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The electromagnetic interaction of a charged particle beam with multilayer

vacuum chambers is of particular interest in accelerator physics. This paper

presents a deep learning-based approach for calculating electromagnetic fields

generated by the beam in infinitely long multilayer vacuum chambers with

arbitrary cross section. The presented approach is based on physics-informed

neural networks and the surface impedance boundary condition of a multilayer

structure derived from the transmission line theory. Deep neural networks

(DNNs) are utilized to approximate the solution of partial differential equations

(PDEs) describing the physics of electromagnetic fields self-generated by a

charged particle beam traveling in a particle accelerator. A residual network is

constructed from the output of DNNs, the PDEs and boundary conditions are

embedded into the loss function and differential operators are calculated using

the automatic differentiation. As a result, the presented approach is regarded to

be mesh-free. The approach is applied to circular and elliptical vacuum

chambers with a three-layer structure. It is verified in comparison with the

recently proposed boundary element method. The effects of chamber

geometries and multilayer structure on the beam coupling impedance are

demonstrated.
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1 Introduction

Charged particles moving in an accelerator are exposed to electromagnetic fields of

components specified by the accelerator design. These external fields are used to store and

accelerate beams of charged particles. However, the charged particles themselves are

sources of electromagnetic fields [1]. Due to the movement of the particles, they behave

like a current in an accelerator vacuum chamber. The field accompanied by the beam

(called as self-field) is scattered on the wall surface of its chamber due to finite

conductivity of the wall material and/or cross section variation. As a result of this
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electromagnetic interaction, unwanted electromagnetic fields are

excited. Such fields, referred as to wakefields due to the fact that

they are left behind the traveling particle, act back on the beam

itself and the following beams, and subsequently influence the

energy and motion of the charged particles [2, 3]. As the beam

intensity increases, the wakefields become significantly strong,

and also will perturb the prescribed external fields. The wakefield

effects can limit the performance of an accelerator in terms of

beam quality and beam current. Therefore, accurate knowledge

of wakefields is required in the design of vacuum chamber

components in an accelerator.

The integrated effects of the wakefields on the beam can be

estimated by the beam coupling impedance in the frequency

domain [4, 5]. To calculate the impedances of various accelerator

vacuum chambers, both analytical and numerical approaches

have been developed complementarily. Analytical (or semi-

analytical) approaches [6–14] are important for understanding

the characteristic of wakefields although their applicabilities are

usually limited to simple geometries. A practical way of

calculating impedances of realistic vacuum chambers with

complex geometries and materials is to use purely numerical

methods such as the finite integration technique (FIT) [15] and

finite element method (FEM) [16]. To obtain a numerical

solution, the FIT and FEM require the discretization of

domains for a vacuum chamber of interest. The standard FIT

with structured grids suffers from the staircasing error of curved

boundaries. The FEM with unstructured grids allows accurate

modeling of boundary surfaces but may need the generation of

dense meshes due to a large variation of the fields in the vicinity

of the source domain. When calculating the impedance due to

finite conductivity of the chamber wall, generally called resistive

wall impedance, one needs to address the skin effect in the

chamber wall properly. The resistive wall impedance of

multilayer vacuum chamber is of particular interest for

modern high energy accelerators and x-ray free electron laser

projects. Many efforts have been made to analytically investigate

the wakefields and impedance in multilayer vacuum chambers,

see e.g., [17–23]. However, it is still challenging to calculate the

impedance of multilayer vacuum chambers with arbitrary cross

section.

This paper presents a new approach for calculating the beam

coupling impedance of infinitely long multilayer vacuum chambers

with arbitrary cross section. Unlike traditional numerical methods,

our approach is based on deep learning in the form of neural

networks (NN), termed as the physics-informed neural networks

(PINN) [24, 25]. A deep neural network is utilized as a solution

surrogate to approximate the solution of governing equations of

wakefields generated in a multilayer vacuum chamber. The

differential operators in the residual network of the governing

equations are evaluated with automatic differentiation. Therefore,

no numerical mesh exists inside the domain surrounded by the

chamber wall surface and also on its surface. For these reasons, the

presented approach can be regarded to be mesh-free. To avoid

calculating fields penetrated in the wall and model a multilayer

structure, the transmission line (TL) theory [18] and the surface

impedance concept [26] are used in the present study.

