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Most flow systems in the human body are duct shaped, such as the pancreatic,

bile, and gallbladder ducts. Such flow systems are also common in industrial

applications like HVAC systems. This study presents a novel mathematical

model to analyze the peristaltic motion of a viscous fluid in a three-

dimensional curved duct with a rectangular cross section; specifically, such

geometries are used more in industrial and medical applications. In the current

investigation, the constraints of lubrication theory are considered, and a

perturbation technique is used to solve the Navier–Stokes partial differential

equations. The major focus of this work is on the aspect ratio of the duct and

curvature of the flow axis. Curvilinear coordinates of cylindrical systems are

considered for the derivations because of the curved geometry; homogeneous

no-slip boundary conditions are proposed at the flexible surfaces, and the

expression for pressure increase is found numerically using the NIntegrate tool

of computing software Mathematica. A comprehensive graphical discussion is

presented to determine the effects of all salient physical factors related to the

problem. The results show that the large curvature and aspect ratio reduce the

fluid speed gradually but that the flow rate promotes fluid velocity. The pumping

rate is a decreasing function of the curvature and aspect ratio; however, reverse

pumping can occur for large curvature values. Streamline evaluations suggest

that large wave amplitudes increase the number of circulating boluses.
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Introduction

Peristalsis refers to a flow pattern in which a fluid is transported by a sequence of

waves generated by the expansion and compression of the walls of a conduit. This

phenomenon occurs in many of the human organs, including movement of food in the

esophagus, blood circulation in the arteries from pumping by the heart, and urine

transportation from the kidney to bladder. This phenomenon can also be seen in other
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living organisms such as leeches, which have the ability to suck

blood and push it through their bodies by peristaltic pumping

patterns, because of which they are commonly used in the

treatment of tumors, mental diseases, and skin diseases by

removing blood from the affected parts of the body. Peristaltic

flow mechanisms are also applicable to industrial scenarios, such

as the transportation of sanitary fluids, toxic liquid flows in

nuclear production, and transport of corrosive fluids. This

approach is also used in most medical equipment, such as

blood pumps and heart-lung machines. Shapiro et al. [1]

explained the basic principles and highlighted the importance

of the various physical parameters of the flow mechanism.

Surveys of critical research and hypotheses on the peristaltic

flow mechanisms of multiple flow models have been widely

discussed and presented in open literature based on the

assumptions of large wavelengths and low Reynolds numbers.

Many scientific researchers and biologists are working on this

topic owing to its wide usage in several industrial processes as

well as clinical phenomena. Researchers have incorporated

various types of geometries into their studies like symmetric/

asymmetric channels, tubes, endoscopes, curved channels, and

straight/rectangular/square ducts. The main focus of this work is

on recent studies in the field. Kumari and

Radhakrishnamacharya [2] presented peristaltic flow in an

inclined channel with slip and magnetic effects; they observed

that the mean flow speed increases with the slip factor but

decreases because of the magnetic field and porosity of the

space. Mekheimer [3] investigated blood flow in a

nonuniform channel under the effect of a magnetic field and

calculated that the peristaltic pressure is a direct function of the

magnetic field. Rashid et al. [4] reported peristaltic flow in a

curved channel for the Williamson model and suggested that the

model induces a large increase in pressure compared to that of a

viscous liquid. Haroun [5] reported the peristaltic flow of a

fourth-grade fluid in an inclined asymmetric channel and

noted that the trapping region enlarges as the channel

becomes symmetric; further, the pressure increase is

maximum for a non-Newtonian fluid than a Newtonian one.

Javed and Naz [6] considered the Jeffrey fluid for pumping flow

in an asymmetric channel and observed that reverse pumping

occurs near the channel walls. Other relevant studies on viscous

fluid flows in channels have also been reported [7–17].

