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Nonequilibrium thermal transport in circuit quantum electrodynamics emerges

as one interdisciplinary field, due to the tremendous advance of quantum

technology. Here, we study steady-state heat flow in a two-mode qubit-

resonator model under the influence of both the qubit-resonator and

resonator-resonator interactions. The heat current is suppressed and

enhanced by tuning up resonator-resonator interaction strength with given

weak and strong qubit-resonator couplings respectively, which is cooperative

contributed by the eigen-mode of coupled resonators and qubit-photon

scattering. Negative differential thermal conductance and significant thermal

rectification are exhibited at weak qubit-resonator coupling, which are

dominated by cycle transition processes. Moreover, the heat flow through

the resonator decoupled from the qubit can be dramatically enhanced via the

resonator-resonator interaction, which is attributed by the generation of eigen-

mode channels of resonators.
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Introduction

The microscopic interaction between bosonic fields (e.g., light and vibration) and

quantum matter plays a cornerstone role in the study of quantum optics [1–4], quantum

phononics [5, 6], and quantum technology [7–9]. The significant advance of

superconducting and quantum-dot circuit quantum electrodynamics (cQED) fertilizes

nonequilibrium heat transport in light-matter interacting systems, by integrating cQED

components (e.g., resonator and qubit) with thermal and electric reservoirs [10–16].

Bounded by the second law of thermodynamics, the heat flow can be modulated via the

nonequilibrium temperature bias [10], geometric heat pump [17, 18], and quantum

correlations [19].

The seminal quantum Rabi model (QRM) is one generic system to describe quantum

light-matter interaction, i.e., a single-mode photon field transversely coupled with a two-

level qubit. QRM nowdays has been extensively realized in various quantum systems,
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ranging from quantum electrodynamics [2, 20], trapped ions [21,

22], and semiconductors with spin-orbital coupling [23].

Theoretically, though the eigensolution is rather difficult to

obtain, D. Braak [24] and Chen et al. [25] separately

proposed mapping ways a decade ago, trying to achieve the

exact solution of QRM. While considering the interface between

the subsystems in cQED and mesoscopic thermal reservoirs, the

powerful platform to detect steady-state heat transport has been

established [10, 12] to deepen the understanding of quantum

thermodynamics, condensed-matter physics, and functional

thermal devices. The analogous setup nowadays can also be

found in optomechanics [26]. As a consequence, theoretical

studies of quantum thermal transport in two-bath QRM have

been preliminarily carried out [27–29].

Meanwhile, the longitudinal qubit-resonator model, as an

alternative representative system, was also experimentally

realized based on cQED devices [30–32], which is able to

reach quite strong qubit-resonator coupling. Such longitudinal

interaction leads to tremendous intriguing applications, e.g.,

generation of nonclassical photon states [33, 34], scalable

quantum computation [35], and efficient quantum readout

[36, 37]. Moreover, as a basic member in the multi-mode

qubit-resonator family [30, 38, 39], the two-mode qubit-

resonator model has been designed in cQED with longitudinal

coupling [40–42], which is able to exhibit quantum switch effect

[43]. While for nonequilibrium thermal transport in the

longitudinal qubit-resonator system, an inspiring cooling by

heating effect was reported, which causes the photon

antibunchinig [44]. Besides, several typical nonlinear thermal

effects were also proposed [45–47]. Hence, it should be intriguing

to explore the transport pictures and microscopic mechanisms in

the dissipative two-mode qubit-resonator model.

In this work, we apply the quantum dressed master equation

(DME) combined with coherent photon states to study the

steady-state heat current of the dissipative two-mode qubit-

resonator model. The main points of this study are listed as

follows: 1) The steady-state heat flow is suppressed under the

influence of the resonator-resonator interaction with given weak

qubit-resonator coupling, whereas it is enhanced by increasing

the resonator-resonator interaction strength at strong qubit-

resonator coupling, which is unavailable for the single-mode

qubit-resonator model [29, 45]. The underlying mechanisms are

illustrated based on the eigen-modes of resonators (4) and

coherent state overlap coefficient (15). 2) The nonlinear

thermal effects, e.g., negative differential thermal conductance

and thermal rectification are unraveled in weak qubit-resonator

coupling regime. They are attributed by two kinds of cycle

transition processes (20a-20 b), which fertilizes microscopic

transport pictures in the single-mode qubit-resonator model.

3) The resonator-resonator interaction induced indirect heat

transport is also investigated. It is interesting to find that at

the condition of identical resonators, even weak resonator-

resonator interaction can significantly enhance heat current

via the resonator isolated from the qubit, due to the eigen-

modes of resonators.