It should be pointed out that PINN was first introduced into

beam coupling impedance modeling in Ref. [27], where the space

charge impedance of a relativistic beam with transversally Gaussian

charge density in an infinitely long vacuum chamber with walls of

infinite conductivity is simulated for various cross sections. Very

recently, PINN was extended to the case when a vacuum chamber

has finite wall conductivity in Ref. [28], where the surface impedance

concept was combined with PINN. A single-layer circular vacuum

chamber with a finite wall thickness and a small conductivity was

analyzed in [28], where it is assumed that the magnetic field on the

resistive wall is the same as that on the perfectly electric conductor

(PEC) wall; the effect of finite wall conductivity on themagnetic field

is enough small. This is referred to as the perturbative treatment of

the magnetic field. It has been also used to simplify a problem in the

analytical impedance studies; see e.g., [5, 11]. However, the

perturbation is valid only for a limited frequency range. A

nonperturbative treatment of the magnetic field is required to

compute the coupling impedance at high frequencies.

To the best of the author’s knowledge, the modeling of

multilayer vacuum chambers with more than two layers in

particle accelerators has never been studied in the framework

of PINN, although its possibility has been mentioned in Ref. [28].

Nonperturbative cases are also not yet discussed in this context.

The purpose of this paper is therefore to extend the previous

study [28] to the nonperturbative modeling of coupling

impedances and wakefields in multilayer vacuum chambers.

This study will be the first application of PINN to this

subject. The key idea of the presented approach is to use

PINN [24, 25] and the surface impedance boundary condition

(SIBC) of a multilayer structure derived from TL theory [18] in

the nonperturbative model. To model vacuum chamber

geometries other than the circular one, the Swish activation

function is chosen for the NN architecture. The goal of this

paper is to clarify that the presented approach can be applied to

the nonperturbative impedance modeling of multilayer vacuum

chambers. The discussion of this paper is limited to this point.

This paper is organized as follows. In Section 2, we state the

problem solved. In Section 3, we present a mesh-free numerical

method based on PINN for calculating electromagnetic

wakefields in frequency domain. In Section 4, we show

numerical results of circular and elliptical multilayer vacuum

chambers with PINN. This paper is concluded in Section 5.

2 Problem statement

2.1 Partial differential equations

We consider a relativistic charged particle beam with a

transversally Gaussian charge density distribution (total charge
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Q) moving in an infinitely long vacuum chamber with an

arbitrary but constant cross section and walls of finite

conductivity, as shown in Figure 1. Throughout this paper, we

assume that the particle beam has a rigid charge distribution ρ

and a constant velocity v, and the beam current density J = ρv,

where v = vez = βcez, β = v/c, c is the speed of light in vacuum, and

ez is the unit vector along the z-direction. The influence of the

field on the beammotion is neglected in the field calculation. This

rigid beam picture is not self-consistent, but it is an excellent

approximation for relativistic beams [2–4]. Our interest is to

solve electromagnetic boundary value problems for a given

charge distribution in the context of PINN.

In general, the electric andmagnetic fields (E,H) in the presence

of the particle beam in vacuum obey the Maxwell equations [1, 5]:

∇× E � −μ0
zH
zt

, (1)

∇× H � J + ε0
zE
zt
, (2)

∇ · E � ρ

ε0
, (3)

∇ ·H � 0. (4)
where ε0 and μ0 denote the permittivity and the permeability of

vacuum, respectively. In the frequency domain, the Maxwell Eqs.

