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Awareness of epidemics can influence people’s behavior and further trigger

changes in epidemic spreading. Previous studies concentrating on the coupled

awareness-epidemic dynamics usually ignore the multi-type information and

the heterogeneity of individuals. However, the real-world cases can be more

complicated, and the interaction between information diffusion and epidemic

spreading needs further study. In this article, we propose an individual-based

epidemics and multi-type information spreading (IEMIS) model on two-layered

multiplex networks considering positive and negative preventive information

and two types of heterogeneity: 1) heterogeneity of aware individual’s state

which leads to differences in aware transmission capacity and 2) heterogeneity

of individual’s node degree which affects the epidemic infection rate. Based on

Micro-Markov Chain approach (MMCA), we derive the theoretical epidemic

threshold for the proposed model and validate the results by those obtained

with Monto Carlo (MC) simulations. Through extensive simulations, we

demonstrate that for epidemics with low infectivity, promoting the diffusion

of positive preventive information, enhancing the importance ratio of neighbors

who are aware of positive information, and increasing social distance among

individuals can effectively suppress epidemic spreading. However, for highly

infectious diseases, the influence of these factors becomes limited.
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Introduction

Pandemics are major threats to human society Morens et al. [1]. Recently, during the

COVID-19 pandemic, epidemic-related information diffused by official media, mass

media, or relatives and friends has aroused public awareness. Crisis awareness or negative

emotions may propagate among individuals. Such awareness can further influence
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people’s decision-making or behavior, for e.g., wearing masks,

reducing physical contact with others, and receiving the

vaccination, and as a result, may trigger changes in epidemic

spreading Ferguson [2]; Wang et al. [3]; Funk et al. [4]; Funk et al.

[5]; Ruan et al. [6]. Therefore, it is necessary to understand the

interaction between information diffusion and epidemic

propagation, and this topic has gained much attention in

recent studies Arefin et al. [7]; Kabir and Tanimoto [8];

Nadini et al. [9]; Hota and Sundaram [10]; Li and Li [11].

Recent studies on the coupled awareness-epidemic dynamics

usually used two asymmetrical networks to represent two spreading

processes Wang et al. [12]; Jia et al. [13]; Guo et al. [14]; Zhan et al.

[15];Wang et al. [16],Wang et al. [17]. For example, Kabir et al. [18]

constructed a two-layer SIR-UA (susceptible-infected-recovered/

unaware-aware) model to study the interaction between physical

contact and information diffusion on epidemic spreading. Xia et al.

[19] considered the influence of mass media in information

diffusion in the awareness-epidemic model and derived the

epidemic threshold which is correlated with the multiplex

network topology. Guo et al. [20] incorporated three types of

heterogeneity with the coupled awareness-epidemic spreading

model and pointed out that the heterogeneity has two-stage

effects on the epidemic threshold. Li et al. [21] used a temporal

multiplex network to study the spatial–temporal properties of

multiplex networks to the epidemic spreading. Jia et al. [13]

proposed a multi-layer activity-driven network that investigates

disease diffusion with self-protection awareness. Their results

indicate the impact of network structure and propagation

parameters on the epidemic threshold. Kabir et al. [22] presented

a susceptible –vaccinated– infected–recovered (SIR/V) with the

unaware–aware (UA) epidemic model to study the impact of

vaccination on epidemic dynamics. Based on their model, they

studied the vaccination game with different types of strategy

updating rules and different network topologies.

In the real world, the prevalence of public discussion on

epidemics varies and does not always bring about a positive effect

on the epidemic spreading Depoux et al. [23]; Ahmad andMurad

[24]. For instance, individuals may become vigilant or scared and

take protective measures when they receive information

regarding the pandemic through official media. That is, a

positive correlation between the protective measures taken by

individuals and the spread of awareness could be built. However,

based on the diversification of information, individuals may be

affected by misdirected information regarding the disease

spreading on social media and thus become irrational to the

epidemic. Irrational behaviors including irrational antimicrobial

prescribing Parveen et al. [25], irrational beliefs Teovanovic et al.

[26], and panic buying Arafat et al. [27] can facilitate the

propagation of epidemics by individuals’ improper protective

measures. Hence, information diffusion can also lead to a

negative correlation between information diffusion and the

spread of the epidemic. The issue how the interaction of

different types of information influences epidemic propagation

has been further studied. To distinguish the impact of different

types of information on disease spread, Zhang et al. [28]

introduced a nonlinear dependence of the epidemic infection

rate representing the effect of different forms of dependence on

the coevolving dynamics. In addition, Wang et al. [29] studied

the impact of positive and negative epidemic-related information

on disease spread. These studies pointed out the significance of

information diversity on the propagation of epidemics. However,

assumptions for multiple preventive information are still limited

and do not consider the individual heterogeneity in the diffusion

of information.

