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From the perspective of quantum information transmission, one may be

interested in the teleportation of quantum Fisher information (QFI) which

provides the optimal precision of parameter estimation. In this paper, we

investigate the teleportation of QFI under the correlated amplitude damping

(CAD) decoherence. It is found that the correlated effects play a positive role in

improving the teleported QFI, but the impact of decoherence is still serious.

Therefore, we propose two schemes, which are based on weak measurement

(WM) and environment-assisted measurement (EAM), to enhance the

teleportation of QFI under the CAD decoherence. The results show that

both schemes can significantly improve the teleported QFI with a certain

success probability. The findings of our study suggest that the correlated

effects can significantly increase the success probabilities of these two

schemes. A detailed comparison confirms that the EAM scheme is more

efficient than the WM scheme in improving the teleportation of QFI.
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1 Introduction

Quantum teleportation is an important branch in the field of quantum

communication. Its original idea was first proposed by Bennett et al. in 1993 [1].

Since then, the research and application of quantum teleportation have attracted great

attention and great progress has also been made in experiments [2–7]. Recently, the

teleportation of quantum Fisher information (QFI) was widely investigated [8]. QFI plays

a central role in quantum estimation theory where the main task is to estimate the value of

an unknown parameter. According to the quantum Cramer-Rao theorem [9], the

precision of parameter estimation is inversely proportional to the square root of QFI.

This means that the larger the QFI is, the higher the precision of parameter estimation

would be. In the past 2 decades, rapid developments in the field of quantum metrology

also deepen the understanding of QFI [10, 11]. Moreover, as a specific measure of the

information content of quantum states, QFI also has a wide range of applications in other

quantum information processes, including but not limited to entanglement detection [12,
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13], quantum thermodynamics [14], quantum teleportation [15]

and quantum machine learning [16].

However, in the process of quantum teleportation, quantum

system will inevitably interact with the surrounding

environment. This interaction will lead to the loss of

coherence and the decay of entanglement, which results in the

distortion of teleportation [17–20]. The same is true for the

teleportation of QFI [8, 21–24]. In Ref. [21], the author has

studied the teleportation of QFI in consideration of vacuum

fluctuation. The influence of thermal noise caused by the Unruh

effect on the teleportation of QFI has been discussed in Ref. [22].

Guo et al. have investigated the teleportation of QFI under the

Davies-type Markov environment [23]. In Refs. [8, 25], the

amplitude damping decoherence has been studied and the

schemes to improve the teleportation of QFI have been

proposed. However, much of the research up to now are

based on the assumption that the noisy channel used for

teleportation is memoryless and the two consecutive use of

the channel are independent.

In practice, an actual physical system is more or less

correlated in continuous uses, especially when the

transmission rate is high [26–30]. Interestingly, although the

qubits in the CAD noise suffer from decoherence, the correlated

effects are beneficial to suppress the decay of coherence [31–34].

Many studies have focused on the influence of correlated noise in

quantum information processing, and put forward many

schemes to suppress the CAD decoherence. Xiao et al. have

investigated the protection of entanglement from CAD by WM

[31]. Huang and Zhang demonstrate the protection of

measurement-induced nonlocality and local quantum

uncertainty from CAD by WM and post-measurement

reversal [32]. Enhancing entanglement of assistance using

WM and quantum measurement reversal (QMR) under CAD

noise has been studied in Ref. [33]. In addition, the teleportation

under CAD noise has been investigated and one scheme to

suppress decoherence using WM has been proposed [34].

Here, we consider the teleportation of QFI using Werner

state as quantum channels under the CAD decoherence. Our

study differs from Refs. [22–24], in which the performance of the

QFI under the uncorrelated decoherence is discussed. The focus

of our paper is to examine how correlated effects affect the

teleportation of QFI. According to our results, we find that the

correlated effects are beneficial to the teleportation of QFI in the

CAD decoherence. Our study also differs from Refs. [31–34], in

which the combination ofWM andQMR is presented to improve

the teleportation. In this paper, two schemes based on WM and

EAM are proposed to make further efforts on enhancing the QFI.

In particular, a comprehensive comparison indicates that the

EAM strategy outperforms the WM strategy on the teleportation

of QFI. We also discuss how correlated effects affect the

teleportation of QFI in WM and EAM schemes.