1–4 can be transformed into

∇× E � −jωμ0H, (5)
∇× H � J + jωε0E, (6)
∇ · E � ρ

ε0
, (7)

∇ ·H � 0. (8)

Here we assume the time dependence ejωt with an angular

frequency ω = 2πf. When one consider only a particular

harmonic component, the charge and current densities are

written as

ρ x, y, z, t( ) � ρ⊥ x, y( )ej ωt−kz( ), (9)
J x, y, z, t( ) � Jz x, y( )ej ωt−kz( )ez, (10)

respectively, where k = ω/v is the wave number, Jz = ρ⊥βc, ρ⊥ is

the transverse charge density distribution function. The electric

and magnetic fields are also written as:

E x, y, z, t( ) � E x, y( )ej ωt−kz( ), (11)
H x, y, z, t( ) � H x, y( )ej ωt−kz( ), (12)

respectively. From the frequency domain Maxwell Eqs. 5–8, we

can obtain the following inhomogeneous wave equations of the

electric field E = (Ex, Ey, Ez) and magnetic field H = (Hx, Hy,

Hz) [1]:

∇2E + ω2ε0μ0E � ∇ρ

ε0
+ jωμ0J, (13)

∇2H + ω2ε0μ0H � −∇× J. (14)

Substituting Eqs. 9–12 into Eqs. 13, 14 leads to

z2Ex

zx2
+ z2Ex

zy2
− k2

γ2
Ex � 1

ε0

zρ⊥
zx

( ), (15)

z2Ey

zx2
+ z2Ey

zy2
− k2

γ2
Ey � 1

ε0

zρ⊥
zy

( ), (16)

z2Ez

zx2
+ z2Ez

zy2
− k2

γ2
Ez � − jk

ε0γ2
ρ⊥, (17)

z2Hx

zx2
+ z2Hx

zy2
− k2

γ2
Hx � −zJz

zy
, (18)

z2Hy

zx2
+ z2Hy

zy2
− k2

γ2
Hy � zJz

zx
, (19)

z2Hz

zx2
+ z2Hz

zy2
− k2

γ2
Hz � 0, (20)

where γ � (1 − β2)−1/2 is the Lorentz factor. As described later,

we are interested in Eq. 17 to calculate the coupling impedance.

2.2 Boundary conditions

To model the walls of a vacuum chamber, one needs to

enforce the boundary condition. In the case of PEC walls, we use

the PEC boundary condition (BC) as follows [1, 5]:

n × E � 0. (21)

For a smooth wall of finite conductivity, we replace the PEC-BC

by the Leontovich boundary condition or SIBC [5, 26]:

n × E � Zs ω( )n × n × H, (22)
where n is the outward unit vector normal to the wall surface and

Zs(ω) is called as the surface impedance, which is complex.

When Zs = 0, Eq. 22 can be reduced to the PEC-BC Eq. 21. Note

that Eq. 22 is enforced only on the innermost wall of the chamber.

FIGURE 1
A relativistic charged particle beam with transversally
Gaussian charge density moving at constant velocity on the axis of
an infinitely long multilayer vacuum chamber with elliptical cross
section.

Frontiers in Physics frontiersin.org03

Fujita 10.3389/fphy.2022.967645

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.967645


In the field solution, all the domain outside the innermost wall is

assumed to be filled by PEC. This can be also regarded as the

assumption of infinitely thick PEC wall. Therefore, the field is

zero outside the innermost chamber wall. This surface

impedance concept can be widely used for the impedance

modeling in particle accelerators. See e.g. [29].

For later reference, we summarize Zs in some special cases. As

a well-known example, the normal skin effect in a chamber wall

with infinite thickness can be modeled with [5, 18, 26].