Early studies usually assume that individuals are treated

equally, namely, individuals have the same response to

epidemics after being aware of the protective measures, and

each infected or aware individual has the same influence on

their neighbors. In fact, the individual differences lie in its

characteristics and relationship with the affected neighbors

(e.g., number of contacts, states, and intimacy with infected

neighbors) Wang et al. [17]; Liu et al. [30]; Guo et al. [31];

Zhang et al. [32]. For instance, highly connected individuals (hub

nodes) have higher infectious rates compared with those lowly

connected individuals (weak nodes). In other words, individuals

who have large social circles are more likely to affect others or be

affected by their neighbors. In recent years, there has been an

increasing focus on the study of the influence of individual

heterogeneity on epidemic dynamics. Guo et al. [33] described

the heterogeneity by using degree and k-core measures in three

models based on different assumptions. Results showed a

difference in the final epidemic size between the k-core

measure and the degree measure. Chen et al. [34] proposed a

resource-epidemic co-evolution model in order to study the

influence of allocation of individual resources on the dynamic

of an epidemic. Also, they came to the conclusion that the

heterogeneity of self-awareness distribution suppresses the

outbreak of an epidemic. Pan and Yan [35] incorporated the

heterogeneity of individual response to disease, the heterogeneity

of influence in the epidemic network, and the heterogeneity of

influence in the information network in a coupled awareness-

epidemic spreading model in multiplex networks. Although

studies mentioned previously highlight the necessity of

considering individual heterogeneity in the information-

epidemic multiplex network-based model, such heterogeneity

is simple compared to the reality. Therefore, the issue how

individual heterogeneity impacts the interplay between

epidemics spreading and awareness diffusion requires further

study.

Motivated by the aforementioned considerations, we propose

an individual-based epidemics and multi-type information

spreading (IEMIS) model upon multiplex networks. To

investigate the impact of multi-type information, we introduce

two types of information: 1) positive and 2) negative preventive

information. The diffusion of awareness can reduce or increase

the risk of infection depending on its type. Considering that the
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diffusion speed of awareness is also related to the information

type and the epidemic dynamics, the transmission rate of

different types of information varies. Moreover, to explore the

influence of individual heterogeneity on the interaction between

information and disease, two types of heterogeneity are

considered: 1) heterogeneity of aware individuals’ states

(health state and information type) which contributes to

different aware transmission capacities and 2) heterogeneity of

individual’s node degree which influences the epidemic infection

rate. In this study, we aim to answer the following questions: 1)

how do two classes of information affect epidemic spreading

when considering individual heterogeneity? 2) how do the two

types of individual heterogeneity affect epidemic spreading? and

3) how do the other disease-related or information-related

parameters influence the individual heterogeneity?

The remainder of this article is organized as follows. In

Section 2, we describe the individual-based epidemics and

multi-type information spreading model. In Section 3, we

analyze the proposed model by MMCA and derive the

analytical expression of the epidemic threshold. In Section 4,

we compare the results simulated by MMC and MC methods,

validate the accuracy of the MMC method, and investigate the

impact of different types of information and individual

heterogeneity. In Section 5, we present some concluding

remarks for our findings.

Model description

In this article, we proposed an individual-based epidemics

and multi-type information spreading model (IEMIS) by two-

layered multiplex networks, as presented in Figure 1. The upper

layer represents the information diffusion based on the

information network, where links represent connections with

information spreaders such as friends on Twitter or Facebook,

while the lower layer supports the propagation of epidemics,

where links denote physical contacts among individuals, e.g.,

contacts among family members, classmates, or colleagues. Each

layer can be represented as a graph G = (V, E), where V and E

denote individuals and their links, respectively. The link setX and

Y represent the adjacency matrices of epidemic and information

networks. The description of key parameters is listed in Table 1.

The interactions between the two processes and the

corresponding propagation regulations are as follows:

Propagation rules

1. Information diffusion. In the upper layer, nodes are separated

into three types: unaware (U), aware of positive prevention

(A1), and aware of negative prevention (A2). Individuals in

state U do not have any awareness about the epidemic

FIGURE 1
Structure of the individual-based epidemics and multi-type information spreading model (IEMIS) in a two-layered network. Nodes in the
information network (the upper layer) have three possible states: unaware(U), aware of positive prevention (A1), or aware of negative prevention (A2).
Nodes in the epidemic network (the lower layer) have two possible states: susceptible (S) or infected (I). The description of key parameters is listed in
Table 1.
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prevention. Here, individuals in A1 and A2 are both aware of

the disease but take different precautions toward the disease.

Individuals in state A1 can take effective precautions toward

the disease and have lower infection rates than unaware

individuals. On the contrary, individuals in state A2 tend to

take irrational preventive measures which lead to higher

infection rates than unaware individuals. The unaware

individuals can get awareness through contact with

neighbors in state A1 (A2) with probability λ1 (λ2). Also,

individuals in state A1 and A2 may forget the awareness

with probabilities δ1 and δ2, respectively. Moreover, in

terms of the awareness-related impact on the epidemic

spreading, susceptible individuals whose states are A1 and

A2 can influence the probability of being infected by

multiplication factors f1 (0 ≤ f1 ≤ 1) and f2 (1 ≤ f2 ≤ 2),

respectively. The lower the multiplication factor is, the lower

the probability of individuals being infected is, especially

when f1 = 0, individuals are fully immune to the infectious

disease.

