuously measured for

machine protection. By design, most of the particle losses occur in the

collimation system, where the particles with high oscilla-tion amplitudes or

large momentum error are scraped from the beams. The particle loss level is

typically optimizedmanually by changing control parameters, amongwhich are

currents in the focusing and defocusing magnets. It is generally challenging to

model and predict losses based only on the control parameters, due to the

presence of various (non-linear) effects in the system, such as electron clouds,

resonance effects, etc., and multiple sources of uncertainty. At the same time

understanding the influence of control parameters on the losses is extremely

important in order to improve the operation and performance, and future

design of accelerators. Prior work [1] showed that modeling the losses as an

instantaneous function of the control parameters does not generalize well to

data from a different year, which is an indication that the leveraged statistical

associations are not capturing the actual mechanismswhich should be invariant

from 1 year to the next. Given that this is most likely due to lagged effects, we

propose to model the losses as a function of not only instantaneous but also

previously observed control parameters as well as previous loss values. Using a

standard reparameterization, we reformulate the model as a Kalman Filter (KF)

which allows for a flexible and efficient estimation procedure. We consider two

main variants: one with a scalar loss output, and a second one with a 4D output

with loss, horizontal and vertical emittances, and aggregated heatload as

components. The two models once learned can be run for a number of

steps in the future, and the second model can forecast the evolution of

quantities that are relevant to predicting the loss itself. Our results show that

the proposed models trained on the beam loss data from 2017 are able to

predict the losses on a time horizon of several minutes for the data of 2018 as

well and successfully identify both local and global trends in the losses.
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1 Introduction

Excessively high beam losses in the Large Hadron Collider

(LHC) [2, 3] can cause a quench in the superconducting magnets

which will trigger a beam dump and a long recovery period to

restore the nominal temperature. As a result, valuable time and

hence integrated luminosity is lost for the physics experiments

while the LHC needs to be refilled with a new beam. On the other

hand, better control of losses guarantees more efficient

operations, higher luminosity, and thus greater discovery

potential. During the LHC run, the machine operators may

change several parameters of the system, such as currents in

the quadrupole, sextupole, and octupole magnets, in order to

maximize the beam intensity and thus minimize the particle loss.

Machine learning and statistical methods have been extensively

used to analyze the data from accelerators and to improve

operations [4–9]. It is possible to construct predictive models

of the losses from the control parameters using standard ML

techniques [1] based on LHC beam loss data within the same

year, but the generalization of such approaches to the data of the

next year was found to be challenging. A better understanding of

the instantaneous and longer-term effects of control parameters

on beam losses can help decrease the losses and improve the

operations and performance output of the LHC. Furthermore, it

can possibly lead to mitigation techniques for the particle losses

for other existing machines as well as provide valuable input

already during the design phase of potential future colliders, such

as the Future Circular Collider (FCC) [10, 11]. At present, there is

no accurate physics model for particle beam losses as a function

of machine settings and control parameters. A statistical or

machine learning model that would cover the possible

scenarios of control parameters evolution could eventually be

employed to find the optimal control policy. Using an optimized

plan for the control parameters could significantly improve the

performance of the accelerators. In what follows we make a step

in this direction: the goal of this work is to improve the

understanding of the effect of input parameters on losses and

to propose an interpretable model which would be general and

robust enough to generalize to beam loss data acquired in

different years.

We assume that the two LHC beams evolve similarly under

the change of control parameters disregarding possible beam

coupling effects, and we concentrate on modeling the beam

1 losses. The majority of the losses occur in the collimation

systems located in the beam cleaning areas at the Insertion

Region (IR) 3 and IR7 of the accelerator, where the losses are

recorded by beam loss monitors (BLM) [12]. The collimators at

IR7 remove particles with large transverse oscillation amplitudes,

whereas those at IR3 are responsible for removing the particles

with a momentum error beyond a chosen threshold. Among the

two collimator systems, the most active cleaning happens in IR7,

therefore we concentrate on modeling of losses of beam

1 recorded by the BLM at IR7 and further refer to it as “the loss.”

Several additional important characteristics can be measured

during the machine run, which cannot be directly controlled, but

that contain information about hidden non-linear processes

affecting the beam. Among such quantities are heatloads, that

are a proxy to electron cloud effects [13], as well as horizontal and

vertical emittances. The emittances describe the spread of the

particles in phase space and are related to the mean physical

dimension of the beam in the machine [14]. The emittance

measurements are carried out in time along the beam and

specific post-processing is used to estimate the average

emittance of the whole beam. During the operation of the

LHC, electron cloud can appear due to the acceleration of

electrons in the beam pipe by the proton bunches, causing an

avalanche process which leads to the heating of the beam pipe

and magnets, to increased emittance and potentially to beam

instabilities [15].

Tune variables are related to the frequency of betatronic

oscillations in the machine. Tunes are corrected through a

dedicated feedback system and mainly depend on the strength

of the quadrupole magnets, although they can be also affected by

the quadrupole component in the main dipoles, by the sextupole

component from the main dipoles and sextupole corrector

magnets [16].