This paper is organized as follows: In Section 2, the

teleportation of QFI under CAD decoherence is investigated.

In Section 3, the scheme for enhancing the teleportation of QFI

by WM and QMR is proposed. In Section 4, based on EAM and

QMR, we present another scheme to enhance the teleportation of

QFI. And the comparison of the two schemes is presented in

Section 5. Finally, a summary is given in Section 6.

2 Teleportation of QFI under CAD
noise

The teleportation of QFI under CAD noise is investigated in

this section. Alice wants to send the QFI of parameter ϕ encoded

in an unknown quantum state to Bob, which is

|Ψin〉 � cos
θ

2
|0〉 + sin

θ

2
eiϕ|1〉. (1)

where θ is the polarization parameter and ϕ is the phase

parameter. To realize the teleportation of QFI, an initially

entangled state must be established between Alice and Bob.

Here, the shared entangled state is a degraded Bell state,

i.e., Werner state, which plays an important role in

entanglement purification [17] and delocalized state [35].

ρ � μ|Ψ+〉〈Ψ+| + 1 − μ

4
I4. (2)

where μ ∈ [0, 1], |Ψ+〉 � 1�
2

√ (|00〉 + |11〉) and I4 is a 4 ×

4 identity matrix. Assume that this entangled state is prepared

by a third-party Charlie. When Charlie distributes the entangled

particles to Alice and Bob, they first pass through a common

channel with AD noise in successive, and then pass through a

noise-free private channel respectively. Note that for the

uncorrelated AD noise, its action over one channel use is

irrelevant to all other uses. The total evolution map can be

expressed as a tensor product of the individual evolution:

εN � ε⊗N1 . However, the correlated effects should be

considered when the common channel is used continuously.

The tensorial decomposition is not applicable, i.e., εN ≠ ε⊗N1 .

Therefore, in the process of establishing entangled channel, the

Werner state is influenced by CAD noise. It can be expressed

as [36].

εCAD ρ( ) � 1 − η( ) ∑1
i,j�0

EijρE
†
ij + η∑1

k�0
AkρA

†
k, (3)

where η is the correlated parameter and η ∈ [0, 1]. Obviously, we
can get the uncorrelated AD noise by setting η = 0 and the fully

correlated amplitude damping (FCAD) noise by setting η = 1. AD

noise is a widely discussed model in various real-world physical

evolutions that describes the ubiquitous energy dissipation

process between quantum systems and environment [37]. It is

represented by Kraus operators

E0 � 1 0
0

����
1 − γ

√( ), E1 � 0
�
γ

√
0 0

( ), (4)
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where γ is the decoherence strength of the AD noise and

γ ∈ [0, 1]. The Kraus operators of the correlated part are

obtained by solving the correlated Lindblad equation [38]

A0 �
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0

����
1 − γ

√⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, A1 �
0 0 0

�
γ

√
0 0 0 0
0 0 0 0
0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (5)

We note that the Kraus operator A0 cannot be expressed as a

tensor product of two 2 × 2 matrices. In fact, it depicts the typical

“spooky” action of the public channel: |00〉, |01〉 and |10〉 will go
through the channel undisturbed, while |11〉 suffers the

amplitude damping decoherence.

Substituting Eqs 2, 4, 5 into Eq. 3, we can obtain

εCAD ρ( ) � ε11 0 0 ε14
0 ε22 0 0
0 0 ε33 0
ε41 0 0 ε44

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (6)

where ε11 � �η(1+μ)(1+γ2)+2γ�η�μ+η(1+μ)(1+γ)
4 , ε22 � ε33 � �η�μ�γ+(1+μ)γ�γ�η+η�μ

4 ,

ε44 � �γ(1+μ)(�η�γ+η)
4 , ε14 � εp41 � μ(�η�γ+η �

�γ
√ )

2 .