The paper is organized as follows: In Section 2 we

introduce the two-mode qubit-resonator model, obtain the

corresponding eigenvalues and coherent photon eigenstates,

and derive the DME. In Section 3 we study steady-state heat

current under the influence of both qubit-resonator

interaction and resonator-resonator coupling. Typical

nonlinear thermal effects and resonator-resonator induced

indirect heat transport is discussed. Finally, we give a

summary in Section 4.

Model and method

Two-mode qubit-resonator model

The Hamiltonian of the longitudinal two-mode qubit-

resonator system, composed of one two-level qubit

longitudinally coupled with two optical resonators in

Figure 1A, reads

Ĥs � ∑
i�1,2

ωiâ
†
i âi + t â†1 + â1( ) â†2 + â2( )

+ε
2
σ̂z + σ̂z ∑

i�1,2
λi â†i + âi( ). (1)

Where â†i (âi) creates (annihilates) one photon in the i-th

resonator with the frequency ωi, t describes inter-resonator

hopping strength, σ̂α (α � x, y, z) denotes the Pauli operator

of the qubit, composed of two states |↑〉 and |↓〉, e.g., σ̂x �
|↑〉〈↓| + |↓〉〈↑| and σ̂z � |↑〉〈↑| − |↓〉〈↓|, ε is the splitting energy
of the qubit, and λi is the longitudinally coupling strength

between the i-th resonator and the qubit. In this paper, we set

Z = 1 and select the identical frequency case of resonators ωi = ωa

by default. The generalization to the distinct case is

straightforward. The resonator-resonator linear interaction

could be approximately formed in several ways, e.g., collective

spin-photon interaction in quantum Dicke model at normal

phase under the Holstein-Primakoff transformation [48, 49]

and the coupling between two coplanar waveguides in cQED

[40, 43]. While for the mechanical oscillators, the resonator-

resonator interaction, i.e., Vmech � t′(x̂1 − x̂2)2, should

generally include the reorganization terms (x̂2
1 and x̂2

2),

which may become negligible compared to ωa in the weak

interaction limit.

Next, we try to obtain the eigenvalues and eigenstates of the

Hamiltonian (Section 1). Specifically, if we include the coordinate

and momentum operators of the resonators as x̂i � 1��
2ωi

√ (â†i + âi)
and p̂i � i

��
ωi
2

√
(â†i − âi), the Hamiltonian Ĥs can be reexpressed

as Ĥs � ∑i�1,2(ω2
i x̂

2
i + p̂2

i )/2 +2t �����
ω1ω2

√
x̂1x̂2 − (ω1 + ω2)/2+

ε
2σ̂z + σ̂z∑i�1,2λi

���
2ωi

√
x̂i. To diagonalize Ĥs, we further

introduce the canonical coordinate operators q̂1 � cos θ
2x̂1 −

sin θ
2x̂2 and q̂2 � sin θ

2x̂1 + cos θ
2x̂2, with the angle
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tan θ � 4t
�����
ω1ω2

√ / ω2
2 − ω2

1( ). (2)

Hence, the Hamiltonian (Section 1) is reexpressed as

Ĥs � ∑
i�1,2

Eid̂
†

i d̂i + ε

2
σ̂z + σ̂z ∑

i�1,2
Λi d̂

†

i + d̂i( ), (3)

where d̂i � ( ����
Ei/2

√
q̂i + i

�����
1/2Ei

√
p̂qi

) is the new bosonic operator,

with the momentum operator p̂qi
� i

����
Ei/2

√ (d̂†i − d̂i), which

creates (annihilates) one photon with the eigen-mode energy

Ei �
�������������������������������������
1
2

ω2
1 + ω2

2( ) + −1( )i
������������������
ω2
2 − ω2

1( )2 + 16t2ω1ω2

√[ ]√
, (4)

under the bound t≤
�����
ω1ω2

√
/2 as shown in Figure 1B, and the

modified qubit-resonator coupling strengths are given by.

Λ1 � ∑
i

λi cos
θi
2

�����
ωi/E1

√
, (5a)

Λ2 � ∑
i

λi sin
θi
2

�����
ωi/E2

√
, (5b)

With θ1 = θ, θ2 = θ + π. The constant coefficient in Eq. 3 is ignored

for safety for dissipative dynamics and steady state. Hence, the

eigenstates are expressed as

|ψσ
n〉 � |σ〉⊗ Πi exp − Λσ

i /Ei( ) d̂
†

i − d̂i( )[ ] d̂
†

i( )ni���
ni!