2. Epidemic propagation. In the lower layer, there exist two

different health-related states: susceptible(S) and infected (I).

Susceptible individuals may be infected with the probability β

by infected (I) neighbors when they are unaware of epidemics.

The susceptible individuals who are in state A1 and A2 may be

infected with probabilities f1β and f2β, respectively. Also, the

infected (I) individuals recover with the probability of μ.

3. Heterogeneity of aware individuals’ states. Aware individuals

in different states (health state and information type) have

different aware transmission capacities. It is known that, in

many cases, awareness spread by infected individuals can be

more persuasive than healthy people. Neighbors of those

infected individuals tend to be more alert to the infectious

disease and more willing to take protective measures. In

addition, individuals in A1 and A2 states also play different

roles in awareness diffusion. We assume that unaware people

are more likely to acquire positive preventive information

rather than the negative one. Compared with the former

studies Wang et al. [29], Wang et al. [17], which assume

that aware neighbors have the same contribution on

awareness spreading (important ratio of aware individuals

A1S: A1I: A2 � 1
3:

1
3:

1
3), we believe that aware neighbors have

different importance ratios based on their state

A1S: A1I: A2S � 1
3 + Δρ1: 1

3 + Δρ2: 1
3 + Δρ3 � ρ1: ρ2: ρ3(Δρ1

+ Δρ2 + Δρ3 = 0). ρ1, ρ2, and ρ3 are the health-related factors

that represent different importance ratios of awareness

spreading for individual in different states. Figure 2

presents a sketch map of the awareness diffusion between

an unaware individual and its aware neighbors.

4. Heterogeneity of individual’s node degree. The degree

distribution of the epidemic network contributes to the

heterogeneity of infection rate for susceptible individuals.

TABLE 1 Definitions of key parameters.

Parameter Description

β Probability of getting infected by infected neighbors for susceptible individuals

μ Probability of being recovered for infected individuals

δ1 Probability of being unaware of disease for A1S

δ2 Probability of being unaware of disease for A2S

λ1 Probability of being aware of positive information for US

λ2 Probability of being aware of negative information for US

f1 Positive awareness perception factor

f2 Negative awareness perception factor

ρ1, ρ2, and ρ3 Health-related factors for aware neighbors to spread awareness

1 − e−kj /∑ k Node degree-related factors for infected neighbors to spread disease

FIGURE 2
Sketch map of the awareness diffusion between unaware
individuals and their aware neighbors. u, v, and w denote the
number of A1S, A1I, and A2S, respectively. ρ1, ρ2, and ρ3 are the
health-related factors.
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The infected individuals with a large node degree mean that

they have frequent social activities and are highly connected

with their neighbors. Such hub nodes are more likely to be the

virus carrier. Hence, the node degree ki is used to represent the

impact of infected node i, and ki/∑k is regarded as the

influence weight where ∑k is the total degree of the

infected neighbors. Figure 3 shows the disease transmission

regulation between a susceptible individual and its infected

neighbors. Here, 1 − e−ki/∑ k quantifies the probability of

being infected by the infected neighbor i.

Awareness-epidemic-based dynamics

Here, we assume that once an individual is infected, the

individual would be aware of the positive preventive

information. Considering the combination of health states

and awareness states, there are four possible states in our

model: 1) US (susceptible individual who is unaware of

epidemic), 2) A1S (susceptible individual who is aware of

positive preventive information), 3) A2S (susceptible

individual who is aware of negative preventive

information), and (4) A1I (infected individual who is aware

of positive preventive information). The possible state

transition procedures are presented in Figure 4. It should

be noted that Figure 4 only indicates the state transitions of

individual i by its neighbor j who has a transmission capacity

of disease or information after a possible epidemic or

information spread. That is, Figure 4 only presents changes

in the state of individual i. Also, it does not denote a transition

in a time step for both the state in epidemic, and information

networks of individual i would change in a time step. For

example, a susceptible individual who is unaware of the

epidemic (US) would be informed by its neighbor j who is

in state A1S with a certain probability related to λ1 and ρ1. In

addition, we assume that in the upper layer once the unaware

individual receives a certain kind of information, the

individual will not be able to accept other information at

this time step.

Analytical results based on MMCA

In this section, the proposed epidemic model is analyzed, and

the epidemic threshold βc is given by MMCA. The probabilities

that one individual be in one of the four states at time t can be

given as PUS
i (t), PA1S

i (t), PA2S
i (t), and PA1I

i (t), respectively.

Restriction PUS
i (t) + PA1S

i (t) + PA2S
i (t) + PA1I

i (t) � 1 should be

satisfied at each time step t.

Let xij and yij be the adjacency matrices of the epidemic

and information network, respectively. If a link exists between

nodes i and j in the epidemic (information) network, then xij
(yij) = 1. Otherwise, xij (yij) = 0. Assuming that the possibilities

of becoming infected or aware by neighbors are independent,

we define the probability of individual i not being aware of

positive or negative information at time t by ri1(t) and ri1(t). In

addition, qUI is denoted as the probability that the susceptible

FIGURE 3
Disease transmission regulation among susceptible
individuals and their infected neighbors. m represents the number
of a susceptible individual’s infected neighbor. 1 − e−kj/∑ k denotes
the node degree related to the impact of the infected
neighbor j.