As most of the non-linear effects in the beam physics are

indirectly related to the change of input parameters it appears

natural to rely on the information contained in the past

observations. We therefore consider Vector AutoRegressive

Moving Average models with eXogenous input variables

(VARMAX) and compare them with models that relate the

input variables directly to the losses. We train a common

model on the data from multiple time series from one given

year corresponding each to a different LHC fills with diverse

filling schemes1.

Available data: To construct and evaluate the predictive

model of losses the observations of the losses along with other

quantities measured during the LHC fills of the years 2017 and

2018 are available [17]. Observations are recorded with a

frequency of 1 Hz. The fills start with the injection of the

beam according to a selected filling scheme. We have selected

the filling schemes which are occurring most frequently among

all the encountered schemes in the data as we expected that the

properties of the injected beam could vary depending on the type

of injection. Altogether, for the selected schemes, the data of

105 fills are available in 2017, and 144 fills are recorded for 2018.

We focus on the data for beam 1 during the “PRERAMP” beam

mode of the machine fill. The “PRERAMP” beam mode occurs

after the full beam has been injected and before starting the

1 “Fill” refers to the time period starting from injection of new beam into
the LHC until the beam gets dumped. The filling scheme, on the other
hand, defines which of the radio-frequency buckets are filled with
particles and which ones are left empty.

Frontiers in Physics frontiersin.org02

Krymova et al. 10.3389/fphy.2022.960963

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.960963


energy ramp process. During “PRERAMP,” measures are taken to

prepare for the energy ramp, such as retracting the injection

collimators, adjusting the feedback reference and loading other

machine settings. During the “PRERAMP” mode machine is in

stable conditions, and thus it should be supposedly the easiest beam

mode to model losses. Nevertheless, on practice, it occurred to be

challenging [1]. For each fill during the years 2017 and 2018 the time

series of “PRERAMP” mode vary in length (see Figure 1).

Throughout the paper, we assume that a logarithmic

transformation is applied to the losses normalized by

intensity. Further, we omit “log” and “normalized by

intensity” while mentioning losses. The logarithmic transform

is generally applied to reduce the skewness of the distribution (see

the loss in original scale in Figure 2A and the log-transformed

loss in Figure 2B). For the losses, the log-transformation is

partially motivated by the fact that losses normalized by

intensity are produced from the particle count data. For the

convenience of further analysis, we assume that the log losses are

Gaussian. Alternatively, one could follow the Generalized Linear

Model approach, assuming the Poisson distribution of the count

data, e.g. as in [18].

Several quantities are recorded during the experiment,

among which we will use the following variables as the input/

controlled parameters for the loss models.

FIGURE 1
Histogram of PRERAMP time series lengths for the years 2017 and 2018.

FIGURE 2
(A) original losses (normalized by intensity), (B) log-losses (normalized by intensity), for the years 2017 and 2018. The log-transform helps to
reduce the skewness. Note that several modes on the pictures are due to changes of the losses level because of changes in control parameters, see
e.g. Figure 3.
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• Qx and Qy — vertical and horizontal tunes,

• C — current in octupole magnets.

Non-controlled observed variables are

• L— logarithm of loss divided by intensity at BLM 6L7 for

the beam 1,

• Ex, Ey — horizontal and vertical emittance,

• ec—sum of the heatload measurements over the 8 sectors of

the LHC,

• τ—time since the beam injection.

Remark: Note that the tunes are actually controlled by

quadrupole magnet currents, the field decays due to persistent

currents and a feedback system that keeps the tune values

measured with a Base-Band Tune (BBQ) measurement system

at a constant value [19]. Although the control that we have over

the tunes is an indirect one, we nonetheless treat the tunes

(measured online in our dataset) as one of the control

variables of the system. For the octupoles, we use the currents

FIGURE 3
An example of PRERAMP mode time series for the fill 6,243 in 2017. The time series of vertical and horizontal tunes and octupole currents are
shown in blue, observations of the loss, vertical and horizontal emittance and the sum of heatload measurements are shown in green.

FIGURE 4
Histograms of the observations in 2017 and 2018. (A) Logarithm of loss normalized by intensity, (B) horizontal emittance, (C) vertical emittance,
(D) heatload induced by electron cloud. Almost all the variables demonstrate different ranges of values for both years, e.g. see the sum of the
heatloads.
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because there is no measurement of the tune spread associated

with these elements. Also, time since the beam injection, though

not controlled, is used as an input parameter.

For an example of evolution of the loss and other variables

during the “PRERAMP”mode within one fill in the year 2017, see

Figure 3. Typically, one significant modification of current and

tunes occurs during “PRERAMP.”

The data for the years 2017 and 2018 differ in the ranges of

input parameters used and in the level of losses: in Figure 4, non-

controlled variables have different distributions, e.g. losses

(Figure 4A) in 2017 were overall higher than in 2018; input

variables, shown in Figure 5, had different ranges, e.g. see

octupole current in Figure 5A, as well as increments of input

variables in Figure 6, e.g. octupole current was only decreasing in

2018, both increasing and decreasing in 2017. Some of the control

parameters, such as octupole current, change quite rarely, e.g. in

the data of 2017, it changes from one level to another in

“PRERAMP” time series only in half of the fills. This already

FIGURE 5
Histograms of the observations in 2017 and 2018. (A) Octupole current, (B) horizontal tune, (C) vertical tune. Almost all the variables
demonstrate different ranges of values for both years, e.g. see the octupole current C.