√ |0〉di
⎧⎪⎪⎨⎪⎪⎩

⎫⎪⎪⎬⎪⎪⎭, (6)

with σ = {↑, ↓}, Λ↑
i � Λi, Λ↓

i � −Λi, and the vacuum state

d̂i|0〉di � 0. And the corresponding eigenvalues are shown as

En,σ � ∑
i�1,2

niEi − Λ2
i /Ei[ ] + εσ/2. (7)

with ε↑ = ε, ε↓ = −ε, and n = [n1, n2] (ni = 0, 1, 2,/ ). In absence of t,

the eigen-energy Ei (4) is reduced to ωi, and the modified coupling

strengths becomeΛσ
i � λσi . Then, the eigenstates are characterized as

|ψn,σ〉 � |σ〉⊗ Πi�1,2 exp[−(λσi /ωi)(â†i − âi)] (â
†
i )ni��
ni!

√ |0〉ai{ }, and the

corresponding eigenvalues are shown as En,σ � ∑i(niωi − λ2i /ωi) +
εσ /2.

Quantum dressed master equation

In practice, the quantum system inevitably interacts with

surrounding environments. Hence, the qubit and optical

resonators may individually interact with bosonic thermal

baths. Accordingly, the total Hamiltonian, including the

quantum system, thermal reservoirs, and their interactions, is

expressed as

Ĥtot � Ĥs + Ĥr +∑2
i�1

V̂ri
⎛⎝ ⎞⎠ + Ĥq + V̂q( ). (8)

Specifically, the r-th thermal reservoir connecting is described as

Ĥr � ∑kωk,râ
†
k,râk,r, where â†k,r (âk,r) creates (annihilates) one

boson in the r-th thermal reservoir with the frequency ωk,r. The

interaction between the i-th resonator and the reservoir is

given by

Vri � â†i + âi( )∑
k

gk,riâ
†
k,r +H.c.( ), (9)

where gk,ri denotes the coupling strength. Here, we consider each

optical resonator is separately coupled with the r-th thermal

reservoir. Hence, the interaction between the i-th resonator and

FIGURE 1
(Color online) (A) Schematic illustration of the nonequilibrium two-mode qubit-resonator model. The yellow circle marked with âi denotes the
i-th optical resonator, the black wave curve describes the interaction between nearest-neighbouring resonators, the blue circle embedded with two
horizontal lines andmarked with σ̂ shows the two-level qubit, the double-arrowed line with λimeans the interaction between the i-th resonator and
the qubit, and the orange (blue) rectangles is the r (q)-th bosonic thermal reservoir, characterized as the temperature Tr (Tq). (B) eigen-energies
E1/ωa and E2/ωa at Eq. 4 as functions of t/ωa, with ω1 = ω2 = ωa.
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the reservoir can be characterized as the spectral function

γri(ω) � 2π∑k|gk,ri|2δ(ω − ωk). And the r-th reservoir induced

interference is ignored [50], i.e., 2π∑kgk,rig
p
k,rj

δ(ω − ωk) � 0 for

i ≠ j. While the q-th thermal reservoir coupled with the qubit is

described as Ĥq � ∑kωk,qâ
†
k,qâk,q, where â†k,q (âk,q) means the

bosonic creation (annihilation) operator with the frequency ωk,q.

The qubit-reservoir interaction is given by

V̂q � σ̂x ∑
k

gk,qâ
†
k,q +H.c.( ), (10)

with gk,q being the coupling strength, which is characterized as

the spectral functions γq(ω) = 2π|gk,q|
2δ(ω − ωk). We select the

Ohmic case of the spectral functions in this work, i.e., γu(ω) =

αuω exp( − |ω|/ωc), with αu the dissipation strength and ωc the

cutoff frequency.

Then, we assume the interactions between the quantum

system and thermal reservoirs are weak. Under the Born-

Makov approximation, we may properly perturb them to

obtain the quantum master equation within the eigenstate basis

of Ĥs. Since we focus on the steady-state behavior of the qubit-

resonator hybrid system, we properly obtain the DME as [51–53].

d

dt
ρ̂s t( ) � −i Ĥs, ρ̂s t( )[ ] + ∑

u�r1 ,r2 ,q;n,n′,σ,σ′
×

Γ+u En′,σ′
n,σ( )L |ψσ′

n′〉〈ψσ
n|[ ]ρ̂s t( ){

+Γ−u En′,σ′
n,σ( )L |ψσ

n〉〈ψσ′
n′|[ ]ρ̂s t( )},

(11)

Where ρ̂s(t) is the reduced density operator of the multi-

mode qubit-resonator system and the dissipator is given by

L D̂[ ]ρ̂s t( ) � D̂ρ̂s t( )D̂† − 1
2

D̂
†
D̂ρ̂s t( ) + ρ̂s t( )D̂†

D̂[ ]. (12)

The transition rate contributed by the i-th resonator and r-th

reservoir is described as

Γ±ri En′,σ
n,σ( ) � δn1 ,n1′−1δn2 ,n2′γri ± E1( )nr ± E1( ) ×

n1′
ωi

E1
cos2

θi
2

+δn1 ,n1′δn2 ,n2′−1γri ± E2( )nr ± E2( ) ×
n2′
ωi

E2
sin2θi

2
,

(13)