The abovementioned studies considered mostly symmetric or

asymmetric straight channels. However, owing to the wide range of

applications of curved geometries in many physiological flow

regions, some researchers have considered curved channels in

their work and provided vital contributions. Hina et al. [18]

considered a compliant curved channel to study peristaltic flow

using the Johnson–Segalman model through the thermal and mass

transfer effects; their study shows that a large temperature

distribution can be obtained in a curved channel compared to

the straight one, but the heat coefficient is minimum in the

curved channel. Nadeem and Shahzadi [19] studied two-phase

nanofluid flow in a curved channel and noted that the large

curvature of the conduit increases the peristaltic pressure; they

also observed that the temperature distribution was large owing

to the large curvature. Kalantri et al. [20] numerically investigated

non-Newtonian peristaltic transport across a curved channel and

noted that an increase in the elastic characteristics of the non-

Newtonian fluid causes a decrease in the pumping pressure. Tanveer

et al. [21] investigated mixed convection in the peristaltic flow of the

Eyring–Powell model in a curved channel and observed that the

velocity increased greatly by the large Brownian diffusion but

reduced for larger thermophoresis. Thus, an increase in thermal

exchange has been reported in the case of increasing curvature.

Nadeem and Maraj [22] evaluated the peristaltic stream of the

hyperbolic tangent fluid model in a curved container; they observed

that the left-sided velocity decreases with the curvature factor but the

right-sided velocity increases with the same factor. It is further noted

that the pressure increase is inversely dependent upon the curvature

parameter; more studies on pumping flows in curved channels are

reported in [23–28].

Most real-life peristalticflows are three dimensional in nature and

occur in ducts with rectangular or square cross sections. Only a few

researchers have considered three-dimensional conduits for

transportation and duct motion of Newtonian and non-

Newtonian fluids in rectangular ducts. Reddy et al. [29]

investigated duct peristaltic flow and reported the wall properties

of the duct. The main focus of the present study is elucidating the

effects of aspect ratio of the wall dimensions on various flow

parameters. The pressure increase and flow rates were measured

for different values of the aspect ratio, and it was concluded that the

pressure rise is a decreasing function of the aspect ratio. Nadeem and

Akram [30] investigated the Jeffrey fluid flow in a rectangular duct

and reported that the axial pressure increases with increasing aspect

ratios; the authors also compared their findings with the results of

channel and square duct flows by considering some special cases and

concluded that the peristaltic pressure is higher in a rectangular duct

than a two-dimensional channel or square duct. Riaz [31] recently

reported the thermal andmass exchange effects on the peristaltic flow

of the Eyring–Powellfluid in a rectangular duct and suggested that the

rates of heat andmass transfer are less for the consideredmodel than a

Newtonian fluid but can be enhanced by increasing the aspect ratio.

Abbas et al. [32] used a nonuniform rectangular duct with elastic walls

to examine the wave transport of the hyperbolic tangent fluid model

and claimed that the fluid velocity increases with the aspect ratio of

the conduit; they also claimed that the size of the trapped bolus

decreases with non-Newtonian features. The above discussion

indicates that peristaltic flow problems have been analyzed in

channels (both straight and curved) but there are very few works

available for ducts.Moreover, most industrial andmedical equipment

for pumping flows include curved three-dimensional ducts, but there

are no reported studies on investigation of pumping flows in curved

ducts. This is likely attributable to the complex modeling and

simulation of the complicated partial differential equations (PDEs)

representing such flows, which require large mathematical and
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computer-assisted computations. In the present study, we examine

such complicated work and derive some new results. The three-

dimensional peristaltic flow is investigated in a curved duct with a

rectangular cross section. The geometry of the problem is modeled

using curvilinear coordinates through suitable transformations. An

unsteady wavy flow is assumed with sinusoidal waves appearing on

somewalls with nonzero curvature. The cylindrical coordinate system

is initially used for mathematical work that is later transformed to

curvilinear coordinates in accordance with the geometrical structure.

Some physical constraints are considered to simplify the calculations,

such as a large wavelength and low Reynolds number

approximations. The general mass and momentum conservation

laws are considered and derived using dimensionless variables in

the transformations. No-slip boundary conditions are assumed to

derive the particular solutions; the expression for velocity is

determined analytically, and the pressure rise is obtained

numerically using the computational software Mathematica.

Mathematical modeling

Let us assume a Newtonian fluid flow in a three-dimensional

curved duct with a rectangular cross section of height 2h and

width 2d [33]. A peristaltic wave is propagated along the axial

direction with a constant speed c. The orientation of the duct is

assumed as follows: the peristaltic walls are along the vertical

surfaces (y-axis) whose characteristics are functions of angle θ

and time t; L is the reference length from the central point O, as

shown in Figure 1. The flow geometry is considered in the

cylindrical coordinate system, so r, θ, and y are assumed as

the coordinates.