FIGURE 6
Histogram of increments of (A) octupole current, (B)horizontal tune and (C) vertical tune in 2017 and 2018. The fill 7,236 is a big outlier to the left
in the histogram of octupole current in 2018.
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suggests that applying the model trained on the data from 2017 to

the data of 2018 require to extrapolate which is known to be quite

challenging. We therefore privilege the use of simple (and thus

robust) modeling techniques.

Starting from the injection of the beam, multiple effects occur

in the system, which cannot be fully described analytically, and

have been so far observed in separate experiments, e.g. changes in

the distribution of particle tunes in time due either to drift or to

changes of the control parameters and for example associated

with crossing resonance lines. Given the limited information

about such events and about long-term dependence between

control variables and losses, we consider a simple, but robust

linear approach to model the dependence of losses on its prior

history and on controlled and possibly uncontrolled variables.

An example of such model in the 1D case which models losses as

a function of tunes and octupole current would be of the form

Lt � α1Lt−1 + α2Lt−2 + . . .
+ β1Qx,t−1 + β2Qx,t−2 + . . .
+ γ1Qy,t−1 + γ2Qy,t−2 + . . .
+ ζ1Ct−1 + ζ2Ct−2 + . . .
+ noise.

(1)

with a general form of correlated noise process this is an instance

of an autoregressive model with moving average and exogeneous

variables, a so-called ARMAX model [20].

In a model of the form above, given that losses are closely

related to emittances and will be affected by electron cloud, and

in spite of the fact that these variables cannot be controlled, we

chose to include them among the exogenous variables.

Finally, we will consider a multivariate time series model for

the losses together with the emittances and electron cloud induced

heatloads to try and predict their evolution jointly from controlled

variables. This is motivated by the fact that we wish to obtain a

model that captures the effect of the control variables so that if we

rely on the values of emittances and electron cloud at some time t−l

it should itself be predicted from the control variables at prior time

points. This kind of multivariate extension is known as a vector

ARMAX–or VARMAX–model.

To estimate the parameters of this type of model, we will

exploit the relationship between VARMAX models and the

Kalman Filter (KF).

The paper is organized as follows. In Section 2, after

introducing more precisely the form of the different models

we discuss VARMAX models and their relation to so-called state

space models and in particular to the Kalman filter. Different

parameterizations will lead us to consider a general KF with time-

varying parameters, including a KF model with parameters

depending on the input variables. We will consider different

ways of regularizing the coefficients, and discuss a general

Expectation-Maximization (EM) procedure for the estimation

of parameters. Section 3 is devoted to the results of numerical

experiments and to comparisons of the models.

2 Models

In this paper we consider several variants of the model

described in Eq. 1.

KF1: First, we verify whether it is possible to construct a

predictive model of the current losses as a function of the recent

histories of the losses and of the control variables, as in KF1.

More precisely, we consider a 1D linear model of losses.

Lt � α1Lt−1 + α2Lt−2 + . . . + αpLt−p
+ β0Qx,t + β1δQx,t + β2δQx,t−1 +/ + βLδQx,t−L+1
+ γ0Qy,t + γ1δQy,t + . . .+ γLδQy,t−L+1 (KF1)
+ ζ0Ct + ζ1δCt +/ + ζLδCt−L+1 + noise,

where δ stands for taking the first order differences, i.e.

δQx,t � Qx,t −Qx,t−1, and p and L are the depths of the

histories of observations of the outputs and inputs

correspondingly, which we include in the model.

KF1*: Since we are given additional observations of emittances

and electron cloud (heatload sum), we could include them into the

input variables to see whether their presence help to model the

losses better, thus we will also consider a model.

FIGURE 7
Fill 7,236 from 2018, “PRERAMP” mode, unexpected behavior: no change in losses (A) after large decrease in octupole current (B).
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Lt � α1Lt−1 + α2Lt−2 + . . . + αpLt−p
+ β0Qx,t + β1δQx,t + β2δQx,t−1 +/ + βLδQx,t−L+1
+ γ0Qy,t + γ1δQy,t + . . . + γLδQy,t−L+1

+ ζ0Ct + ζ1δCt +/ + ζLδCt−L+1 (KF1*)
+ η0Ex,t + η1δEx,t + η2δEx,t−1 +/ + ηLδEx,t−L+1

+ θ0Ey,t + θ1δEy,t + . . . + θLδEy,t−L+1

+ κ0ec,t + κ1δec,t +/ + κLδec,t−L+1 + noise .

KF4: Next, we could add the additional variables into the

output together with the losses.

Lt

Ex,t

Ey,t

ec,t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � A◦

1

Lt−1
Ex,t−1
Ey,t−1
ec,t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +/ + A◦

p

Lt−p
Ex,t−p
Ey,t−p
ec,t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (KF4)

+ B◦
0

Qx,t

Qy,t

Cy,t

τt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + B◦
1

δQx,t

δQy,t

δCy,t

⎛⎜⎜⎝ ⎞⎟⎟⎠

+ . . . + B◦
L

δQx,t−L+1
δQy,t−L+1
δCy,t−L+1

⎛⎜⎜⎝ ⎞⎟⎟⎠ + noise.