Zs ω( ) �
��������
jωμ0

σc + jωε0

√
. (23)

where σc is the static (dc) conductivity. For a multilayer structure,

the transmission line theory [18] can be used to obtain its surface

impedance in Eq. 22. The same approach as Ref. [18] is adapted

in this work. As a result, for a three-layer structure with dc

conductivities σi and thicknesses di (i = 1, 2, 3, respectively), Zs on

the inner wall is given by

Zs � Z1 · Zi2 + Z1 tanh γ1d1( )
Z1 + Zi2 tanh γ1d1( ), (24)

Zi2 � Z2 · Zi3 + Z2 tanh γ2d2( )
Z2 + Zi3 tanh γ2d2( ), (25)

Zi3 � Z3 · Z0 + Z3 tanh γ3d3( )
Z3 + Z0 tanh γ3d3( ), (26)

where Z0 is the free space impedance and Zi and γi are the

intrinsic impedance and the propagation constant of ith layer

material, respectively, given by

Zi �
��������
jωμ0

σ i + jωε0

√
, (27)

γi �
�������������
jωμ0 σ i + jωε0( )√

. (28)

Note that the vacuum regions are assumed to be inside the

innermost wall surface and also outside the outermost wall

surface.

Figure 2 shows surface impedances obtained with Eq. 23 for

stainless steel (SS), copper (Cu), and nonevaporable getter (NEG)

and a surface impedance calculated with Eq. 24 for a three-layer

structure with the same conductivities. The materials used from

external to inner layer are SS, Cu and NEG with the

corresponding dc conductivities σ3 = 0.14 × 107 S/m, σ2 =

5.88 × 107 S/m, σ1 = 0.55 × 105 S/m. Layer thicknesses are

d3 = 1 mm for SS, d2 = 1 μm for Cu and d1 = 1 μm for NEG,

respectively. As well known, for good conductors, Eq. 23 can be

simplified as

Zs ω( ) � 1 + j( ) ����
Z0ω

2σcc

√
. (29)

Therefore, the curve of the real part of the surface impedance

agree with that of the imaginary one for Cu, SS and NEG,

respectively. By contrast, for the three-layer structure, the

frequency dependency of the real part is quite different from

that of the imaginary one.

2.3 Kirchhoff’s boundary integral
representation of electromagnetic field

The electromagnetic field in an infinitely long vacuum

chamber can be also expressed in Kirchhoff’s boundary

integral representation as [30].

FIGURE 2
Surface impedances for the smooth wall of SS, Cu, NEG (A) and for the inner wall of the three-layer structure (B).
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E � Eb − ∇⊥ϕ − jωA − 1
ε0
∇⊥ × F, (30)

H � Hb − ∇⊥ϕm − jωF + 1
μ0
∇⊥ × A (31)

with the vector and scalar potentials

A r( ) � μ0∫
C
G r, r′( )K r′( )dr′, (32)

F r( ) � ε0∫
C
G r, r′( )M r′( )dr′, (33)

ϕ r( ) � 1
ε0
∫

C
G r, r′( )σ r′( )dr′, (34)

ϕm r( ) � 1
μ0
∫

C
G r, r′( )η r′( )dr′, (35)

and the boundary conditions

n × E � −M, (36)
n × H � K, (37)
n · E � σ/ε0, (38)
n ·H � η/μ0, (39)

and Green’s function [1].

G r, r′( ) � 1
2π

K0 krR( ), R � r − r′
∣∣∣∣ ∣∣∣∣, kr � k/γ, (40)

where (Eb, Hb) are the beam self-fields, ∇2
⊥ � z2

zx2 + z2

zy2 is the two-

dimensional (2D) Laplacian operator, r = (x, y) is the observation

point in the bounded vacuum region, r′ is the point on the

boundary surface, n is the inner unit vector normal to the inner

wall surface C, K0 is the modified Bessel function of the second

kind of order zero, (K, σ) are the electric surface current and

charge densities and (M, η) are the magnetic surface current and

charge densities.

The above integral representation clearly shows that the total

electromagnetic fields (E, H) can be expressed as a

superposition of the beam self-fields and the boundary

integrals over the surface charges and currents on the

chamber walls. See Ref. [30] for more detailed discussions

on Eqs. 30, 31.

Here we should mention the perturbative treatment of

magnetic field; the magnetic field on resistive walls is assumed

to be the same as that on PEC walls. In this case,M = 0 and η = 0.