The flow in a curved rectangular duct is represented by the

following mathematical forms of the physical laws,

i.e., conservation of mass and momentum, as [33]

rDr(u) +Dθ(w) + rDy(v) + u � 0 (1)
ρr(Dt(u) + (A · del)u) − ρv2 � −rDr(p) + μr−1(r2Δpu − u

− 2Dθ(v)), (2)
ρr(Dt(w) + (A · del)w) + ρuw � −Dθ(p) + μr−1(r2Δpw − w

+ 2Dθ(u)),
(3)

ρ(Dt(v) + (A · del)v) � −Dy(p) + μ(Δpv). (4)

Here, Dj for (j � t, r, θ, z); A · del and Δ* are the first and

second order differential operators defined as follows:

A · del � uDr + wr−1Dθ + vDy, Δp

� Drr + r−1Dr + r−2Dθθ +Dyy

The wave generating wall function (curved) is described as

[27, 28]

~a(θ, t) � h + b cos
2π
λ
(X′ − ct), whereX′ � Lθ, (5)

where b is the wave amplitude, and λ is the wavelength. The

following transformations are considered for the purpose of

nondimensionlization of the above expressions:

FIGURE 1
Geometrical view of a curved duct.
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λ�t − ct � 0, cξ�u − u � 0, cξ�v − v � 0, c �w − w � 0, r − (L + d�x)
� 0, y − h�y � 0, X′ − λ�z � 0, cλμ�p − d2p � 0, h�a � ~a

(6)
Here, ξ (� h

λ) is the wavenumber, μ is the fluid viscosity, t is

the time, and p is the pressure. Thus, the expressions defined in

Eqs. 1–6 can be transformed to the subsequent form as follows:

α
z�u

z�x
+ 1
1 + δ�x

z �w

z�z
+ z�v

z�y
+ αδ

1 + δ�x
�u � 0 (7)

Re ξ(ξ2z�u
z�t

+ αξ2�u
z�u

z�x
+ ξ2�v

z�u

z�y
+ ξ �w

1 + δ�x

z�u

z�z
− αδ

1 + δ�x
�w2)

� α3ξ2⎛⎝α2
z2�u

z�x2 +
δα2

1 + δ�x

z�u

z�x
+ ξ2 �w

(1 + δ�x)2
z2�u

z�z2
+ z2�u

z�y2

− ( αδ

1 + δ�x
)2

�u − α( 4δ1/2

1 + δ�x
)2

z �w

z�z
⎞⎠ − α2

z�p

z�x
, (8)

Re ξ(α z �w
z�t

+ α2�u
z �w

z�x
+ α�v

z �w

z�y
+ α �w

(1 + δ�x)
z �w

z�z
+ αδ

(1 + δ�x) �u �w)
� ⎛⎝α2z

2 �w

z�x2 +
δα2

1 + δ�x

z �w

z�x
+ ξ2

(1 + δ�x)2
z2 �w

z�z2
+ z2 �w

z�y2

− ( αδ

1 + δ�x
)2

�w + αξ2( 4δ1/2

1 + δ�x
)2

z�u

z�z
⎞⎠ − α2

1 + δ�x

z�p

z�z
,

(9)
Re ξ3(1

α

z �w

z�t
+ �u

z�v

z�x
+ 1
α
�v
z�v

z�y

+ �w

α(1 + δ�x)
z�v

z�z
) � ξ2(z2�v

z�x2 +
δ

1 + δ�x

z�v

z�x
+ ξ2

α2(1 + δ�x)2
z2�v

z�z2

+ 1
α2

z2�v

z�y2) − z�p

z�y
. (10)

For the above equations, the generated dimensionless

parameters are as follows:

α � h

d
, δ � d

L
, Re � ρdc

μ
, ξ � h

λ
, ϕ � b

h
. (11)

Using the criteria of large wavelength and low Reynolds

number, the simplified versions of Eqs. 8–10 are obtained as

follows (except for the bar symbols):

α2

1 + δx

dp

dz
� α2

z2w

zx2
+ δα2

1 + δx

zw

zx
+ z2w

zy2
− ( αδ

1 + δx
)2

w. (12)