By considering relations

â†j + âj � cos θj
2

��
ωj

E1

√
(d̂†1 + d̂1) + sin θj

2

��
ωj

E2

√
(d̂†2 + d̂2), with γu( −

ω)nu( − ω) = γu(ω)[1 + nu(ω)], En′,σ′
n,σ � En′,σ′ − En,σ , and

δn,n′ = 1 for n = n′ and δn,n′ = 0 for n ≠ n′. The nonzero rate

assisted by the q-th reservoir is given by

Γ±q En′,�σ
n,σ( ) � Θ En′,σ′

n,σ( )γq ± En′,�σ
n,σ( )nq ± En′,�σ

n,σ( ) ×
D2

n1 ,n1′ 2Λ1/E1( )D2
n2 ,n2′ 2Λ2/E2( ), (14)

Where Θ(x) = 1 for x > 0 andΘ(x) = 0 for x ≤ 0, the coherent

state overlap coefficient is specified as [54, 55].

Dnm x( ) � e−x
2/2 ∑min n,m[ ]

l�0

−1( )l ����
n!m!

√
xn+m−2l

n − l( )! m − l( )!l! , (15)

and the Bose-Einstein distribution function is given by

nu(En′,σ′
n,σ ) � 1/[exp(En′,σ′

n,σ /kBTu) − 1], with kB the Boltzmann

constant and Tu the temperature of the u-th thermal

reservoir. Both Γ+u(En′,�σ
n,σ ) and Γ−u(En′,�σ

n,σ ) become zero as

En′,�σ
n,σ � 0, for the phonon with ω = 0 can not support the heat

transport.

The transition rate 13) involved with the r-th thermal

reservoir and the i-th resonator is individual contributed by

two eigen-mode channels, (i.e., d̂1 and d̂2). For each channel, the

local detailed balance relation is still valid, i.e., γri(Ej)nr(Ej)/
(γri(Ej)[1 + nr(Ej)] � exp(−Ej/kBTr). While the rate 14) into

the q-th reservoir via the qubit is cooperatively determined by

qubit-photon scattering processes, which are characterized as the

coherent state overlap coefficient (15).

Based on DME (11), the steady-state heat current mediated

by the subsystem component (resonators and qubit) into the

corresponding thermal reservoir is expressed as

Ju � ∑
n,n′,σ,σ′

Θ En′,σ′
n,σ( )En′,σ′

n,σ ×

Γ−u En′,σ′
n,σ( )ρn′,σ′ − Γ+u En′,σ′

n,σ( )ρn,σ[ ], (16)

Where the dynamical equation of the density matrix element

is given by ρn,σ � 〈ψσ
n|ρ̂s|ψσ

n〉 and the steady state is obtained by

dρn,σ/dt = 0. During the numerical calculation, we need to

truncate the photon number, i.e., ni ≤ 40, to practically obtain

the steady state and the heat flow.

Results and discussions

Steady-state heat current

We first study the influence of resonator-resonator coupling t

on the behavior of steady-state heat current into the q-th thermal

reservoir in Figure 2A. Before the analysis, we approximately

characterize the weak couplings as t/ωa≲0.01 and λ/ωa≲0.01,
which may fulfill the relations t/ωa≪1 and λ/ωa≪1. While for

strong couplings, we quantify as t/ωa≳0.2 and λ/ωa≳1, where
multi-photon processes may be included. In the weak qubit-

resonator coupling regime with a given λ/ωa, Jq is monotonically

suppressed by tuning the resonator-resonator interaction

strength. On the contrary, at strong qubit-resonator coupling

the heat current is dramatically enhanced by increasing t.

Furthermore, Jq generally exhibits nonmonotonic behavior

with the increase of the qubit-resonator interaction strength.

We also give a comprehensive picture of the effects of both qubit-

resonator and resonator-resonator couplings on the heat current

in Figure 2B. It is shown that at strong λ and large t the optimal

regime of Jq is broadened compared to the one with t = 0. Hence,

we conclude that the resonator-resonator interaction indeed

significantly contributes to the steady-state heat current.

Next, we try to analyze the heat current from the analytical

view. Based on the case of identical resonators we set in Figure 2,
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the modified qubit-resonator coupling strengths (5a) and (5 b)

are specified as Λ1 = 0 and Λ2 �
�
2

√
λ. Hence, the bosonic eigen-

mode d̂1 is effectively decoupled from the qubit, as shown in

Figure 2C, which shows no contribution to the steady-state heat

current. The heat transport system can be reduced to the single-

mode qubit-resonator model [45].