FIGURE 4
Schematic of awareness diffusion procedures and disease
spreading procedures.
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individual who is not aware of the infectious disease will not

be infected at time t. Similarly, qA1
I (qA2

I ) is denoted as the

probability that the susceptible individual who is aware of the

infectious disease by positive (negative) information will not

be infected at time t. The expressions for ri1(t), ri1(t), qUI , q
A1
I ,

and qA2
I are as follows:

ri1 t( ) � ∏
u

1 − xuiP
A1S
u t( )λ1[ ]ρ1p

∏
v

1 − xviP
A1I
v t( )λ1[ ]ρ2

ri2 t( ) � ∏
w

1 − xwiP
A2S
w t( )λ2[ ]ρ3

qA1
i t( ) � ∏

j
1 − yijP

A1I
j t( )f1β[ ]1+ 1−e−kj/∑ k( )

qA2
i t( ) � ∏

j
1 − yijP

A1I
j t( )f2β[ ]1+ 1−e−kj/∑ k( )

qUi t( ) � ∏
j

1 − yijP
A1I
j t( )β[ ]1+ 1−e−kj/∑ k( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

Here, u represents the number of neighbors of individual i in

state A1S, v represents the number of neighbors in state A1I, and

w represents the number of neighbors in state A2S. Based on the

definition of each state, transition probability trees for the four

states (US, A1S, A2S, A1I) are presented in Figure 5. As shown in

Figure 5, each individual will transmit its states according to the

transition trees and its current state in each time step. Individuals

who are aware of the positive (negative) information tend to

forget the information with probability δ1 (δ2). μ denotes the

probability of being recovered for an infected individual.

According to the transition trees, transition equations for

individual i by using MMCA are listed in Eq (2):

PUS
i t + 1( ) � PA1S

i t( )δ1qUi t( ) + PA2S
i t( )δ2qUi t( ) + PUS

i t( )ri1 t( )ri2 t( )qUi t( )
PA1I
i t + 1( ) � PA1S

i t( ) δ1 1 − qUi t( )[ ] + 1 − δ1( ) 1 − qA1
i t( )[ ]{ } + PA2S

i t( ) δ2 1 − qUi t( )[ ]+{
1 − δ2( ) 1 − qA2

i t( )[ ]} + PUS
i t( ) ri1 t( )ri2 t( ) 1 − qUi t( )[ ]+{

1 − ri1 t( ) − 1 − ri1 t( )( ) 1 − ri2 t( )( )[ ] 1 − qA1
i t( )[ ]+

1 − ri2 t( )[ ] 1 − qA2
i t( )[ ]} + PA1I

i t( ) 1 − μ( )
PA1S
i t + 1( ) � PA1S

i t( ) 1 − δ1( )qA1
i t( ) + PA1I

i t( ) 1 − δ1( )μ+
PUS
i t( ) 1 − ri1 t( ) − 1 − ri1 t( )( ) 1 − ri2 t( )( )[ ]qA1

i t( )
PA2S
i t + 1( ) � PA2S

i t( ) 1 − δ2( )qA2
i t( ) + PUS

i t( ) 1 − ri2 t( )[ ]qA2
i t( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (2)

where PUS
i (t + 1), PA1I

i (t + 1), PA1S
i (t + 1) and PA2S

i (t + 1)
represent the possibility that individual i will be in states US,

A1I, A1S, and A2S at the next time step.

When t→∞, the model will lead to a steady state and the

probabilities for individuals being in each state will be

fixed. The solution for Eq 2 should satisfy the following

equations:

PUS
i t + 1( ) � PUS

i t( ) � PUS
i

PA1I
i t + 1( ) � PA1I

i t( ) � PA1I
i

PA1S
i t + 1( ) � PA1S

i t( ) � PA1S
i

PA2S
i t + 1( ) � PA2S

i t( ) � PA2S
i

⎧⎪⎪⎪⎨⎪⎪⎪⎩ , (3)

where PUS
i , PA1I

i , PA1S
i and PA2S

i represent the probabilities of an

individual to be in states US, A1I, A1S, and A2S at the steady state.

In terms of an SIS epidemic model, the number of infected

individuals would be next to nil at the steady state when β is close

to βc; otherwise, the infectious disease transmission will persist in

the population for some time. Hence, we assume that

PA1I
i � εi ≪ 1. Also, the high-order terms in Eq 1 can be

ignored, and the approximation of qA1
i , qA2

i and qUi can be

expressed as:

qA1
i ≈ 1 − f1β∑j

2 − e−kj/∑ k( )yijεj

qA2
i ≈ 1 − f2β∑j

2 − e−kj/∑ k( )yijεj

qUi ≈ 1 − β∑
j

2 − e−kj/∑ k( )yijεj

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(4)

FIGURE 5
Transition probability trees for four states (US, A1S, A2S, A1I).
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We define Eq 5 to simplify Eq 2. Here,

qA1
i ≈ 1 − αA1

i , qA2
i ≈ 1 − αA2

i , and qUi ≈ 1 − αUi . Eq 2 can further

be transformed as Eq 6:

αA1
i � f1β∑j

2 − e−kj/∑ k( )yijεj

αA2
i � f2β∑j

2 − e−kj/∑ k( )yijεj

αUi � β∑
j

2 − e−kj/∑ k( )yijεj

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(5)

Ignoring the high-order items, Eq 6 can further be transformed

into Eq 7:

PUS
i � PA1S

i δ1 1 − αU
i( ) + PA2S

i δ2 1 − αUi( ) + PUS
i ri1ri2 1 − αUi( )

PA1I
i � PA1S

i δ1α
U
i + 1 − δ1( )αA1

i[ ] + PA2S
i δ2α

U
i + 1 − δ2( )αA2

i[ ]{

+PUS
i ri1ri2α

U
i + ri2 − ri1ri2( )αA1

i +[ 1 − ri2( )αA2
i ] + PA1I

i 1 − μ( ), PA1S
i

�PA1S
i 1 − δ1( ) 1 − αA1

i( ) + PA1I
i 1 − δ1( )μ + PUS

i ri2 − ri1ri2( ) 1 − αA1
i( ), PA2S

i

�PA2S
i 1 − δ2( ) 1 − αA2

i( ) + PUS
i 1 − ri2( ) 1 − αA2

i( ), (6)
PUS
i � PA1S

i δ1 + PA2S
i δ2 + PUS

i ri1ri2
PA1S
i � PA1S

i 1 − δ1( ) + PA1I
i 1 − δ1( )μ + PUS

i ri2 − ri1ri2( )
PA2S
i � PA2S

i 1 − δ2( ) + PUS
i 1 − ri2( )

εi � PA1S
i δ1α

U
i + 1 − δ1( )αA1

i[ ] + PA2S
i δ2α

U
i + 1 − δ2( )αA2

i[ ]
+PUS

i ri1ri2α
U
i + ri2 − ri1ri2( )αA1

i + 1 − ri2( )αA2
i[ ]

+εi 1 − μ( )

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(7)

Eq 7 can further be reduced to Eq 8 by substituting the first

three equations into the fourth one. At the steady state, we

assume that PA1S
i + PA1I

i � PA1
i , PA2S

i � PA2
i . Owing to

PA1I
i � εi ≪ 1, PA1S

i + PA2S
i ≈ PA1

i + PA2
i , and

PUS
i ≈ 1 − (PA1

i + PA2
i ). Then, substituting the aforementioned

equations into Eq 8, we get Equation 9:

μεi � PA1S
i αA1

i + PA2S
i αA2

i + PUS
i αUi

� PA1S
i f1β∑

j

2 − e−kj/∑ k( )yijεj+

PA2S
i f2β∑

j

2 − e−kj/∑ k( )yijεj+

PUS
i β∑

j

2 − e−kj/∑ k( )yijεj

� PA1S
i f1 + PA2S

i f2 + PUS
i( )β∑

j

2 − e−kj/∑ k( )yijεj

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

,

(8)
∑
j

1 − 1 − f1( )PA1
i − 1 − f2( )PA2

i[ ] 2 − e−kj/∑ k( )yji − μ

β
τ ij{ }εj

� 0.

(9)
Here, τij is the element of the identity matrix. We define a matrix H

whose element is

hij � [1 − (1 − f1)PA1
i − (1 − f2)PA2

i ](2 − e−kj/∑ k)yji. Λmax(H)

denotes the maximum eigenvalue of H. The epidemic threshold

βc is the minimum value of β that satisfies Eq 9. The expression of

epidemic threshold βc is

βc �
μ

Λmax H( ). (10)

Eq 10 shows that the epidemic threshold is related to the recovery

rate μ, the positive (negative) awareness perception factor f1 (f2),

and the probability of being in state A1 (A2). It should be noted

that PA1
i and PA2

i are further determined by the epidemic-related

parameters (epidemic network structure, epidemic transmission

rate λ1, λ2, and recovery rate μ).

Results

In this section, we apply the MMCA and the MC method to

analyze the interaction between information diffusion and

disease spreading Lyubartsev et al. [36]. For the results of

MMCA, the stationary fraction of individuals in states I, A1,

and A2 are calculated as ρI � ∑iP
A1I
i /N,

ρA1 � [∑i(PA1I
i + PA1S

i )]/N, and ρA2 � ∑iP
A2S
i /N, where N is

the total number of nodes and PA1I
i , PA1S

i , and PA2S
i are the

probabilities that node i is at the state A1I, A1S, and A2S,

respectively. Also, for the results of MC simulations,

ρI � NA1I/N, ρA1 � (NA1I +NA1S)/N, and ρA2 � NA1S/N,

where NA1I, NA1S, and NA2S denotes the number of nodes in

A1I, A1S, and A2S, respectively. The simulation results are based

on 30 independent realizations with 1,000 nodes (N = 1,000). The

information network is generated with the Erdös–Rényi (ER)

model Erdös and Rényi [37] with an average degree of 5, while

the epidemic network is created with the Barab�asiAlbert (BA)