The corresponding boundary conditions of the flow problem

are given by [31]

w(�x,±~a) � 0 andw(± d, �y) � 0 (13)

In the dimensionless form, Eq. 13 has no bar signs and is given by

w(x,± a) � 0 andw(± 1, y) � 0,where a � 1 + ϕ cos 2π(z − t)
(14)

Solution scheme

To solve the linear partial differential equation in Eq. 12 using

the boundary conditions in Eqs. 13, 14, the well-known homotopy

perturbation method (HPM) is used [34–36]. The linear operator

assumed in the process is χyy � z2/zy2. The initial estimate

satisfying the conditions is given as w0 �
dp
dz (−a2+y2)α2

2+2xδ . The zeroth

and first order systems have the following respective forms:

χyyŵ0 − χyyw0 � 0, ŵ0(x,± a) � 0 and ŵ0(± 1, y) � 0 (15)

χyyŵ1 + χyyŵ0 + α2χxxŵ0 + δα2

1 + δx
χxŵ0 − ( αδ

1 + δx
)2

w

− α2

1 + δx
dp/dz

� 0, ŵ1(x,± a) � 0 and ŵ1(± 1, y) � 0. (16)

By solving these two systems simultaneously onMathematica

using the DSolve command, we obtained the final solution of the

axial velocity w as follows:

w(x, y) � − 1

80(1 + xδ)5 (dp/dz (a − y)(a + y)α2(40 + 160xδ

+ 240x2δ2160x3δ3 + (40x4 + (61a4 − 14a2y2

+ y4)α4)δ4)).
(17)

The flow rate in the dimensional form is given by

�F � ∫d

−d
∫ã

−~a
wdrdy. (18)

In the dimensionless format, (�F � dhcQ) and reduces to

(after removing the bars)

Q � ∫1

−1
∫a

−a
wdxdy (19)

By solving Eqs. 18, 19 for dp/dz, we obtain

dp

dz
� − Q

68 a7 α6 δ4 (1+δ2)
35(−1+δ2)4 + 4a3α2tanh−1 δ

3δ

(20)

The pressure increase is implemented numerically in

Mathematica using the following expression:

Δp � ∫1
0

(dp
dz

)dz. (21)

Graphical results and discussion

In this section, some of the physical quantities noted previously

are examined through graphs of the axial velocity versus curvature,

axial pressure slope, pressure rise, and trapped bolus to observe the
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behavior of the flow properties. In Figures 2–4, the axial velocity is

plotted against input y for increases in the absolute values of the

aspect ratio (α), amplitude ratio ϕ, and flow rateQ. These graphs are

structured such that the range of coordinate y is [−a,a], where a is
the wave height function that is directly related to the axial coordinate

z and time t. To understand the velocity variations for domains with

varying curvatures, Figures 5–7 are plotted showing the impacts of α,

ϕ, and Q on the velocity profile w, respectively. These graphs

represent the overall impact of the duct curvature on the fluid

velocity for various parameters. In these diagrams, a uniform

range δ ∈ [0, 1] is considered to investigate the curvature impact

on flow. Figures 8–10 show the quantitative analysis estimates of the

axial pressure variation dp/dz against axial coordinate z for

parameters α, δ, andQ, respectively. Figures 11–13 predict the

peristaltic pumping rates Δp along the flow rate Q to determine

the effects of α, δ, andϕ separately. The trapped bolus phenomenon is

depicted in Figures 14, 15 to examine the flow patterns under factors

α, δ, and ϕ, respectively. These figures show uniformly circulating

closed contours that predict the contraction and expansion of the

flexible tissues comprising the duct walls and also show the pumping

scenario diagrammatically.

Figure 2 graphically illustrates the axial velocity characteristics

for increasing values of the aspect ratioα; it can be observed from the

plot that the fluid velocity is directly affected by the aspect ratio,

which is the ratio of the width to height of the rectangular cross

section of the duct, such that the increasing aspect ratio indicates

increasing length when the height is fixed. The aspect ratio exerts

more pressure on the fluid so as to suppress the fluid flow intensity.

It is also noted that the fluid speed is maximum at the center of the

flow path and that there is static flow at the walls, proving that there

is no slip along the surfaces of the duct. Figure 3 shows the velocity

variation with amplitude ratio ϕ, and it is seen that a large amplitude

ratio permits greater fluid intensity at the corners of the flow stream

but has an opposite effect in the middle of the flow domain. This

enables the justification for a large amplitude ratio in the

FIGURE 2
Axial velocity variation with respect to aspect ratio α.