KF4-quad: is an extension of KF4, where the matricesA◦
i and

B◦
i depend on control parameters. In order to fit the model

parameters under additional structural assumptions we first

consider equivalent formulation of the class of models, which

makes it possible to efficiently estimate the parameters. The

model is discussed in more detail in Section 2.2.2.

2.1 VARMAX and state space modeling

Formally, the models introduced above are all particular

instances of a Vector AutoRegressive Moving Average model

with eXogenous variables (VARMAX). VARMAXmodels can be

written as follows:

yt � ∑p
i�1

A◦
i yt−i + B◦

0ut +∑L
i�0

B◦
i+1δut−i⎡⎣ ⎤⎦

+∑m
i�0

C◦
i ξt−i, t � 1, . . . , T. (2)

the first Vector AutoRegression part represents the belief that the

past observations could be predictive of future losses. The second

sum, “X”-part in VARMAX, assumes linear dependence on

control variables ut and their retrospective changes. The last

term is a stationary Moving Average process which is a sum of

independent random (standard Gaussian) variables (shocks) ξt in

the past.

A response vector (variable) yt ∈ Rn in VARMAX

corresponds to:

• a scalar Lt in the case (KF1) and (KF1*) and n = 1,

• a vector [Lt, Ex,t, Ey,t, ec,t]⊤ with the loss, horizontal and

vertical emittances and electron cloud (n = 4) for the case of

(KF4) and KF4-quad.

We will further assume that yt is a vector with a 1D case as a

sub-case. The control variable ut contains different sets of

variables depending on the considered model:

• ut ∈ Rq � [Qx,t,Qy,t, Cy,t, τt]⊤ a vector with horizontal

and vertical tunes, currents in octupole magnets, and

time passed since the end of injection observed at time t.

• Vectors δut−l contain l-lagged differences of ut−l, i.e. δut−l �
[δQx,t−l, δQy,t−l, δCy,t−l]⊤.

For estimation we further denote stacked matrices in

exogenous term as B◦ � [B◦
0 , B

◦
1 , . . . , B

◦
L] and stacked vector of

all exogenous components as ]L,t � [u⊤t , δu⊤t , . . . u⊤t−L]⊤. In these

notations (2) reads as

yt � ∑p
i�1

A◦
i yt−i +∑p

i�1
B◦
i ]L,t−i +∑m

i�0
C◦

i ξt−i, t � 1, . . . , T. (3)

motivated by VARMAX, we will further consider more general

state space models, where the dimension of hidden state could be

different from dimension of observations.

2.2 State space models

State space models represent the state of a dynamical system

by a latent variable, which varies in time and is different from the

input and output variables. The most well known model in this

family is the Kalman Filter model. State space models are relevant

to model time series with rich structure, and there is in particular

a well known connection between (V)ARMAX models and

Kalman filters that we will exploit in this work.

Consider the 1D autoregressive moving average ARMA (3,2)

model (with lag parameters p = 3, m = 2):

yt � a◦1yt−1 + a◦2yt−2 + a◦3yt−3
+ c◦0 ξt + c◦1 ξt−1 + c◦2 ξt−2, t � 1, . . . , T, (4)

where ξt are independent standard Gaussian random variables.

The ARMA model can be viewed as a special case of the state

space model [21] with hidden vector xt � (x1,t x2,t x3,t)⊤:

yt � 1 0 0( ) x1,t

x2,t

x3,t

⎛⎜⎝ ⎞⎟⎠,

x1,t

x2,t

x3,t

⎛⎜⎝ ⎞⎟⎠ �
a1 1 0
a2 0 1
a3 0 0

⎛⎜⎝ ⎞⎟⎠ x1,t−1
x2,t−1
x3,t−1

⎛⎜⎝ ⎞⎟⎠ +
c0
c1
c2

⎛⎜⎝ ⎞⎟⎠ξt.

(5)

the first measurement equation describes the relation between

observations and hidden state xt of the system, and the second

transition equation describes hidden evolution of the state xt. The
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equivalence between (4) and (5) with ai � a◦i and ci � c◦i can be

easily seen, if one substitutes x2,t−1 and then x3,t−2 in the first

equation of transition equations using the rest of equations.

Thus, in such a representation the hidden state components

equal lagged output. The state space representation (5) is not

unique, e.g. consider

yt � 1 0 0( ) x1,t

x2,t

x3,t

⎛⎜⎝ ⎞⎟⎠ + c0ξt−1

x1,t

x2,t

x3,t

⎛⎜⎝ ⎞⎟⎠ �
a1 1 0
a2 0 1
a3 0 0

⎛⎜⎝ ⎞⎟⎠ x1,t−1
x2,t−1
x3,t−1

⎛⎜⎝ ⎞⎟⎠ +
c1
c2
c3

⎛⎜⎝ ⎞⎟⎠ξt.