scale-free model Barabasi and Albert [38] which starts from

5 connected nodes. The number of new edges for a new node

added to the existing nodes is 5. The initial fraction of ρI, ρA1 , and

ρA2 is set to be 0.01. The default values of parameters are set to be

β = 0.3, μ = 0.5, λ1 = λ2 = 0.6, δ1 = δ2 = 0.3, f1 = 0.9, f2 = 1.1, ρ1 =

0.7337, ρ2 = 1.3557, ρ3 = 0.9107 (Supplementary material Table

S1). We analyze the impact of information diversity and different

types of heterogeneity on the awareness-epidemic multiple

networks through the statistical results of ρA1I, ρA1S, ρA1 , and

βc. It should be noted that the proportion of ρA2S is not studied in

our work for it reaches 0 at the steady state. This can be attributed

to our model assumption that people are more willing to receive

positive awareness and people being infected can also be aware of

positive information.

We first test the accuracy of MMCA in solving our proposed

model by comparing the output with the result of the MC

method. Then, we study the impact of multi-type information,

heterogeneity of aware individuals’ states, and heterogeneity of

individual’s node degree, respectively. Also, the parameters

mentioned in the following sections are all used for illustration.
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Model validation and the impact of β

Figure 6 presents comparisons between MMCA and MC

simulation under different network structures. It shows the

proportions of ρA1I, ρA1S, and ρA2S by MMCA and MC

simulation as functions of the probability of being infected(β).

As a result, a good agreement between the two methods can be

seen, verifying the accuracy of MMCA used in our awareness-

disease multiplex networks. Considering the impact of infection

rate β, the tendency of the curves can be divided into three

phases. When β is lower than βc (first phase), few infections

would be witnessed and the disease would not be spread to a wide

range. With the increase of β(second phase), the proportion of

infectious disease (ρI) and the positive awareness(ρA1S) grow

vigorously, while the proportion of negative awareness(ρA2S)
falls. This can be explained by the fact that with the increase

of infections, the number of positive awareness spreaders

increases, holding back the spread of negative awareness. In

other words, people would raise their vigilance toward disease

and tend to take more preventive measures when the epidemic

becomes serious. However, after ρA2S reduces to 0, ρA1S also

decreases with the increase of β. This is attributed to the

individuals’ state transition from A1S to A1I. In reality, due to

the limited protective capability that preventive measures can

provide, people would be vulnerable to infectious disease when

the infection rate is too high.

In addition, the epidemic is more possible to outbreak in the

BA-ER networks comparing the epidemic threshold (βc) between

Figures 6A, B. However, the difference between the results of two

network structures decreases with the increase of β. The

comparisons indicate that the structure of the multiplex

network influences the final epidemic size but can be

negligible when the infectious rate (β) is large, playing a

dominant role in the dynamic of awareness-disease spreading.

Impact of multi-type information

Considering the impact of information diversity on the

epidemic spreading, f1, f2, λ1, and λ2 are studied in this section,

especially f1 and f2 denote the degree of influence of positive or

negative information on epidemic spreading, respectively, while λ1
and λ2 represent the probability of positive or negative information

diffusion. To investigate the role of f1 and f2, Figure 7 presents the

heat map of the proportions of ρA1I and ρA1S by MMCA and MC

simulation with a wide range of f1 and f2, while Figure 9 shows the

proportions of ρA1 (a) and βc (b) byMMCA as functions of f1 and f2.

Results in Figures 7A,B are obtained by the MCmethod, and results

in Figures 7C, D are obtained byMMCA. It is shown that the results

obtained byMMCA are well agreed with the results obtained byMC

simulation. Results of Figures 7C, D show that the proportions of

ρA1I and ρA1S are more sensitive to the variation of f1 than f2. This

can be interpreted by the fact that the proportion of ρA2S is small,

and the negative awareness does not play a dominant role in the

epidemic spreading. As for f1, decreasing f1 can effectively suppress

the spread of disease (ρA1I decreases with the decrease of f1 in Figure

C). That is, expanding the influence of positive awareness on

epidemic spreading can help reducing the final epidemic size.

Moreover, for a fixed f1 ≤ 0.4, there is an obvious decrease in

ρA1I. When f1 ≥ 0.4, a slowdown in the decrease of epidemic size can

be seen. The result indicates that the positive awareness should be

effective enough to suppress the disease spreading; otherwise, the

awareness diffusion would play a little role in epidemic spreading.