Then, through the quantum teleportation protocol shown in

Figure 1, the state received by Bob is

ρout �
cos2

θ

2
ε11 + ε44( ) + sin2θ

2
ε22 + ε33( ) cos

θ

2
sin

θ

2
e−iϕ ε14 + ε41( )

cos
θ

2
sin

θ

2
eiϕ ε14 + ε41( ) cos2

θ

2
ε22 + ε33( ) + sin2θ

2
ε11 + ε44( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (7)

On the other hand, Zhong et al. [39] presented a simple and

explicit description of QFI for the single-qubit state

Fϕ �
zϕ �r
∣∣∣∣∣ ∣∣∣∣∣2 + �r · zϕ �r( )2

1 − | �r|2 , if | �r|< 1,

zϕ �r
∣∣∣∣∣ ∣∣∣∣∣2, if | �r| � 1,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (8)

where �r � (rx, ry, rz)T is the real Bloch vector of the single-qubit

state ρ � 1
2 (1 + �r · σ̂) with σ̂ � (σ̂x, σ̂y, σ̂z) denoting the Pauli

matrices. The Bloch vector of state shown in Eq. 7 is

rx � 2ε14 sin θ cos ϕ, (9)

ry � 2ε14 sin θ sin ϕ, (10)
rz � cos θ ε11 + ε44 − ε22 − ε33( ). (11)

Then, we can obtain the teleported QFI under the CAD

decoherence

FCAD � μ2 �η�γ + η
�
�γ

√( )2 sin2 θ. (12)

In Figure 2A, we have plotted the teleported QFI as a function

of μ and γ for η = 0.8. It is straightforward to note that FCAD
rapidly decreases with the increase of decoherence strength γ.

That is to say, the decoherence seriously reduces the transmission

of QFI. On the other hand, in order to figure out the effect of

correlated parameter, Figure 2B is plotted to shown FCAD as a

function of η and γ for μ = 0.8. It is found that FCAD decays more

slowly as η increases. This result means that the correlated effects

enable to enhance the teleported QFI which is subject to CAD

noise.

3 WM scheme

In above, the influence of CAD decoherence on the

teleportation of QFI has been examined. We find that even

though the correlated effect could enhance the teleported QFI,

the unfavorable effects of CAD decoherence still remain. In this

section, we introduce the techniques of WM and QMR to reduce

the adverse effects of CAD noise. WM is associated with positive-

operator valued measure (POVM) [40, 41]. The most notable

virtue of WM is that it is not fully destructive, implying that the

quantum state can be recovered. Then, QMR operation is

designed to recover the initial state. The specific process is as

follows: before Charlie sends the entangled qubits to Alice and

Bob, two WMs are performed on the qubits, respectively. After

qubits two and three arrive at Alice and Bob through the CAD

channel, the QMRs are carried out on these two qubits by Alice

and Bob. The processes can be expressed as the following map

ρWM � MQMR εCAD MWMρM
†
WM( )[ ]M†

QMR , (13)
where

MWM � 1 0
0

��
�p

√( ) ⊗ 1 0
0

��
�p

√( ), (14)

MQMR �
�
�q

√
0

0 1
( ) ⊗

�
�q

√
0

0 1
( ), (15)

where p and q are the strength of WM and QMR, respectively.

p, q ∈ [0, 1]. Here, we define �O � 1 −O for arbitrary parameter

O. Finally, Alice and Bob share the state

ρWM �
ε11′ 0 0 ε14′
0 ε22′ 0 0
0 0 ε33′ 0
ε41′ 0 0 ε44′

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (16)

FIGURE 1
(color online) The circuit of quantum teleportation under
CAD noise.
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where ε11′ � U�q2

U�q2+2V�q+W, ε22′ � ε33′ � V�q
U�q2+2V�q+W, ε44′ � W

U�q2+2V�q+W,
ε14′ � ε41′ p � 2X�q

U�q2+2V�q+W, and U � �η(1 + μ)(1 + γ2 �p2) + 2γ�η�μ�p+
η(1 + μ)(1 + γ�p2), V � �μ�η�γ�p+ (1 + μ)�ηγ�γ�p2 + �μη�p, W �
�γ�p2(1 + μ)(η + �η�γ) , X � μ�η�γ�p + μη�p

�
�γ

√
.