(6)

in this state space representation equivalence to (4) is slightly less

straightforward. One can check that ai � a◦i , c◦0 � c0,

c◦1 � c1 − a1c0, c◦2 � c2 − a2c0, c3−a3c0 = 0.

One can see that, for ARMA and corresponding state space

representations, each component of the hidden state vector is

related to the lagged output, i.e. the first component represents

the relation to lagged-1 output, and so forth.

In the same way it is possible to write the VARMAX model

(3) in an similar to state space form:

yt � Dxt + C◦
0 ξt,

xt � ~Axt−1 + ~B]L,t−i + ~Cξt−1,
(7)

where xt ∈ Rh with h = max(p, m), ξt ∈ N (0, In).
The matrices in Eq. 7 can be defined as follows

D � Ih
0n−h×h

( ), if n> h, otherwiseD � In 0n×h−n( ),
where Ih is a squared identity matrix with h columns and rows,

0m×n is a matrix with zeros of the noted size;

~A �

A◦
1 In 0 . . . 0

A◦
2 0 In . . . 0

..

. ..
. ..

.
1 ..

.

A◦
h−1 0 0 . . . In

A◦
h 0 0 . . . 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ~B �

B◦
1

B◦
2

..

.

B◦
h−1
B◦
h

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

~C �

C◦
1

C◦
2

..

.

C◦
r−1
C◦

r

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

A◦
1C

◦
0

A◦
2C

◦
0

..

.

A◦
h−1C

◦
0

A◦
hC

◦
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(8)

The state-space representation allows for the use of the efficient

inference procedures of the Kalman Filter in the case of Gaussian

noise for the known parameters. When the transition and

observation matrices, as well as the noise matrices, are not known,

one can use the classical Expectation-Maximization algorithm for

their estimation. We discuss briefly their application to the inference

and estimation of the parameters in our models.

2.2.1 State space model for KF1, KF1* and KF4
We will be interested in the estimation of the a state space

model for the (KF1), (KF1*) and (KF4) models, which will be

done in the classical form of the Kalman Filter model:

yt � Dxt + εt, εt ~ N 0, R( ),
xt � Axt−1 + B]L,t + ηt, ηt ~ N 0, V( ), (9)

where ]t contains control parameters and their lagged difference

up till lag L as in Eq. 2. We assume xt ∈ Rh, where h is a

multiple of n.

We use the standard form of the Kalman filter here, instead of

Eq. 8 which has a single noise term, as these representations are

generally equivalent (see [22, 23]). See the remark in the

Supplementary Material about the conversion between two

state space forms (9) and (8).

2.2.2 State space model KF4-quad with control
dependent transitions

In the models we considered so far, and which are motivated

initially by a VARMAX model, the exogeneous variables induce

linear shifts in state space via the term B]t,L. However, another

fairly natural way that the control variable (or control

parameters) can enter the model is via the autoregressive

coefficients of the VARMAX model or via the transition

matrices of the state-space model itself. This motivated us to

consider a model which combines both effects: we keep a model

of the previous general form, but make the matrices A and B now

linearly dependent on ut. We however limit ourselves to an

instantaneous effect.

We thus consider a Kalman filter model of the form:

yt � Dxt + εt, εt ~ N 0, R( ),
xt � A ut( ) xt−1 + B ut( ) ]t + ηt, ηt ~ N 0, V( ). (10)

with matrices A (ut) and B (ut) now being linear functions of the

control variables

A ut( ) � A0 +∑q
j�1

Ajutj and B ut( ) � B0 +∑q
j�1

Bjutj. (11)

This model is now non-linear, and in particular it includes

cross-terms of the form utut−j,i and utxt−j,i.

This formulation has q+1 times more parameters for the

state transitions, and regularization becomes necessary to

prevent overfitting. Several regularizations would be possible,

but given that our model is parameterized by several matrices,

we propose to use a matrix regularizer that encourages these

matrices to be low-rank (or equal to 0 which is rank 0). More

precisely, we propose to use trace norm regularization [24,

25]. The trace norm of a matrix (aka nuclear norm), is a

matrix norm which is defined as the ℓ1-norm of the singular

values of the matrix. The trace norm ‖A‖* of a matrix A can be

equivalently defined by
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‖A‖* � tr A⊤A( )1/2( ),
where tr denotes the trace of a matrix. Note that the more

classical Tikhonov regularization is here tr(A⊤A), which is

equal to the squared ℓ2 norm of the singular values of A and

that the ℓ0 pseudo-norm of the singular values of a matrixA is the

rank of the matrix A. So the trace norm is to rank as the ℓ1 norm

to ℓ0. The trace norm is a convex regularizer but induces sparsity

in the spectrum of the matrix, in a similar way as the ℓ1 norm

induces sparsity which means that it becomes low-rank.

In the end, we wish for A(u) and B(u) to be low rank but

regularizing directly these matrices with the trace norm leads to

an optimization problem which is not so easy to optimize. So,

instead, we apply the regularization to all the individual matrices

Aj and Bj. We denote

Ω Aj, Bj( )
j�0..q( ) � γ0‖A0‖* + δ0‖B0‖* + γ∑q

j�1
‖Aj‖* + δ∑q

j�1
‖Bj‖*.