At weak qubit-resonator coupling (λ/ωa≪1), the coherent

state overlap coefficient 15) with Λ2/E2≪1 is simplified as

Dnm(2Λ2/E2) ≈ (−1)n[δn,m + (2Λ2/E2)
�����
n + 1

√
δn,m−1

−(2Λ2/E2) �
n

√
δn,m+1]. Then, the transition rate assisted by the q-

th reservoir is approximated as.

Γ±q En′,↑
n,↓( ) ≈ δn1 ,n1′ δn2 ,n2′γq ± ε( )nq ± ε( )[

+δn2 ,n2′−1γq ± E2 + ε( )( )nq ± E2 + ε( )( ) ×
n2′

2Λ2

E2
( )2], (17a)

Γ±q En′,↓
n,↑( ) ≈ δn1 ,n1′δn2 ,n2′−1γq ± E2 − ε( )( )nq ± E2 − ε( )( ) ×

n2′
2Λ2

E2
( )2

.
(17b)

And the zeroth order of steady state population is obtained as.

P 0( )
n,↑ ≈

1 − e−βrE1( ) 1 − e−βrE2( )
eβqε + 1

e−βr n1E1+n2E2( ), (18a)

P 0( )
n,↓ ≈

1 − e−βrE1( ) 1 − e−βrE2( )
e−βqε + 1

e−βr n1E1+n2E2( ), (18b)

With βu = 1/kBTu. Moreover, if we reexpress the populations in

the vector form |ρs〉, the steady-state solution based on Eq. 11

becomes L|ρs〉 � 0. Then, we approximately expand

|ρs〉≈|ρ(0)s 〉 + (Λ2/E2)2|ρ(1)s 〉 and L ≈ L(0) + (Λ2/E2)2L(1). The
steady-state solution is given by L(0)|ρ(0)s 〉 � 0 and

L(0)|ρ(1)s 〉 + L(1)|ρ(0)s 〉 � 0. Accordingly, the heat current based

on the expression (16) is can be obtained, which is contributed by

two cyclic components

Jq ≈
2Λ2

E2
( )2

× E2 I1 E2( ) + I2 E2( )[ ], (19)

where.

I1 E2( ) � γq E2 + ε( )
2nq ε( ) + 1

1 + nq ε + E2( )( )nq ε( )nr E2( )[
−nq ε + E2( ) 1 + nq ε( )( ) 1 + nr E2( )( )], (20a)

I2 E2( ) � γq E2 − ε( )
2nq ε( ) + 1

1 + nq E2 − ε( )( ) 1 + nq ε( )( )nr E2( )[
−nq E2 − ε( )nq ε( ) 1 + nr E2( )( )], (20b)

Which are described in Figure 2D,E. Physically, the loop of I1(E2)

is established as |ψ↑
n1 ,n2+1〉→|ψ↓

n1 ,n2
〉→|ψ↑

n1 ,n2
〉→|ψ↑

n1 ,n2+1〉,
whereas the cycle transitions of I2(E2) is specified as

|ψ↑
n1 ,n2+1〉→|ψ↓

n1 ,n2+1〉→|ψ↑
n1 ,n2

〉→|ψ↑
n1 ,n2+1〉. Trough these two

heat transport processes, the energy quanta E2 is delivered

from the r-th reservoir to the q-th one. As t is tuned up, both

the factor Λ2
2/E2 and the current components (I1 + I2) are

gradually suppressed, which leads to the monontonic

suppression of Jq. Moreover, by comparing the current in the

single-resonator limit N = 1, i.e., Jq(N = 1) = (4λ2/ωa)I1(ωa), the

current without resonator-resonator coupling becomes

Jt�0q � 2Jq(N � 1). We note that though transport pictures of

FIGURE 2
(Color online) (A) Steady state heat current Jq/ωa as a function of the qubit-resonator interaction strength λ/ωa, with typical resonator-resonator
couplings t/ωa. (B) Heat current Jq/ωa as functions of λ/ωa and t/ωa. (C) Schematic illustration of the Hamiltonian at Eq. 3 with Λ1 = 0. (D) and (E) are
cyclic current components in Eq. 20a and Eq. 20b, respectively. Other system parameters are given by ε= ωa, λ1 = λ2 = λ, α1 = α2 = 0.001ωa, ωc = 20ωa,
Tr = 1.5ωa, and Tq = 0.5ωa.
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both the dissipative two-mode qubit-resonator model and the

single-mode case are characterized as cycle transition processes,

they are microscopically distinct. Specifically, 1) the modified

qubit-resonator interaction (Λi) and eigen-mode energy (Ei)

induced by the resonator-resonator coupling dramatically

affect the expression of heat current Jq; (ii) the existence of

the transition rate results in the generation of the cycle flux

component I2.

