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Multinucleon transfer reactions, characterized by the exchange of many

nucleons at energies in the vicinity of the Coulomb barrier, have been

extensively used in the last decades to understand the production of

neutron-rich nuclei, as well as to study their structure. In this Mini Review,

recent results related to the production mechanism of heavy neutron-rich

nuclei obtained with stable and radioactive beams will be discussed together

with the results concerning the proton transfer channels. Additionally, newest

results from a series of experiments carried out to study nucleon-nucleon

correlations for closed-shell and superfluid systems employing the large solid

angle magnetic spectrometer PRISMA will be summarized.
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Introduction

Multinucleon transfer (MNT) reactions between heavy ions at energies around the

Coulomb barrier are characterized by the exchange of many nucleons between the target

and the projectile with a population of relatively low excitation energy and of relatively

high spins [1]. They have been extensively used in the last decades to populate moderately

neutron-rich mid-mass nuclei with cross sections large enough to study their structure

[1–3]. Specifically, valuable information on single-particle states, collective excitations,

and their coupling [4–13], are offered by one-nucleon transfer channels, while transfer of

nucleon pairs yields information on nucleon-nucleon correlations [14–17]. As more

nucleons are getting transferred, it is possible to populate nuclei farther from the stability

and to study the evolution of reaction from quasi-elastic to deep-inelastic regime.

In the quasi-elastic regime, the mass and charge distributions of transfer products are

governed by optimum Q-value considerations and transfer form factors [1]. As a result, the

neutron pick-up and the proton stripping channels of the projectile-like fragments are

dominantly populated when lighter stable projectiles are used on heavy targets [1]. The

transfer flux changes already with the use of more neutron-rich stable projectiles in which case

proton pick-up channels open up [18]. With neutron-rich projectiles, the trend should turn

and the proton pick-up and neutron stripping channels should dominate, leading to the

population of neutron-rich heavy fragments [18–23]. This pathway is very interesting for

nuclear structure investigations, for example for the understanding of the evolution of magic

numbers far from stability [24–26], and for nuclear astrophysics investigations, where heavy-

element synthesis in the r-process is particularly intriguing [27, 28].
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MNT as a method to produce heavy
neutron-rich nuclei

Multinucleon transfer reactions were predicted to be a

competitive method for the production of heavy neutron-rich

nuclei in the pivotal work of Dasso and collaborators [19]. More

recently, it has been predicted that the neutron-rich region

around the magic number N = 126 can be approached by

using stable beams at energies around the Coulomb barrier in

deep-inelastic collisions (DIC) [29]. These predictions were

experimentally studied in the last years with careful selection

of the colliding systems which are suitable to populate proton

pick-up channels at energies around the Coulomb barrier. Many

of these studies are based on the powerful combination of

selective large solid angle magnetic spectrometers such as

PRISMA [30–32] in Legnaro National Laboratories in Italy

and efficient γ-ray detectors [2, 33, 34]. Even so, the study of

proton pick-up channels is still in its beginnings and reaction

products have been identified in atomic number, mass and Q-

value for only a few systems.

In this section we will present our selection of some of the

measurements concerning the production of heavy neutron-rich

nuclei. Measurements have been performed for the 144Sm+88Sr

[35] and 48Ca+124Sn [36] systems to study nucleon correlation

effects and complex (i.e., pair/cluster) degrees of freedom in the

transfer process. On the other hand, indirect measurements of

cross sections based on the knowledge of the level schemes, using

characteristic γ rays, were performed for few heavy systems

[37–39].

Recently a high resolution study of the absolute production

cross sections of neutron-rich nuclei in the 136Xe+198Pt system

[22] gained a lot of attention. Measurement performed with the

VAMOS++magnetic spectrometer [40], to identify light reaction

partner, and EXOGAM γ-array [41] showed that the main

contribution to the formation of heavy neutron-rich nuclei

such as Hg and Os arise in collisions with a small excitation

energies where the particle, mainly neutron, evaporation is

minimized. Experimental results have been compared with the

GRAZING code [42–44] that calculates the evolution of the

reaction by taking into account, besides the relative motion, the

intrinsic degrees of freedom of projectile and target. These are the

isoscalar surface modes and the single-nucleon transfer channels.

The multinucleon transfer channels are described via a multistep

mechanism. The relative motion of the system is calculated in a

nuclear plus Coulomb field. The model, to calculate the isotopic

distributions of the produced fragments, takes into account, in a

simple way, the effect of neutron evaporation. The code has been

successfully applied in the description of MNT reactions and in

general gives good description of the neutron and few proton

transfer channels. However, it was observed that for more proton

stripping and pick-up channels the measured distributions peak

at lower and higher mass values, respectively, as compared to the

GRAZING calculations that take into account only impact

parameters close to the grazing angle. The difference from the

calculation indicates the presence of large energy losses and

significant influence of neutron evaporation.