(12)
The details on parameter estimation with the Expectation

Maximization algorithm for KF1, KF1*, KF4 and KF4-quad can

be found in the Supplementary Material.

3 Evaluation

3.1 Datasets

The parameters of the model were estimated using

“PRERAMP” observations from 1 year and then tested on the

data of another year. The data from 2017 contains 105 time series

corresponding each to an LHC fill; in 2018, 144 fills are available.

The duration of the “PRERAMP” phase varies in 2017 from 65 to

490 s, whereas in 2018 it varies from 67 to 1046 s, with a typical

duration which is slightly larger in 2017, see Figure 1.

First, we take the data from 2017 as the training dataset and

the data of 2018 as the testing dataset. After the selection of the

hyperparameters (cf Section 3.1.1), the model parameters are

computed from the full training dataset. Then, we validate the

trained model on the data from 2018. Next, we repeat the

validation for 2018 data as a training set and 2017 as testing

to check whether we can also predict the loss of 2017 from 2018.

Remark: We excluded fill 7236 from the dataset of 2018 for

the second validation. The main reason for exclusion is that

during that fill, an abnormally high jump in octupole current

occurred (Figure 7B), which unexpectedly did not lead to a

noticeable change in the loss (Figure 7A). There was no other

evidence of such events in the datasets and our analysis showed

that other variables present in the dataset do not explain such a

behavior of the loss. Extending the models for the case of fill

7,236 would require additional understanding of the reasons for

such loss behavior or more data on similar events. This can be

also seen from Figure 6A, where the upper histogram is for the

increments of control parameters in 2017 and the lower one is for

increments in 2018. The change of the octupole current during

fill 7,236 is close to the value −20 A and is distinctly very far from

FIGURE 8
R2-score as a function of the forecast horizon. (A)On the training dataset, here from 2017 (B) on the test data from 2018. Themean value of R2 is
shown for each horizon in the darker color. The mean value was computed from 1,000 bootstrapped estimates of R2, which are shown in the light
color.

TABLE 1 Hyperparameters estimates from 10-fold cross validation for the
models (KF1), (KF1*), (KF4).

L, 2017 h, 2017 L, 2018 h, 2018

KF1 90 1 55 1

KF1* 85 1 80 1

KF4 80 16 80 16
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the main range of values. Additionally, we can note that apart

from the fill 7,236, the changes in octupole current in 2018 are

mostly negative, whereas, for the year 2017, the octupole current

was both increasing and decreasing. Thus one can anticipate that

in terms of octupole input, forecasting the losses of 2018 from the

model built from the data from 2017 might be an easier task than

when swapping the datasets, since it involves extrapolation to the

larger range of impulse values in the input.

Data Transformations: For the losses normalized by

intensity, we apply a log transformation. Next, the input

variables of the training dataset are scaled to be in the interval

(−1, 1). The output variables of the training dataset are centered

and normalized. For validation, both input and output are

centered and scaled with the parameters obtained for the

training dataset.

3.1.1 Hyperparameters estimation
For the KFmodels, we have two hyperparameters to estimate:

the number of lags L in ]t in Eq. 9 and the dimension of the

hidden space h. To find their estimates we use a 10-fold cross-

validation procedure on the training dataset to minimize the

mean absolute error (MAE) of the prediction over the parameters

in the grid. The MAE for the prediction ŷt of the ground truth

(1D) values yt is defined as MAE � 1
T∑t|yt − ŷt|. We estimate the

quality of the predictions of the models built from 9/10 of the fill

time series on the rest of the data. Namely, on each 9/10 of fills,

we make an EM estimation of the KF parameters. We set T0 = 10.

Next on the rest of 1/10 of fills, for each fill, we use the KF

equations and smoother applied to the first T0-th observation of

the time series to get an initial estimate of the hidden process.

Starting from T0+1-th observation, we run the KF model state

FIGURE 9
KF4 trained on the data of 2017, prediction on the fills 6176, 6050, 6192, and 6371 of 2018 and corresponding input control parameters. Pink
points correspond to T0 observations which the model uses to get initial KF smoother results. Further model propagates without seeing the loss and
other output values, with control parameters given as the input. Two standard deviation confidence bands are shown in light blue.
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evolution dynamic forward in time to propagate the prediction,

giving the control observations as input. This way, the model

“sees” only the first T0 data points of the output from the fill and

the input variable at each new prediction time point. We stack all

the predictions for each of the 10 folds to compare them with the

corresponding true values, i.e. in each fold we compute MAE:
1∑j
Tj
∑j∑Tj

t�T0+1|ŷ(j)
t − y(j)

t | where Tj is the length of fill j, and j

runs over the fills in the fold. Finally, the hyperparameters are

selected via minimization of the mean MAE across folds. The

hyperparameters selection was carried out on the same intervals

of prediction, that is, we fixed the largest history Lmax, and the

first data point to predict in the fill of the other year was Lmax for

all the models. We fixed Lmax = 90 to have sufficiently long

forecasting horizons and to have enough data to train the models.