While at strong qubit-resonator coupling, e.g., λ/ωa≳1, qubit-
photon scattering effects dominate the transition processes,

which are characterized as the coefficient (15). Such analogous

effects generally suppress the heat transport, as shown in

Figure 2A and previous works, e.g., nonequilibrium spin-

boson model [56–59] and quantum Rabi model [29]. In

particular, the crucial factor to quantify such scattering is Λ2/

E2. Thus, by increasing t it is found that the factor shows

monotonic reduction. As a consequence, the scattering

processes are weakened accordingly, which finally enhances

the heat current. Therefore, we explain the underlying

mechanisms of the influence of the resonator-resonator

interaction on the heat current in weak and strong qubit-

resonator coupling limits.

Negative differential thermal conductance
and thermal rectification

Inspired by the cycle transition features of the steady state

heat current with weak qubit-resonator interaction, we first study

the negative differential thermal conductance (NDTC) in the

two-mode qubit-resonator model. NDTC is widely considered as

one generic nonlinear feature in nonequilibrium heat transport

[60–64], which is characterized as the heat current, e.g., Jq, being

reduced with the increase of the reservoir temperature bias

ΔT = Tr − Tq. In phononics, NDTC was originally introduced

by B. Li and his colleges to analyze heat flow in classical

phononic lattices [63]. As a consequence, tremendous open

quantum systems have been unraveled to exhibit NDTC. In

particular, D. Segal [65] and Cao et al. [66] individually applied

the noninteracting blip approximation and canonically

transformed Redfield equation to explore the effect of

NDTC with strong system-bath interactions. Ren et al. [67]

included the spin-boson-fermion systems to propose spin-

NDTC based on the Landauer formula expression of the

heat current. Moreover, Giazotto et al. [68] designed the

superconducting devices to measure NDTC by modulating

the superconducting gap with the temperature.

Here, we show NDTC in the two-mode qubit-resonator

model with identical resonators in Figure 3A. In absence of

the resonator-resonator interaction, the heat current is reduced

to Jt�0q � 2(λ2/ωa)I1(ωa), which is fully determined via single-

type cycle transition process in Figure 2D. And the microscopic

picture is identical with single qubit-resonator model [45].

Specifically, it exhibits nonmonotonic behavior by tuning up

the temperature bias, i.e., initial enhancement and later

suppression. Finally the heat current is completely eliminated

at large ΔT (e.g., Tr = 2ωa and Tq = 0), which originates from the

empty occupation of bosons in the q-th reservoir, i.e., nq(ε) = 0

and nq(ε + ωa) = 0. Then, we tune on the resonator-resonator

interaction. It is found that the signature of NDTC persists in the

FIGURE 3
(Color online) (A) Steady-state heat current into the q-th reservoir Jq/ωa; (B) current components I1 (20a), I2 (20b), and I1 + I2 as functions of
kBΔT/ωa at t = 0.01ωa; (C) thermal rectification factor R as a function of the temperature bias and resonator-resonator coupling strength; (D) the
asymmetric behavior of heat current Jq/ωa by tuning kBΔT/ωa. Other system parameters are given by ω1 = ω2 = ωa, ε = ωa, λ1 = λ2 = 0.01ωa, α1 = α2 =
0.001ωa, ωc = 20ωa, Tr = ωa/kB + ΔT/2, and Tq = ωa/kB − ΔT/2.
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whole temperature bias regime. However, NDTC is determined

by two kinds of cycle transition processes as shown in

Figure 2D,E, corresponding to I1 and I2. In particular, I2
dramatically contributes to NDTC even at rather weak

resonator-resonator coupling, e.g., the blue-solid-triangle line

at t = 0.01ωa in Figure 3B. Moreover, the signature of NDTC

is gradually suppressed with the increase of t, which stems from

robustness of cycle transition process of I2, partially characterized

as the resultant part at large bias limit, i.e., I2 ≈ γq(E2 − ε)nr(E2)

from Eq. 19.

We also study the thermal rectification effect by modulating

the temperature bias, which is another representative nonlinear

character in nonequilibrium thermal transport. The concept of

thermal rectification is introduced as that the heat flow in one

direction is larger than the counterpart in the opposite

direction [63, 69]. We characterize the rectification by the

factor

R � |Jq ΔT( ) + Jq −ΔT( )|
|Jq ΔT( ) − Jq −ΔT( )|, (21)

where Jq(ΔT) denotes the current under the setting of

temperatures Tr = ωa/kB + ΔT/2 and Tq = ωa/kB − ΔT/2. Such
effect becomes perfect as |Jq(ΔT)|≫|Jq( − ΔT)| (i.e., R = 1) and

vanishing as Jq(ΔT) ≈ − Jq( − ΔT) (i.e., R = 0). Figure 3C clearly

exhibits the giant heat amplification factor at large temperature

bias, mainly due to the asymmetric behavior of heat current Jq by

tuning ΔT from negative to positive regimes, as shown in

Figure 3D. Specifically, the disappearance of the current at

ΔT = 2ωa and t = 0 results in the perfect thermal rectifier,

whereas the existence of resultant current at finite t

comparatively reduces thermal rectification factor. Therefore,

we conclude that microscopic cycle transition processes are

crucial to exhibit NDTC and significant thermal rectification

in two-mode qubit-resonator model.