Figure 7E presents the impact of f1 on the awareness

spreading. When f1 ≤ 0.2, ρA1 increases as f1 decreases. When

f1 ≥ 0.2, ρA1 decreases as f1 decreases. ρA1 reaches a maximum

when f1 = 0.2 approximately. This phenomenon can be

contributed to the interplay between disease spreading and

awareness diffusion. The variation of f1 affects the dynamic of

awareness-epidemic spreading in two ways: (a) the infection

FIGURE 6
Comparison between MMCA and MC simulation. Result shows the proportions of ρA1 I, ρA1S, and ρA2S with the increase of β. (A) Networks in the
information and physical layers are the BA and ER networks, respectively. (B)Networks in the information and physical layers are both ER networks. All
results are averaged by 50 realizations.
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probability increases with the increase of f1 and promotes the

epidemic spreading. (b) The increase of f1 also accelerate the

spread of positive awareness for those being infected will

automatically become aware of positive information and hold

up the disease spreading in turn. Hence, when f1 is at a low level

(f1 ≤ 0.2), the diffusion of positive awareness plays a dominant

role in the awareness-disease spreading dynamic and contributes

to the decrease of ρA1I. Otherwise, when f1 is at a high level (f1 ≥
0.2), the effect of promoting awareness diffusion is overwhelmed

by the influence of promoting epidemic spreading, leading to an

FIGURE 7
Proportions of ρA1 I and ρA1S by MMCA and MC simulation as functions of f1 and f2 (the positive and negative awareness perception, respectively.)
The proportions get larger when the color varies from dark to light. Each heat map consists of 100 × 100 lattice points. (A,C) ρA1 I obtained by MC
simulation and MMCA, respectively. (B,D) ρA1S obtained by MC simulation and MMCA, respectively. (E,F) ρA1 and βc obtained by MMCA. Other
parameters are the same as the default values.
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increased epidemic size. In Figure 7F, when f1 is lower than 0.1,

the epidemic threshold βc increases obviously with the decrease

of f1. The results indicate that positive awareness has a

pronounced inhibitory effect on epidemic spreading when

f1 ≤ 0.1.

As for λ1 and λ2 (the impact of awareness diffusion rate for

positive and negative preventive information), Figures 8A–D

present their influence on the proportion of A1I, A1S, A1, and βc,

respectively. As shown in Figure 8A, for the fixed λ2, the final

epidemic size decreases with the increase of λ1. Also, increases in

positive awareness transmission and epidemic threshold are

shown in Figures 8C, D, respectively. The result can be

explained that the decrease of λ1 promotes the spread of

positive awareness. Moreover, it suppresses the spread of

disease for more individuals by taking preventive measures

toward the disease, thus decreasing the probability of being

infectious. In addition, for the fixed λ1, there is little influence

on the epidemic spreading with the variation of λ2, which can be

contributed to the same reason as little variation on f2. However,

the results do not indicate that the negative awareness-related

parameters (e. g. λ2, f2) have little impact on the interplay

between epidemics spreading and awareness diffusion under

all conditions. In “Supplementary Material S1”, we reset the

default values of parameters and incorporate additional

simulations to investigate the role of negative awareness-

related parameters. In general, based on our model

assumption, promoting the diffusion of positive preventive

information can help suppress epidemic spreading as well as

the epidemic outbreak.

Effect of heterogeneity of aware
individuals’ states

Apart from multi-type information, heterogeneity of aware

individuals’ states (health state and information type) which

contributes to different aware transmission capacities is also

considered. In the information network, aware neighbors with

different health states or different awareness states play different

roles in awareness diffusion. ρ1, ρ2, and ρ3 are proposed,

representing the importance degree of aware neighbors in A1S,

A1I, and A2S, respectively. Figure 9 shows the impact of ρ1, ρ2,

and ρ3 on ρA1I, ρA1S, ρA1 , and βc. It should be noted that the

“relative growth rate” is the relative difference rate compared

FIGURE 8
Proportions of ρA1 I(A), ρA1S (B), ρA1 (C), and βc (D) byMMCA as functions of λ1 and λ2 (awareness diffusion rate for positive and negative preventive
information, respectively). The proportions get larger when the color varies from dark to light. Each heat map consists of 100 × 100 lattice points.
Other parameters are the same as the default values.
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with the result obtained from the basic condition (ρ1 = ρ2 = ρ3 =

1). The basic condition represents the case that the aware

neighbors are equally important and share the same

information spreading rate. Results show that with the

increase of ρ2, ρA1I decreases while ρA1S, ρA1 , and βc increase.

In addition, we find that the proportions vary greatly with the

increase of ρ2 in case IV, which indicates that the importance

ratios ρ2 and ρ3 play important roles in epidemic spreading when

the recovery rate (μ) and forgotten rate (δ1 and δ2) are relatively

large. This can be explained that, in this case, few individuals are

aware of epidemics, and promoting the importance of aware

neighbors can affect the coupled awareness-epidemic dynamics

obviously. Compared with case IV, the proportion in case V has a

lower increase. The reason is that with the increase of λ1 (λ2), the

influence of λ1 (λ2) on the dynamics of epidemic spreading

overwhelm the importance ratio ρ1, ρ2, and ρ3. Similarly, the

proportion in case II also has a lower increase than that in case

IV, which indicates that with the increase of forgotten rate(μ), the

dynamic of epidemic spreading could be more sensitive to

heterogeneity in the information diffusion.