The results can be found in Table 1. The hyperparameter

selection procedure favored deep histories of the input

parameters and their changes, thus the changes in control

parameters might have a relatively long-term effect on the loss

evolution. For KF4-quad, h and L were set to be the same as the

ones found for KF4, and optimization of regularization

hyperparameters was carried out in the same way by

optimizing the MAE on the grid. See Supplementary Figure

S1 in the Supplementary Material for illustration of 10-fold

cross-validated MAE behaviour for different versions of Eq. 9

for a range of parameters h and L based on the data of 2017 or

2018 and Supplementary Figure S2 for selection of γ and δ in Eq.

12 for KF4-quad.

Remark: We compute MAE over different forecast horizons,

as opposed to instantaneous one-step ahead forecasting for

hyperparameter selection. This is motivated by the fact that

minimization of one-step-ahead prediction error tends to

select models which better follow local trends. For example, a

simple forecast which is just repeating the previous loss

observation would often have quite a low one-step ahead

forecasting error, whereas for long-term forecasting this is not

the case.

3.2 Evaluation of predictive ability for
different time horizons

We compare the variants of the Kalman Filters: (KF1),

(KF1*), (KF4), and KF4-quad. As evaluation metric of losses

prediction for different time horizons we compute R2-score,

which is defined as

R2 � 1 − ∑t yt − ŷt( )2∑t yt − �yt( )2,
where ŷt is the predicted value of yt and �yt � 1

T∑tyt for the

models trained on one of the datasets either of 2017 or 2018.

First, we fit hyperparameters and parameters of the models on

the training dataset. For each of the training and testing datasets,

for each fill, we fix the horizon H. Next, for each time point t of

the fill where t ∈ {T0+1, . . . , T −H}, where T is the duration of

the fill, , we use KF equations and smoother to obtain an estimate

of the hidden state at t, from the preceding T0 observations.

Starting from t, we propagate the model to predict the evolution

till t + H. Thus we get a collection of predictions at horizon H

based on the data of different fills. From all the predictions at

horizon H we compute a bootstrap estimate of the mean R2 [26]

obtained from 103 subsamples of 103 predictions and

corresponding observations.

We limited the predictions to the time horizon of 200 s for

the dataset of 2017 and to the horizon of 300 s for the dataset

FIGURE 10
R2-score as a function of the forecast horizon. (A) On the training dataset, here from 2018 (B) on the test data in 2017.The mean value of R2 is
shown for each horizon in the darker color. The mean value was computed from 1,000 bootstrapped estimates of R2, which are shown in the light
color.
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FIGURE 11
KF4 trained on the data of 2018, prediction on the fills 6726, 6674, 6677, and 6681 of 2018 and corresponding input control parameters. Pink
points correspond to T0 observations which the model uses to get initial KF smoother results. Further model propagates without seeing the loss and
other output values, with control parameters given as the input. Two standard deviation confidence bands are shown in light blue.

FIGURE 12
Estimated autoregression matrices in KF4.
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2018, so that 1) for each horizon, the prediction of at least

10 different fills should contribute to computation of R2 and 2) a

number of aggregated prediction was not less than 103.

Training on 2017: Figure 8 shows how the R2 varies for

different horizons H for the models trained on the data from

2017, where 8A outlines the quality of forecasts on the training

dataset, and 8B shows the quality of forecasts on the testing

dataset of 2018. For the models (KF1), (KF1*) with 1D outputs,

the results show that they were capable of predicting losses of the

other year only on short horizons. Inclusion of additional non-

FIGURE 13
Estimated moving average part in KF4.

FIGURE 14
Impulse response plots for (KF4) model, impulses in the input parameters: in horizontal and vertical tunes and in the octupole current. The
changes in losses and (2σ-)confidence intervals produced by (KF4) are shown in blue colors. The changes in the rest of the output components
(horizontal and vertical emittances and electron cloud induced heatloads) and corresponding (2σ-)confidence intervals are shown in gray.
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controlling observations, such as emittances and electron cloud

in (KF1*) helps to slightly improve the predictive ability in the 1D

output case on the testing dataset with a certain drop in quality

on the training dataset. Models with additional output

components KF4 and KF4-quad demonstrate significantly

improved performance compared to 1D output models. For

quite long horizons of the forecast, for both KF4 and KF4-

quad R2 remains high. It is worth noting that the

hyperparameters were learned from the dataset of 2017,

whereas in 2018 several fills had much longer in time

“PRERAMP” intervals than in 2017 (see Figure 1).

Nevertheless, the propagated KF4 model kept on predicting

well on longer horizons. This suggests that overall the model

to some extent captures the global trend and its dependence on

the input. The bump in R2 for the higher horizons in Figure 8B

probably could be explained by, first of all, too few fills

participating in the estimate, and secondly, most of the

changes of input parameters occur on the time horizons

smaller than 200 s. The model KF4-quad demonstrates slightly

better performance than KF4 on longer horizons. From

Figure 8A the additional regularization helped to reduce the

overfitting on the training dataset and improve the R2 on the

testing dataset.