Therefore, to compute the magnetic field in the perturbative

model, one uses

H � Hb + 1
μ0
∇⊥ × A (41)

together with Eq. 37. In the previous study [28], the boundary

data for PINN was generated with Eq. 22 and Eq. 41

Unlike Ref. [28], in this paper, boundary data for PINN are

generated with the nonperturbative model based on Eqs. 30, 31

including Eq. 22 with Eq. 23 or 24.

3 Physics-informed neural network
method

3.1 Data and equation scaling

For calculating the electromagnetic field in particle accelerators

and the beam coupling impedance, we will deal with different

magnitudes of input and output. For example, the field

magnitude may vary largely within a vacuum chamber under

consideration or in a frequency range of interest. The real part of

the field can be also different from the imaginary one due to the

frequency dependence of a surface impedance. In such cases, we

have to deal with a dataset carefully. Using a raw dataset can lead to

slow convergence of a gradient-based optimizer. To avoid this, we

need to scale the input, output and PDE in an appropriate way. It

should be mentioned that this basic idea was first described in Ref.

[27]. Although the final scaled form of the PDE Eq. 17 was given in

Ref. [28], its derivation was omitted. In the following, we present a

detailed formulation for the data and equation scaling.

Let us consider modeling a vacuum chamber geometry in

Cartesian coordinates. The x-axis and y-axis are scaled with typical

chamber dimensions (sx, sy) such as radius, height and width as

�x � x

sx
, �y � y

sy
. (42)

We then scale the sampling points (input) with Eq. 42 and

transform the PDE Eq. 17 into

1
s2x

z2Ez

z�x2 + 1
s2y

z2Ez

z�y2 − k2

γ2
Ez � − jk

ε0γ2
ρ⊥. (43)

Next, by scaling the field Ez (output) as

�Ez � Ez

E0
, (44)

FIGURE 3
Physics-informed neural network.
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we obtain

1
s2x

z2 �Ez

z�x2 + 1
s2y

z2 �Ez

z�y2 − k2

γ2
�Ez � − jk

ε0γ2E0
ρ⊥, (45)

where ρ⊥ is given by

ρ⊥ � Q

2πσxσy
e
− x−xc( )2

2σ2x
− y−yc( )2

2σ2y , (46)

where (σx, σy) is the Gaussian rms size in the x- and y-direction and

(xc, yc) is the center position in the transverse plane. Finally, by

setting sx= sy= s0, introducing a new parameterB and choosingE0 as

E0 � qns0
2 k

Bε0γ2
, qn � Q

2πσxσy
, (47)

we can derive a scaled PDE as follows:

z2 �Ez

z�x2 + z2 �Ez

z�y2 −
�k
2

γ2
�Ez � −jB�ρ, (48)

�ρ � exp − �xs0 − xc( )2
2σ2x

− �ys0 − yc( )2
2σ2y

⎡⎣ ⎤⎦, (49)

where �k � ks0 and �ρ � ρ⊥/qn denotes the scaled charge density

distribution. Throughout this paper, B = 1 is empirically chosen.

Note that γ and �ρ are included even in the scaled PDE Eq. 48,

which has the same form as the original PDE Eq. 17.

As the scaled boundary condition for �Ez, we adapt

�Ez � El/E0, (50)

where El is the longitudinal electric field on the wall surface

obtained with the recently proposed boundary element method

(BEM) [30]. Note that, as already mentioned in Section 2.3, the

nonperturbative model is used to obtain El in Eq. 50.

We highlight the effect of the above data and equation scaling

by comparing Eq. 48 with Eq. 17. The right-hand side (RHS) of

Eq. 17 will be relatively large due to the existence of ε0 ≈ 8.854 ×

10–12 [F/m]. In addition, the RHS depends on the wavenumber k

or the frequency f. These are unpreferable for using a gradient-

based optimizer. By contrast, in the presented formulation Eqs.