FIGURE 3
Axial velocity variation with respect to amplitude ratio ϕ.

FIGURE 4
Axial velocity variation with respect to flow rate Q.

FIGURE 5
w-δ curves for α.
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mathematical sense, where larger waves with the same fixed height

slow the flow because of the time required to relax the tissues and

push the fluid forward compared to low-amplitude waves that allow

faster release of the fluid over a short duration. Figure 4 shows that

the flow rate is directly related to the flow speed, where a large flow

rate suggests that the fluid particles travel more quickly for a larger

rate of flow per unit area.

To investigate the velocity attributes for various curvature

parameters, Figure 5 suggests the impact of α such that an

increase in the section curvature in the range 0< δ < 0.5 lowers

fluid speed but remains fixed for various values of the aspect ratio;

however, these results decrease in the range 0.5< δ < 1. This shows
that a small change in the curvature does not significantly affect the

aspect ratio of the duct cross section but a larger curvature

considerably affects the aspect ratio and flow speed. Figure 6

indicates that ϕ has inverse effects on the velocity curves in

FIGURE 6
w-δ curves for ϕ.

FIGURE 7
w-δ curves for Q.

FIGURE 8
Axial pressure variation with respect to aspect ratio α.

FIGURE 9
Axial pressure variation with respect to curvature δ.

FIGURE 10
Axial pressure variation with respect to flow rate Q.
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curved domains and that the curves showmore significant variations

in their heights than in the previous figure. In case of flow rate

(Figure 7), the velocity increases with the flow rate. Physically, this

indicates that when the flow per unit volume increases, the fluid

molecules pass throughmore freely and gainmore speed accordingly.

It is also obvious from these three figures that the duct curvature

affects the flow velocity inversely. It is also seen that the velocity is

maximum for no curvature, i.e., δ � 0, and is minimum for δ � 1.

Figure 8 indicates that the pressure gradient dp/dz plotted

against flow rate Q shows sinusoidal variation of the curves in

accordance with the function for the sinusoidal waves at the

boundaries. It is also noted here that the pressure decreases with

increasing aspect ratio. Further, it is noted that the largest pressure

gradient is observed at the center of the domain, which depicts that

greater pressure is needed to conserve momentum in the flow.

Figure 9 shows that the pressure decreases against the domain

curvature and that the pressure gradient is quite large (≈ 120 units)

for the lowest value of δ � 0.2, which was not true even with the

lowest aspect ratio of α � 0.1, as noted in the previous graph.

Figure 10 suggests that the flow rate also produces smaller changes in

the axial pressure; however, it is quite interesting that a larger flow

rate enables a very low pressure of ≈ 20 units, which is the lowest

value among these three diagrams.

To discuss peristaltic pumping, the graph of Δp against the

flow rateQ is shown in Figure 11 for the effects of the aspect ratio

α. It is noted that when we increase the aspect ratio of the

conduit, the intersecting lines are reduced in height in the

peristaltic pumping region Q ∈ [0, 4], which depicts that a

large aspect ratio produces a smaller increase in pressure in

the positive pumping region; however in the fourth quadrant,

increased negative or reverse pumping occurs, meaning that a

large aspect ratio can result in greater intensity of reverse

pumping. It can also be measured that co-pumping occurs at

Q � 4. From Figures 12, 13, the readings are similar to those

noted for Figure 11. In Figure 12, the decrease in pumping rate

against curvature shows that if the curvature of the duct

increases, the pumping rate diminishes considerably, which

produces large-scale reverse pumping; the same argument

holds for the amplitude ratio in Figure 13.

Figure 14 can be discussed under the stream bolus structure of the

flow problem for α. Here, we see that a large value of α produces a

forcing effect on the boluses, which then become smaller in size and

are broken when we further increase the value; that is, a single bolus

was surrounded by the four streamlines for α � 0.5, two boluses were

generated and surrounded by five streamlines for α � 0.6, and a single

bolus is again surrounded by three lines for α � 0.7. These variations

indicate that there are variable measurements for the trapped boluses

for the aspect ratio. Figure 15 shows that when the duct ismore curved

by increasing the curvature, it produces a large number of small-sized

boluses that are circulated by the increasing number of streamlines;

further, it is observed that when the curvature of the duct increases, the

fluid pressure increases and results in an increasing number of boluses.