Moreover, we also study the result with a higher infection

rate (β). However, the variations of ρ2 and ρ3 have little impact on

the awareness-disease dynamics in such cases. Therefore, for

epidemics with low infectivity (β is small), the importance ratio

related to the heterogeneity of information diffusion can have an

obvious impact on disease dynamics. To be specific, promoting

the importance of A1I neighbors in awareness diffusion while

reducing the importance of A2S neighbors can help suppress the

epidemic spreading, especially when the recovery rate(μ) and

forgotten rate (δ1 and δ2) are relatively large. On the contrary, for

epidemics that are highly infectious like SARS or COVID-19, the

influence of heterogeneity on the importance ratio of awareness

neighbors is limited, making little difference for controlling

epidemics.

Effect of heterogeneity of the individual
degree

Another aspect of individual heterogeneity taken into

account in the proposed model is the individual degree. In the

physical layer, infected neighbors with different node degrees

have different disease transmissibility. Factor 1 − e−kj/∑ k is

introduced, representing the capacity of spreading virus of the

FIGURE 9
ρ1, ρ2, and ρ3 as functions of ρA1 I (A), ρA1S (B), ρA1 (C), and βc (D). ρ1, ρ2, and ρ3meet the equality constraint ρ1 + ρ2 + ρ3 = 3. I to V are results obtained
with different parameter settings. (I) λ1 = λ2 = 0.1, δ1 = δ2 = 0.3, β = 0.1, μ = 0.5; (II) λ1 = λ2 = 0.1, δ1 = δ2 = 0.8, β = 0.1, μ = 0.5; (III) λ1 = λ2 = 0.1, δ1 = δ2 =
0.3, β=0.1, μ=0.7; (IV) λ1 = λ2 = 0.1, δ1 = δ2 = 0.8, β=0.1, μ=0.8; and (V) λ1 = λ2 = 0.3, δ1 = δ2 = 0.8, β=0.1, μ=0.8. Also, ρ1 = 1 is set for conditions I to V
(Supplementary material Table S2).
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infected neighbor j. Figure 10 and Figure 8 present ρA1I, ρA1S,

ρA2S, and βc as functions of β with different node degree (k) and

different network structure. Also, the subfigures on the left side

(Figures 10A, C, E, G) are the results based on the ER-BA

network (the upper layer and lower layer are BA and ER

networks, respectively) and the subfigures on the right side

(Figures 10B, D, F, H) are the results based on the ER-ER

network (both the upper and lower layers are the ER

FIGURE 10
ρA1 I (A,B), ρA1S (C,D), ρA2S (E,F), and βc (G,H) as functions of βwith the different node degree and different network structure. (A,C,E,G) are based
on the ER-BA network (the upper layer and the lower layer are BA and ER networks, respectively), and (B,D,F,H) are based on the ER-ER network (both
the upper and lower layer are the ER network). Other parameters are the same as the default values.
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network). In terms of the results based on the ER-BA network,

with a fixed β, the proportion of infected individuals increases

with the increase of average node degree (k). The differences of

ρA1I among these five cases increase when β ≤ 0.15; however,

when β becomes larger (β ≥ 0.15), gaps among these cases

become narrow. When β is close to 1, the gaps become

neglectable. This phenomenon can be explained by two

aspects: 1) with the increase of average node degree (k), the

infected individuals can have a large range of daily activities and

are more likely to transmit the virus to their neighbors, resulting

in a larger epidemic size. 2) When the infection rate (β) is at a low

level, the node degree plays an essential role in the dynamics of

epidemic spreading. However, with the further increase of β, the

impact of increasing the node degree would fade. That is, when

the epidemic is highly infectious, the degree of connectivity does

not play a dominant role in the epidemic spreading.

Comparing the results obtained from the ER-BA network with

the results obtained from the ER-ER network, the trends for ρA1I,

ρA1S, and ρA2S with the increase of βc are similar. However,

considering the impact on the epidemic threshold βc, the variation

of βc is obvious. The differences can be explained that the node degree

distribution of the BA network is not uniform; once those hub nodes

become infected, their high probability of infection raises the severity

of their neighbors perceiving infectious disease and further leads to a

severe outbreak. Therefore with the increase of average node degree,

the number of hub nodes also raises up, resulting in a lower βc. In

general, a network with a low node degree can help slow down the

spread of disease, and the final epidemic size is also related to the

network structure. It is possible to suppress the epidemic spreading by

increasing individual’s social distance during the outbreak.

Conclusion

In this article, we propose an individual-based epidemics and

multi-type information spreading (IEMIS) model, mainly

considering two factors that can significantly affect the

coupled awareness-epidemic spreading but have been rarely

studied. The first factor is the multi-type information. The

second factor is the individual heterogeneity (including the

heterogeneity in awareness diffusion and the heterogeneity in

epidemic spreading). Based onMMCA, we give out the analytical

epidemic threshold of the proposed model and analyze the

impact of information type and individual heterogeneity on

the interplay between awareness and epidemic. The results

show that the diffusion of positive awareness can help to

suppress the epidemic spreading, while the influence of

negative awareness is limited for the high proportion of

infections leading to an overwhelming propagation of positive

information. As for individual heterogeneity, enhancing the

importance ratios of aware neighbors who receive positive

information can elevate positive awareness spreading and

further promote epidemic prevalence. Moreover, lowering the

average node degree can effectively suppress epidemic

propagation, that is, cutting back social activities or increasing

social distances can help control the disease.
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