The total cross sections of proton pick-up channels were

further measured for the 40Ar+208Pb system where the focus was

on obtaining the total transfer strength [18]. This was achieved

by measuring the angular distribution for the light reaction

partners over large range of angles spanning three angular

and magnetic field settings of the PRISMA spectrometer and

by taking into account the spectrometer’s response function [45,

46]. This allowed to study the evolution of quasi-elastic to DIC.

Disentangling between different contributions is challenging

from both experimental and theoretical side since they are

substantially mixed and may strongly overlap. However,

insight was gained by identifying reaction products in mass

and charge, and by measuring total kinetic energy loss

(TKEL) and angular distributions over wide range of angles,

as well as by comparing these experimental observables with

theoretical calculations. As can be seen from Figure 1A, the

deviations between experimental data and GRAZING

calculations are more pronounced for the proton (especially

pick-up) channels, when neutron transfer channels are

involved. The contributions from DIC were extracted and

identified to be significant. This is especially relevant at

energies substantially higher than the Coulomb barrier, where

DIC, as well as secondary effects, become more and more

relevant.

Secondary processes, such as neutron evaporation and

fission, especially from 238U, can significantly modify the final

yield distribution of heavy primary nuclei mainly towards the

lighter isotopes. It is important to quantitatively understand their

relevance and to study the best experimental conditions for the

largest survival probability of the neutron-rich nuclei populated

in MNT reactions. The cross section studies for proton pick-up

channels have been performed with the 238U target for the
64Ni+238U [20] and 136Xe+238U [21] systems. In the latter case,

studies of the influence of secondary processes on MNT were

carried out by measuring the time-of-flight differences between

different coincident reaction products. In this way it was possible

to distinguish between transfer, fission and elastically scattered

particles which helped to determine the fraction of MNT reaction

products compared to fission. Neutron evaporation channels

were clearly identified thanks to AGATA [33, 34] and it was

observed that as more neutrons are transferred to the target

nucleus, more evaporated neutrons are detected. This strongly

affects the final yield distribution of both binary partners and

limits the production of very neutron-rich nuclei. It is important

to note that proton pick-up channels have higher survival

probability than stripping channels, leading to more neutron-

rich final reaction products.

Although information on the heavy partner can be obtained

indirectly by detecting the coincident γ rays produced by the

reaction products [21, 31], significant progress has been made
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with a simultaneous detection of light and heavy transfer

products in the 197Au + 130Te system [47]. The high-resolution

kinematic coincidence measurement has been performed with

PRISMA coupled to a second arm detector NOSE [48]. This

helped, via a mass-mass correlation, to understand and quantify

the production process also for the heavy partner of the

reaction. To better understand the effect of secondary

processes, the de-excitation process of the produced heavy

fragments has been simulated with a Monte Carlo method,

starting from the binary character of the reaction, to

understand their final mass distribution. These results,

shown in Figure 1B, indicated that the primary fragments

acquire significant excitation energy and allowed to extract

information on the average number of evaporated neutrons

for each channel associated with the Te isotopes. The focus

was on pure neutron transfer channels and the extracted total

cross sections well agree with calculations performed with the

GRAZING code down to several neutron transfers. However,

a better knowledge of the underlying mechanisms is essential

considering that the main excitation energy of the recoils can

be rather high.

A definite dominance of the proton pick-up and neutron

stripping channels in the distribution of the transfer flux of the

light partner, leading to the proton stripping and neutron pick-

up in the heavy partner of the reaction, is predicted to occur by

using neutron-rich projectiles, in most cases, five to seven

neutrons away from the last stable isotope [19]. Results of the

GRAZING calculations for the 116Sn (stable), 124Sn (the most

neutron-rich stable) and 132Sn (neutron-rich) projectiles on the
208Pb target at the beam energy 20% above the Coulomb barrier

are shown in Figure 1C for the reaction products with N = 126.

The shift toward more neutron-rich reaction products with Z <
82 is clearly seen, and calculations predict an order of magnitude

larger cross section when using neutron-rich rare-isotope beam.