Following the quantum teleportation protocol shown in

Figure 1, we can get the state received by Bob

ρout′ �
cos2

θ

2
ε11′ + ε44′( ) + sin2θ

2
ε22′ + ε33′( ) cos

θ

2
sin

θ

2
e−iϕ ε14′ + ε41′( )

cos
θ

2
sin

θ

2
eiϕ ε14′ + ε41′( ) cos2

θ

2
ε22′ + ε33′( ) + sin2θ

2
ε11′ + ε44′( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (17)

Similarly, one can obtain the Bloch vector of Eq. 17 and

calculate the teleported QFI by Eq. 8

FWM � 16X2�q2

U�q2 + 2V�q +W( )2 sin2 θ. (18)

To transfer the most amount of QFI from Alice to Bob, we

should select a proper strength of QMR. The optimal QMR

strength q can be obtained by solving the equation zFWM/zq = 0

under the condition that z2FWM/(zq)
2 < 0. The result turns out

to be

qoptWM � 1 −
��
W

U

√
, (19)

and the corresponding QFI is

Fopt
WM � 4X2

V + ����
WU

√( )2 sin2 θ. (20)

Figure 3 shows the result of QFI as a function of decoherence

strength γ under CAD noise with the assistance of WM and

QMR. It is noted that the teleported QFI rapidly decreases to

0 without the operations of WM and QMR (i.e., p = 0 and q = 0).

When the operation of QMR is performed (i.e., p = 0), the

teleported QFI can be enhanced. Remarkably, it can be further

improved with the combination of WM and QMR (i.e., p = 0.5

and p = 0.9 and q � qoptWM). Particularly, we find the larger the

measurement strength of WM is, the better the improvement of

the teleported QFI would be. A more clearer description of the

role of p is shown in Figure 4A, where the curve of Fopt
WM is shown

as a function of p and μ with the correlated parameter η = 0.8 and

the decoherence strength γ = 0.6. It can be seen that the

teleported QFI can be monotonically increased with the

increase of p for the Werner state.

Since bothWMandQMR operations are non-unital, thus the

price of enhancement of the teleported QFI is based on the

probability of the scheme. The success probability of this scheme

can be obtained as

FIGURE 2
(color online) (A) Teleported QFI FCAD as a function of γ and μ with η = 0.8. (B) Teleported QFI FCAD as a function of γ and η with μ = 0.8. The
polarization parameter θ is π

2.

FIGURE 3
(color online) Teleported QFI FoptWM as a function of γ for
different p with μ = 1 and η = 0.8. When p = 0, p = 0.5 and p = 0.9,
the corresponding strength of QMR is q � qopt

WM. The polarization
parameter θ is π/2.
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PWM �
2W + 2V

��
W

U

√
1 + μ( ) 1 + �p2( ) + 2�μ�p

.
(21)

Figure 4B shows the behavior of success probability PWM as a

function of p and μwith γ = 0.6 and η = 0.8. Obviously, PWM decreases

with the increase strength ofWM.That is to say, the great improvement

of teleported QFI is achieved at the cost of low success probability.

The curious question that comes up is: Are the correlated

effects still contributing for the teleportation of QFI in the WM

scheme? In order to clarify this question, we plot Fopt
WM and PWM

as function of η for various values of p in Figures 5A,B,

respectively. A careful observation shows that the effect of the

correlation on the teleportation of QFI becomes more subtle. It is

different from the result in Figure 2B, in which the correlated

effects always enhance the teleported QFI without WM and

QMR. If the strength of WM is not very strong, correlated

effects significantly enhance the teleported QFI. However,

Fopt
WM does not increase monotonically as η increases when

p → 1 (red solid line), as shown in Figure 5A. This indicates

FIGURE 4
(color online) (A) The teleported QFI FoptWM and (B) The success probability PWM as a function of p and μ. The other parameters γ = 0.6, η = 0.8 and
θ = π/2.

FIGURE 5
(color online) (A) The teleported QFI FoptWM and (B) The success probability PWM as a function of η. The other parameters γ = 0.6, μ = 1 and θ = π/2.

Frontiers in Physics frontiersin.org05

Li et al. 10.3389/fphy.2022.965274

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.965274


that the combinedWM and QMR cannot completely retrieve the

initial QFI for the CAD noise (0 < η < 1) even in the limit case

p → 1. This result will exceed one’s expectation since the

combined WM and QMR has been widely used to battle

against decoherence and restore the initial quantum resources,

such as entanglement, quantum discord as well as QFI in Refs.