Predictions for selected fills 6,672, 6,674, 6,677, and 6,681 of

the testing dataset of the year 2018 are shown in Figure 9 for the

model (KF4). The values of input parameters in the training

dataset lie in the interval (−1, 1). In Figure 9 one can see that the

values of some of the input parameters for the testing dataset of

2018 which were standardized to the scale of the training dataset

fall outside of interval (−1, 1). For the fills 6,672, 6,674, and

6,681 the scaled octupole current decreases from almost 2.5 to 1.

It is visible that for these fills the model captured the dependence

of the loss on the current correctly, even outside of the range of

the values given during training.

Training on 2018: For the models estimated from the data of

2018, the results are shown in Figure 10. Remind, that the control

parameters and their increments in the data of 2 years have

different ranges. The results show that the case of modeling of the

loss in 2017 based on the data of the year 2018 is more

challenging for the proposed approach. Nevertheless KF4 and

KF4-quad show significantly better predictive performance than

(KF1), (KF1*). Selection of hyperparameters by optimizing MAE

in cross-validation for KF4-quad did not lead to improvements

compared to KF4. Predictions for the fills 6,176, 6,050, 6,192, and

6,371 of the year 2017 are shown in Figure 11 for KF4 model that

was trained on the data of 2018.

3.2.1 Fitted models
KF4: Hyperparameter selection procedure from the data of

2017 led to the KF4 with the dimension of hidden process equal

16, which corresponds to the lag order 4 in the autoregressive

part and MA parts of the VARMAX model. The selected input

parameters increments history length was 80.

After checking that observability condition and condition

on the initial value distribution (see remark in Section 2.2.1) for

the estimated KF4 were satisfied, we could transform KF4 in the

form of (9) to (8) to obtain the coefficients of equivalent

VARMAX model formulation (3). Matrices with

autoregressive coefficients are shown in Figure 12. One can

see that for the losses L, all output variables, including

emittances and electron cloud induced heatloads, participate

in AR terms. The opposite is not true, in the trained model, all

the rest of output values have small coefficients corresponding

to the lagged loss variables. Moving average coefficients in

Figure 13 show that the first lag shocks have the most

impact on the losses. The loss component of the output

shares the shock of “0” lag with the other output variables.

Further, instead of presenting coefficients for input variables

and 80-lagged increments of input variables, we consider the

impulse response function of the model.

Impulse response functions: To analyze how the model

(KF4) responds to shocks in one of the input variables, it is

convenient to compute an Impulse Response Function (IRF)

[20, 27]. Figure 14 demonstrates IRF for (KF4) trained on the

data of 2017: the plot shows the change in output

parameters after we modify the input parameters within

the ranges in the training dataset. All the values of control

and output values were set to median values based on the data

from 2017, such that after standardizing them, their values

equal zero. The impulse for each of the variables was taken

as .5 of the range of the observations in 2017 at 50 s in

Figure 14: for the horizontal tune Qx the impulse was

.005 from the level .272, for the vertical tune Qy the

impulse was .004 from .294, for octupole current the

increase was 3.26A from 39.11A. After the value of the

control variable increases, the model (KF4) continues to

propagate until the outputs stabilize at a certain level. For

emittances and electron cloud, IRFs demonstrate that the

increase in the octupole current and tunes brings a more

steady growth or decrease in values.

4 Conclusion

In this work, we proposed a VARMAX model to predict the

evolution of the beam losses in the “PRERAMP” mode of the

LHC on horizons up to 5 min based on control and context

variables. Given the relationship with state-space models, the

model is estimated under an equivalent Kalman Filter form. We

considered a VARMAX models on the 1D loss time series and a

VARMAX model with a vectorial output composed of the loss,

the horizontal and vertical emittances and the aggregated

heatload due to the electrom cloud as components, which

induce the learning of a hidden state representation that helps

predicting the evolution of the losses on a longer horizon. In

addition, we proposed an extension of the linear KF for the
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transition matrix and exogeneous coefficients dependent on the

input variables.

The hyperparameter selection procedure on lags needed in

the exogeneous and in the autoregressive terms revealed that

the control variables have lagged effects on the losses with lags

of up to 80 s while a shorter history of 4 s is needed for the

autoregressive term, to obtain good predictions on a

horizon of 5 min. The loss model with additional output

components fitted on the data from 2017 performed well in

predicting the loss measured at IR7 in 2018 for a horizon of up

to 5 min.

The inclusion of additional output variables in the model,

such as heatload and emittance, helped significantly to improve

the long-term prediction of the loss. Finally, in terms of

interpretability of the model, the proposed impulse response

analysis of the estimated model can help investigate different

scenarios of the changes in the control parameters to understand

their effect on the loss.

A possible extension of this work could be to model jointly

both beam losses, which might account for beam

coupling. Further, the development of a tool that could

guide the operators in the control room could be

anticipated, which would propose optimal changes in the

available parameters space for a given set of initial setting

(i.e. emittances, intensities, etc.) while commissioning and re-

optimizing the collider at every physics fill. Besides that,

the new data obtained from the operation should be

useful to re-train and revise the model. Our model based

on machine data is a valuable addition to numerical models

of particle losses, that can boost and improve the

understanding of particle losses and help in the design of

future colliders.
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