Experimentally, first step in this direction is the absolute cross

sections determination for neutron transfer channels populated

in the 94Rb+208Pb reaction [23]. Cross sections have been

extracted by directly identifying the lead isotopes with the

high-efficiency MINIBALL γ-ray array [49]. The observed

sizable cross sections in the neutron-rich mass region are in

fair agreement with the GRAZING calculations. This confirms

the predicted change of population pattern and is of great

FIGURE 1
(A) Total experimental cross section for the 40Ar+208Pb system, at beam energy Elab = 6.4 MeV/A (points), and the GRAZING calculations with
neutron evaporation (solid line), figure is adapted with permission from [18] (B)Mass-mass correlation matrix of Te isotopes detected in PRISMA and
the heavy partner detected in coincidence with NOSE for the 197Au+130Te system. The red circles indicate the centroids of the correlated masses of
the primary neutron transfer channels, the black dots indicate the experimental centroids as derived from the fits of their projections [47] (C)
GRAZING calculations for the 116Sn (stable), 124Sn (the most neutron-rich stable) and 132Sn (neutron-rich) projectiles on the 208Pb target at the beam
energy 20% above the Coulomb barrier.
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importance for future studies of nuclear structure, in particular

near the N = 126 shell closure, with MNT reactions and

radioactive beams. These studies will be considerably

improved with the particle detection systems able to identify

reaction products in A and Z and by measuring the cross sections

to the ground states which can be substantial.

Experimental results confirm that MNT reactions are a

suitable tool to produce exotic neutron-rich nuclei [22, 23]. In

comparison with fragmentation and fission, the production cross

sections of nuclei along N = 126, Z < 82 with MNT reactions

appear to be much larger, especially for lower atomic numbers

[22]. However, one should take into account the larger target

thicknesses and experimental efficiencies in the fragmentation

reactions [50, 51]. Even so, it is still of great interest to continue

these studies to see if MNT reactions and radioactive beams offer

access to neutron-rich region south of doubly magic Pb nucleus,

that is out of reach for other methods.

Finally, different theoretical models are becoming available

partially thanks to the use of super-computers. These

developments in reaction theory must consider the adequate

treatment of the reaction dynamics, realistic structure models

and proper effective interactions. Some of the newer approaches

include the improved quantum molecular dynamics (ImQMD)

model [52–56] and time-dependent Hartree-Fock (TDHF)

theory [57–66]. Nowadays it is possible to take into account

quantal fluctuations and correlations going beyond the TDFH

approach [67–70]. Therefore, precise measurements of

experimental observables, especially absolute cross sections,

angular and TKEL distributions, and disentangling between

different effects that contribute to the reaction cross section,

can be used to validate different theoretical models in order to

optimize the population of the exotic nuclei of interest. This

comparison of different models and experimental data should

give better insight in the MNT reaction mechanism and help to

develop our understanding of low-energy heavy-ion reactions.

Nucleon-nucleon correlations

Two-nucleon transfer reactions are among the best tools

to investigate nucleon-nucleon correlations which are induced

by the pairing interaction [71–74]. With heavy ions, the

reaction dynamics is complex and only recently

microscopic calculations achieved a good agreement with

the experimental data [14, 15, 17]. This was possible

because measurements were performed in a wide energy

range from near to well below the Coulomb barrier where

the interacting nuclei are only slightly influenced by the

nuclear potential and Q values are restricted to a few MeV

for the open transfer channels. These conditions diminish the

complexity of coupled channel calculations. The data were

represented via the transfer probability (Ptr) (defined as a ratio

of the transfer yield over the quasielastic one) plotted as a

function of the distance of closest approach (D) for the

Coulomb trajectory. The use of the PRISMA spectrometer

and inverse kinematics allowed one to measure Ptr down to

very large values of D, sufficiently far from the nuclear

absorption region, with good ion identification, and

information could be extracted on the nucleon-nucleon

correlations.

The total transfer probability for one-neutron transfer

channel was obtained by summing over all possible transitions

that can be constructed from the single-particle states in the

projectile and target for the 96Zr+40Ca [14] and 116Sn+60Ni [15,

16] systems and the results are shown in Figure 2. These

calculations well reproduce the experimental slope and the

absolute values of the transfer probabilities. For the two-

nucleon transfer, the transfer probability was calculated for

the 0+ states. The ground-to-ground state transition alone

could not reproduce experimental result for the 96Zr+40Ca

system as can be seen in Figure 2A. In fact, the predicted

transfer probability for the transition to the excited 0+ state in
42Ca is much larger, in agreement with the measured Q-value

spectra. In conclusion, it was found that the two-neutron transfer

probability is enhanced as compared to a simple expectation of

independent particle transfer process, i.e., the square of one-

neutron transfer probability. The coupled-channels calculations

performed for this system also suggested a significant effect of the

couplings to the collective excited states around the Coulomb

barrier [75]. The TDHF + BCS formalism was also applied for

this type of reactions [76, 77].