[31, 41, 42]. We argue that the perfect recovery just occurs in the

uncorrelated AD and FCAD cases, but not works in the partially

CAD case.

The underlying mechanism can be understood as follows.

From Eqs 3–5, it is found that only one decoherence process |11〉
→ (| 10〉, |01〉)→ |00〉 is involved for uncorrelated AD noise (η =

0), while another decoherence process |11〉→ |00〉 is involved for
FCAD noise (η = 1). Considering |00〉 is immune to AD, FCAD

and CAD decoherence, the pre-posed WM operation is devised

to decrease the weights of states |11〉, |10〉 and |01〉, which
equivalently increases the weight of lazy state |00〉. It was because
of such a weight interchange that the state after WM

consequentially becomes insensitive to the decoherence. In

order to restore the initial information, the post-posed QMR

is performed to re-balance the severely deviated weights between

|11〉, |10〉, |01〉 and |00〉. Choosing the proper strength of QMR,

the initial information can be totally recovered for AD and FCAD

noise by WM and QMR. However, for CAD noise, the two

decoherence processes mentioned above are involved

simultaneously that cannot be distinguished by QMR.

Therefore, the initial information cannot be completely

recovered. In this context, the correlated effects are not always

helpful to the WM enhanced teleportation of QFI. Fortunately,

the magnitude of success probability is proportional to the

correlated factor η since it is not related to the distinction of

the two decoherence processes.

4 EAM scheme

In this section, we explore another strategy for enhancing the

teleported QFI by EAM and QMR. In this scheme, the EAM

operation is performed on the environment [43, 44]. The

procedure is as follows: a detector is added to monitor the

exciton changes of the environment when the entangled

qubits pass through the CAD noise. We discard the result of

clicks (including both one and two clicks) while keep the result

corresponding to the no click. The quantum state corresponding

to no click is picked out by EAM. To restore the initial QFI, the

operations of QMRs shown in Eq. 15 are performed on the qubits

2 and 3, respectively. The final state shared by Alice and Bob

yields to

ρEAM �
ε11′′ 0 0 ε14′′
0 ε22′′ 0 0
0 0 ε33′′ 0
ε41′′ 0 0 ε44′′

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (22)

where ε11′′ � U′�q2
U′�q2+2V′�q+W′, ε22′′ � ε33′′ � V′�q

U′�q2+2V′�q+W′, ε44′′ � W′
U′�q2+2V′�q+W′, ε14′′ � ε41′′p � 2X′�q

U′�q2+2V′�q+W′,

and U′ � �η(1 + μ)(4 − γ − μγ)+ η(1 + μ)(4 − 4γ + γ2 + μγ2), V′ � �η�γ�μ(4 − γ − μγ)+
η�μ(4 − 4γ + γ2 + μγ2), W′ � �η�γ2(1 + μ)(4 − γ − μγ) + η�γ(1 + μ)(4 − 4γ + γ2 + μγ2), X′ �
�η�γμ(4 − γ − μγ) + ημ

�
�γ

√ (4 − 4γ + γ2 + μγ2).
Then, following the quantum teleportation protocol shown

in Figure 1, the state received by Bob is

ρout″ �
cos2

θ

2
ε11′′ + ε44′′( ) + sin2θ

2
ε22′′ + ε33′′( ) cos

θ

2
sin

θ

2
e−iϕ ε14′′ + ε41′′( )

cos
θ

2
sin

θ

2
eiϕ ε14′′ + ε41′′( ) cos2

θ

2
ε22′′ + ε33′′( ) + sin2θ

2
ε11′′ + ε44′′( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (23)

Similarly, the QFI of the teleported state could be obtained

FEAM � 16X′2�q2

U′�q2 + 2V′�q +W′( )2 sin2 θ, (24)

The optimal strength of QMR can be obtained by solving the

equation zFEAM/zq = 0 under the condition that z2FEAM/(zq)
2 <

0. The result turns out to be

qoptEAM � 1 −
���
W′
U′

√
, (25)

and the corresponding QFI is

Fopt
EAM � 4X′2

V′ +
�����
W′U′

√( )2 sin
2 θ. (26)

Figure 6 shows the result of the teleported QFI as a function

of γ under CAD noise with the assistance of EAM and QMR for

μ = 1. It is noted that the teleported QFI is improved only the

EAM is performed (i.e., q = 0). However, such a improvement

disappears when γ → 1. Utilizing the combination of EAM and

FIGURE 6
(color online) The teleported QFI FoptEAM as a function of γ with
μ = 1 and η = 0.8. The optimal QMR strength qopt

EAM � 1 −
��
W′
U′

√
. The

polarization parameter θ is π/2.
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QMR (q � qoptEAM), we can further enhance the teleported QFI

regardless of the value of γ. From Eq. 26, it is found that Fopt
EAM is

related to the correlated parameter η.