Table 1 validates the current data with findings from existing

FIGURE 11
Pressure Δp variation with respect to aspect ratio α.

FIGURE 12
Pressure Δp variation with respect to curvature δ.

FIGURE 13
Pressure Δp variation with respect to amplitude ratio ϕ.
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FIGURE 14
Trapped bolus scheme for α.
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FIGURE 15
Trapped bolus scheme for δ.
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literature. It is easily noted that when the curvature values of the

geometry are minimized, the results of present work are similar to

those of the straight duct calculations [37]; moreover, for nonzero

curvature, the pressure increase in the curved duct is smaller than that

of the straight duct [37].

Conclusion

In the present work, we discussed the peristaltic flow scheme

for a Newtonian fluid in an enclosed curved duct with a

rectangular cross section for the first time. After incorporating

the large wavelength and low Reynolds number approximations,

the obtained PDE was examined analytically for the well-known

HPM using the computational software Mathematica and the

algorithm of the DSolve command. The pressure increase and

stream functions are obtained using the NIntegrate and Integrate

tools, respectively. The analytical solutions are discussed through

graphs, whose observations have been elaborated in detail. The

key results of the study are summarized as follows:

1) The velocity in a curved duct can be reduced by increasing the

aspect ratio and amplitude ratio, but the flow rate shows opposite

results. It is also noted that the velocity is a decreasing function of

the curvature and is maximum for a smaller curvature.

2) It is observed that when the aspect ratio, curvature, and flow

rate increase, the axial pressure slope declines.

3) It is also observed that the aspect ratio, curvature, and

amplitude ratio have inverse impacts on peristaltic

pumping compared to reverse pumping.

4) From the trapped bolus graphs, it is noted that the aspect ratio

and duct curvature produce low numbers of smaller sized

boluses, whereas the amplitude ratio produces a greater

number of larger sized boluses.

5) The results of the current investigation are in agreement

with those of existing literature [37] when considering

the special case with zero curvature; further, the

pressure increase is smaller in a curved duct than a

straight one.
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TABLE 1 Comparison of curved and straight ducts [37].

Flow rate Pressure increase in
a straight duct
[37]

Pressure increase in
a duct with
zero curvature

Pressure increase in
a duct with
nonzero curvature

−1 7.80917 7.80916 4.69047

−0.6 4.6855 4.6853 2.81428

−0.2 1.56183 1.56178 0.938094

0.2 −1.56183 −1.56181 −0.938094
0.6 −4.6855 −4.6852 −2.81428
1 −7.80917 −7.80908 −4.69047
1.4 −10.9328 −10.9319 −6.56665
1.8 −14.0565 −14.0554 −8.44284
2.2 −17.1802 −17.1813 −10.319
2.6 −20.3038 −20.3021 −12.1952
3 −23.4275 −23.4265 −14.0714
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Nomenclature

Symbols

h height [m]

d width [m]

c wave speed [m/s]

�F flow rate [m3/s]

t time coordinate [s]

(u, v, w) velocity components [m/s]dimensionless velocity

components

ρ density [kg/m3]

μ viscosity [Ns/m2]

~a wall function [m]

b amplitude [m]

λ wavelength [m]

L length [m]

p pressure [Pa]

Dimensionless symbols

�t, �x, �y, �z dimensionless coordinates

(r, θ, y) cylindrical coordinates
(x, y, z) transformed coordinates

D derivative operator

�p dimensionless pressure

(u, v, w) velocity components [m/s]dimensionless velocity

components

�a dimensionless wall function

ξ dimensionless wavenumber

α aspect ratio

δ dimensionless curvature

Re Reynolds number

ϕ amplitude ratio

Q dimensionless flow rate

Frontiers in Physics frontiersin.org12

Riaz et al. 10.3389/fphy.2022.961201

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.961201

	Peristaltic flow of a viscous fluid in a curved duct with a rectangular cross section
	Introduction
	Mathematical modeling
	Solution scheme
	Graphical results and discussion
	Conclusion
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References
	Nomenclature
	Symbols
	Dimensionless symbols