The experimental transfer probabilities for 116Sn+60Ni shown

in Figure 2B have been well reproduced, for the first time with

heavy ions for the two-neutron transfer channel, in absolute

values and in slope by microscopic calculations which

incorporate nucleon-nucleon pairing correlations,

microscopically calculated optical potentials and successive

transfer processes [15]. In particular, the employed

microscopic theory reproduces very well the data by

considering solely the ground-to-ground state transition. This

was possible because in this system (superfluid nuclei) the

ground-to-ground state Q values for one- and two-neutron

transfer are very close to optimum (~0 MeV). The validity of

this approach was confirmed by performing a fragment-γ

coincidence experiment for the same system [16], employing

the PRISMA spectrometer coupled to the AGATA demonstrator

[33]. It was possible to conclude that a large fraction of the total

strength of the (2n) channel, more than 76%, goes to the ground

state.

Recent theoretical calculations interpreted 116Sn+60Ni data as

a manifestation of a nuclear (alternating current) Josephson

effect with Cooper pairs tunneling between the superfluid

nuclei [17, 78, 79]. The coherence length was determined

thanks to the large range of D over which transfer probability

was measured. A transfer of a neutron pair between interacting

binary partners generates a dipole oscillation whose frequency is
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determined by the ground state Q-value [17]. The short

interaction time of scattering, ~ 10−21 sec, leads to three to

four back-and-forth transfer cycles that can produce

observable consequences. A γ-ray strength distribution

centered at ~4 MeV is predicted. These predictions can be

experimentally tested thanks to the powerful coupling of

PRISMA and AGATA.

More work is needed in order to better understand the role of

a transfer of a pair by confronting theory with experiments

involving different nuclei. In this respect, valuable insight will

be given by the 206Pb+118Sn system [80, 81] recently measured

with PRISMA. This is the heaviest (asymmetric) semi-magic

system with closed proton and open neutron shells, and well Q-

value matched for neutron transfers. Important questions that

can be answered in this case are whether and to what extent the

effect of neutron-neutron correlations is modified in the presence

of high Coulomb fields and do DIC and multistep processes

significantly modify the transfer strength near the ground states.

The transfer strength of the ground-to-ground state transitions

may significantly change in the collisions of very heavy ions

thanks to the population of final states with high excitation

energies and large angular momenta. Additionally, it would be

interesting to see whether any enhancement factors can be

observed in the collisions of two doubly magic nuclei.

Nucleon-nucleon correlations studies should be extended to

even less understood role of neutron-proton and proton-proton

correlations [82]. The study of neutron-proton correlations has

been done with nuclei along the N = Z line to investigate the

isovector and isoscalar components (for some of the recent

results see Refs. [83–88]), while the data for the proton-

proton correlations are more scarce [82]. It would be of great

interest to extend these studies to transfer reactions with heavy

ions even if the transfer probabilities for protons are generally

smaller at the same D and more difficulties are encountered than

in the case of neutrons from both experimental and theoretical

point of view. These measurements can be advanced by the

coupling of a spectrometer and an efficient γ-array which could

provide important additional information for both one and two-

proton transfer.

Finally, the advent of new radioactive beam facilities

[89–92] should provide access to the nuclei with an

extended neutron distribution and should allow the

possibility to study the density dependence of the pairing

force. Particularly interesting is the (closed shell) region of
132Sn and beyond to look at the modification of the properties

of pair transfers. Some work has been done with the halo

nuclei, as for instance with 11Li induced reactions providing

evidence of phonon mediated pairing [93, 94]. The

FIGURE 2
Theoretical transfer probabilities Ptr for the one- and two-neutron transfer (lines) in comparison with the experimental data (symbols) for the
96Zr+40Ca (A) and 116Sn+60Ni (B) systems plotted as a function of the distance of closest approach D (A) The full line represents the inclusive transfer
probability for one-neutron transfer, the dotted line the ground-to-ground state transition for the two-neutron transfer, and the dashed line the
transition to the first 0+ excited state at 5.76 MeV in 42Ca [14] (B)Open symbols correspond to the results from the angular distribution in direct
kinematics while solid symbols refer to the excitation function measurement performed in inverse kinematics [16].
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comparison of data concerning the dynamic effects of pairing

correlations with different microscopic theories (for instance

[15, 17, 95]), as well as cross comparison between reactions

performed with stable and radioactive beams, will provide

valuable insight into the role of the pair (neutron and/or

proton) transfer in the MNT reactions.
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