Resonator-resonator coupling enhances
heat transport

To show the ability of the resonator-resonator interaction to

modulate the heat transport, we tune off the interaction between

the 1-st resonator and the qubit, as shown in Figure 4A.

Straightforwardly, the heat current Jr1 always keeps vanishing

as t = 0. While by tuning on resonator-resonator coupling in case

of identical resonators (ωi = ωa, i = 1, 2), the modified qubit-

photon interaction strengths become Λ1 � −λ2
��������
ω2/(2E1)

√
and

Λ2 � λ2
��������
ω2/(2E2)

√
, which implies that two eigen-modes of

resonators, i.e., d̂1 and d̂2, will both contribute to the heat

transport, as depicted in Figure 4B. It is interesting to find

that even with weak resonator-resonator coupling (e.g., t/ωa =

0.01), the heat current Jr1 in Figure 5A behaves quite similar with

Jr2 in Figure 5B. Based on the expression of transition rates at

Eqs. 13 with θ = π/2, Γ±r1(En′,σ
n,σ ) � Γ±r2(En′,σ

n,σ ) can be directly

obtained. Each eigen-mode channel shows identical

contribution to these two rates. This clearly demonstrates that

actually Jr1 � Jr2 by combing the expression of the heat current at

Eq. 16. It also leads to Jq � 2Jr2 as exhibited in Figure 5C.

Moreover, we analyze the effect of the resonator-resonator

interaction on Jr1 with distinct resonators. With weak resonator-

resonator coupling [t/(ω2 − ω1)≪1], θ becomes vanishing. Hence,

the heat flow via the 1-th resonator is dramatically blocked. It is

expected to see Jr1 is much weaker than Jr2, i.e., Jq ≈ Jr2, which

are also shown in Figures 5D–F. As a result, the two-mode qubit-

resonator transport system is reduced to the standard single-

mode qubit-resonator case [45]. While by increasing the

resonator-resonator coupling, e.g., t = 0.4ωa, it is interesting

to find that Jr1 becomes comparable with Jr2, due to dramatic

hybridization of two resonators (θ = π/2). Therefore, we conclude

that though the 1-th resonator is decoupled from the qubit, the

inclusion of the resonator-resonator interaction will open heat-

FIGURE 4
(Color online) (A) Schematic illustration of the two-mode qubit-resonator model with λ1 = 0 and (B) the corresponding eigen-mode model.
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exchange channels, which significantly contributes to the heat

current Jr1.

Conclusion

To summarize, we study nonequilibrium thermal transport

in the dissipative two-mode qubit-resonator model by applying

quantum DME combined with extended coherent photon states,

where optical resonators and the qubit are individually coupled

with thermal reservoirs. By properly treating the resonator-

resonator interaction, we obtain the eigensolution of the two-

mode qubit-resonator model. Then, we analyze the influence of

the qubit-resonator coupling and resonator-resonator

interaction on steady-state behaviors of heat currents. The

currents are suppressed with the increase of resonator-

resonator interaction strength at weak qubit-resonator

coupling. It mainly results from the eigen-mode energies of

coupled resonators (4), based on the analytical expression of

cycle heat current components (19). In contrast, the currents are

monotonically enhanced in strong qubit-resonator coupling

regime, which is mainly attributed to the reduction of the

effective qubit-resonator coupling in Eq. 15 by tuning up

resonator-resonator interaction strength. Hence, the resonator

hybridization and the directional cycle transition processes

cooperatively contribute to the nontrivial behaviors of steady-

state heat currents.

Inspired by cycle transition components of heat current at

weak qubit-resonator coupling, we also investigate two

representative nonlinear thermal effects, i.e., NDTC and

thermal rectification. NDTC is unraveled at large temperature

bias and keeps robust even with strong resonator-resonator

interaction strength. The microscopic cycle transition

processes (20a) and (20b) determine the appearance of

NDTC. Meanwhile, the significant thermal rectification effect

is observed in a wide regime of qubit-resonator and resonator-

resonator couplings, which becomes perfect in absence of the

resonator-resonator interaction.