In order to more clearly describe the role of the correlated

factor, Figure 7A is plotted to show Fopt
EAM as a function of μ and η.

Similar to Figure 5A, the teleported QFI Fopt
EAM reaches its

maximal value (i.e., the initial value of QFI μ2 sin2θ) in the

uncorrelated AD and FCAD cases. While in the partially

correlated regions (i.e., 0 < η < 1), the combination of EAM

and QMR cannot restore the total QFI. The underlying reason

can be attributed to the fact that QMR cannot distinguish the two

decoherence processes mentioned above. Considering that the

EAM and QMR are also probabilistic operations, the success

probability is

FIGURE 7
(color online) (A) Teleported FoptEAM as a function of μ and η. (B) The success probability PEAM as a function of μ and η. The QMR strength
qopt
EAM � 1 −

��
W′
U′

√
. The polarization parameter θ is π/2.

FIGURE 8
(color online) (A)Favimp as a function of γ and p with μ = 1 and η = 0.8. (B)Favimp as a function of γ and η with μ = 1 and p = 0.8. The polarization
parameter θ is π/2.
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PEAM �
2W′ + 2V′

���
W′
U′

√
4 − 4γ + γ2 + μγ2( ) 4 − γ − μγ( ). (27)

Figure 7B reveals that there has been a marked increase in the

success probability with increasing η.

5 Comparison between the WM
scheme and the EAM scheme

So far, we have found that both WM and EAM schemes can

significantly enhance the teleportation of QFI under CAD noise

in a probabilistic way. Particularly, in these two schemes, the

improvement of QFI is based on the sacrifice of success

probability. A detailed comparison seems necessary to show

which one is better. To quantitatively determine the

superiority of probabilistic schemes, a quantity of average

improvement of QFI that balances the enhanced QFI and

success probability is introduced.

Fav
imp � Fopt

EAM × PEAM − Fopt
WM × PWM, (28)

where the subscript “imp” denotes the EAM scheme’s

improvement over the WM scheme.

In Figure 8A, We have plotted Fav
imp as a function of p and γ

with η = 0.8 and μ = 1. Remarkably, it is intriguing to notice that

Fav
imp is always positive. As we discussed in Section 3, the larger

strength ofWM corresponds to the larger QFI, but with a smaller

success probability. Figure 8A tells us that the EAM scheme

performs better than the WM scheme on the average

improvement of QFI regardless of the strength of WM. We

conjecture that WM which is performed before CAD noise only

collects the information from system, whereas EAM can gather

the information from both system and environment since it is

acted after CAD noise. Therefore, EAM scheme is superior to

WM scheme. It also should be noted that Fav
imp monotonically

increases with the increase of η for a given γ, as shown in

Figure 8B. This means that although the correlated effects may

not be able to enhance the teleported QFI and success

probability at the same time in both WM and EAM

schemes, the average improvement in EAM scheme is more

pronounced.

6 Conclusion

In summary, we have investigated the teleportation of QFI

using Werner state as the quantum channel under the CAD

decoherence. It is found that the correlated effects is helpful to

increase the teleported QFI in CAD noise. Furthermore, we have

proposed two schemes for improving the teleportation of QFI.

The first scheme is based on the combination of WM and QMR.

The second scheme is based on the aid of EAM and QMR. The

teleported QFI can be improved significantly by taking advantage

of these two schemes. Remarkably, the correlated effects can

increase the success probability of these two schemes. A detailed

comparison leads us to the conclusion that the EAM scheme

beats the WM scheme in terms of enhancing the teleported QFI

under CAD decoherence. Our work would be helpful for

understanding the CAD decoherence in other quantum

information processing tasks.
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