Moreover, we show the effect of the resonator-resonator

interaction on indirectly heat transport, by tuning off the

interaction between the 1-st resonator and the qubit. It is

interesting to find that for identical resonators the heat

current Jr1 (flowing into r-th reservoir mediated by the 1-th

resonator) dramatically becomes identical with Jr2 even at

weak resonator-resonator coupling. While for the case of

distinct resonators, the effective angle θ gradually increases

from 0 to π/2 with the increase of resonator-resonator

interaction strength, which leads to the monotonic

enhancement of Jr1. Therefore, the resonator-resonator

interaction can be considered as one route to efficiently

realize the indirect heat transport.

We hope that the analysis of quantum heat transport and

thermal management in the two-mode qubit-phonon system

may provide physical insight for smart energy control in photon-

based hybrid quantum systems. In the future, it should be

intriguing to explore the steady-state heat flows in multi-

mode qubit-resonator systems, e.g., three-mode qubit-

resonator model [70].

FIGURE 5
(Color online) Steady-state heat currents as functions of qubit-resonator (λ/ωa) and resonator-resonator (t/ωa) coupling strengths. We obtain
(A–C) at ω1 = ω2 = ωa and (D–F) at ω1 = 0.9ωa and ω2 = 1.1ωa. Other system parameters are given by ε = ωa, λ1 = 0, λ2 = λ, α1 = α2 = 0.001ωa, ωc = 20ωa,
Tr = 1.5ωa, and Tq = 0.5ωa.
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Appendix A: Derivation of Eq. 11.

Starting from Eq. 8, we assume that system-bath interactions

are weak. Under the Born-Markov approximation, we

individually perturb V̂ri and V̂q up to the second order to

obtain the quantum generalized master equation as [52].

zρ̂s t( )
zt

� −i Ĥs, ρ̂s t( )[ ] + 1
2

∑
ω,ω′;u�r1 ,r2 ,q

×

κu ω′( ) P̂u ω′( )ρ̂s t( ), P̂u ω( )[ ] +H.c.{ }, (A1)

Where the rate is given by κu(ω) = γu(ω)nu(ω), with the Bose-

Einstein distribution function nu(ω) = 1/[ exp(ω/kBTu) − 1], the

projecting operators based on the eigenstates are given by

[â†i (−τ) + âi(−τ)] � ∑ωP̂ri(ω)e−iωτ and

σ̂x(−τ) � ∑ωP̂q(ω)e−iωτ , with P̂ri(ω) � ∑n,m〈ψn|(â†i +
âi)|ψm〉δ(ω − Enm)|ψn〉〈ψm| and

P̂q(ω) � ∑n,m〈ψn|(σ̂x|ψm〉δ(ω − Enm)|ψn〉〈ψm|, the

eigensolution is given by Ĥs|ψn〉 � En|ψn〉, and the energy

gap becomes Enm = En − Em.

It should be noted that for the finite-time evolution, the off-

diagonal elements of the density operator are generally coupled

with the diagonal ones in the eigenspace. However, after a long-

time evolution, the off-diagonal elements gradually become

ignored in the present model. Hence, the populations are

naturally decoupled from the off-diagonal elements, which

reduces the pair of projecting operators P̂u(ω) and P̂u(ω′) to
P̂u(ω � Enm) � 〈ψn|Âu|ψm〉|ψn〉〈ψm| and P̂u(ω � Emn) �
〈ψm|Âu|ψn〉|ψm〉〈ψn|, with Âri � (â†i + âi) and Âq � σ̂x.

Accordingly, the generalized mater equation is reduced to the

dressed master equation [51]

zρ̂s t( )
zt

� −i Ĥs, ρ̂s t( )[ ] + ∑
j,k>j;u�r1 ,r2 ,q

×

Γjku 1 + nu Δkj( )( )L |ϕj〉〈ϕk|, ρ̂s t( )[ ]{
+Γjku nu Δkj( )L |ϕk〉〈ϕj|, ρ̂s t( )[ ]},

(A2)

Where the dissipative is given by

L |ψn′〉〈ψn|[ ]ρ̂s � |ψn′〉〈ψn|ρ̂s|ψn〉〈ψn′|
−1
2

|ψn〉〈ψn|ρ̂s +H.c.( ). (A3)

Based on DME (section A2) and specifying |ψk〉 = |ψn,σ〉 and
Ek = En,σ, the dynamical equation of the density matrix element

ρn,σ � 〈ψσ
n|ρ̂s|ψσ

n〉 is obtained as

d

dt
ρn′,σ′ � ∑

n,σ,u

Γ+u En′,σ′
n,σ( )ρn,σ − Γ−u En′,σ′

n,σ( )ρn′,σ′[ ]{
+ ∑

n,σ,u

Γ−u En,σ
n′,σ′( )ρn,σ[{

−Γ+u En,σ
n′,σ′( )ρn′,σ′]}, (A4)

Where the rates are specified in Eqs 13, 14.
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