42–50, the RHS of (48) is characterized by B�ρ and it remains

unchanged over a frequency range of interest. This feature is

preferable for calculating the beam coupling impedance in the

frequency domain and for maintaining the accuracy of trained

NNs over a frequency range. In fact, this scaling has been

successfully applied to all benchmark examples in this study.

The presented scaling scheme is performed as pre-processing and

post-processing.

Note that the physics of the electromagnetic field self-

generated by the beam in a vacuum chamber can be described

by Eqs 48, 50.

3.2 Deep learning

Let us consider solving the derived PDE via a new class of deep

learning, termed as PINN [24, 25]. A deep neural netowrk (DNN) is

used to approximate the solution of Eq. 48. This is often called as a

solution surrogate. In addition, to train this DNN,we take the output

of a DNN, define a network associated to the residual of Eqs 48, 50

and calculate the residual value (called a loss function). Note that

differential operators in this residual network are calculated using

the automatic differentiation. Therefore, unlike traditional

numerical methods, our approach does not need to define (and

generate) meshes inside the chamber. Physically, the space charge

field has only a purely imaginary part, the resistive wall wake field

has both real and imaginary parts. Therefore, the DNN also has two

outputs (Êr, Êi) corresponding to the real (r) and imaginary 1) parts

of �Ez. A schematic picture of constructed PINN including the DNN

and the residual network is illustrated in Figure 3. The inputs of the

DNN are sampling points (�xp, �yp) in the scaled xy plane. We

assume that the beam traverses inside the chamber and the field is

zero outside the chamber. The approach described here works well

especially for smooth transverse charge density as in (49).

Our algorithm is summarized in the following list.

1) Set up a computational domain, the boundary condition,

physical constants, beam parameters, source domain, and the

scaling parameters.

FIGURE 4
Generation of sampling points in a domain surrounded by the
innermost wall of a circular vacuum chamber.
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2) Generate randomly sampled points (or regular or irregular

grid points) within the computational domain surrounded by

the innermost wall. No sampling point is generated outside

the domain.

3) Construct a DNN with two outputs Êr(�x, �y; θ), Êi(�x, �y; θ) as
a solution surrogate of the scaled PDE
�Ez(�x, �y) � �Er(�x, �y) + j�Ei(�x, �y), where θ is a vector

containing all weights w and bias b in the neural network

to be trained, σ denotes an activation function.

4) Define the loss function L including Eqs 48, 50

5) Train the constructed DNN to find the best parameters θ by

minimizing L via the L-BFGS algorithm [31] as a gradient-

based optimizer, until L is smaller than a threshold ϵ.
6) Calculate the original field (unscaled) from Êz(x, y; θ) �

E0Êr(x/s0, y/s0; θ) + jE0Êi(x/s0, y/s0; θ) using the

trained DNN.

In this method, the loss function L is defined by

L � wd
rL

d
r + wb

rL
b
r + wd

i L
d
i + wb

i L
b
i , (51)

FIGURE 5
Coupling impedances of a round Gaussian beam with σr = 0.5 mmmoving on the axis of a circular vacuum chamber with infinite thickness for
three different wall materials: copper (Cu), stainless steel (SS), nonevaporable getter (NEG). The copper and NEG chambers have radius of 5 mm and
the SS chamber has radius of 6 mm. Real part (A) and imaginary part (B).

FIGURE 6
Comparison of the perturbative and nonperturbative models in the coupling impedances of a round Gaussian beam with σr = 0.5 mm moving
on the axis of a circular vacuum chamber with infinite thickness for NEG. The NEG chamber has radius of 5 mm. Real part (A) and imaginary part (B).
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Ld
r �

1
Nd

∑Nd

p�1
fr xp, yp; θ( )∣∣∣∣∣ ∣∣∣∣∣2, Ld

i �
1
Nd

∑Nd

p�1
fi xp, yp; θ( )∣∣∣∣∣ ∣∣∣∣∣2,

(52)

Lb
r �

1
Nb

∑Nb

p�1
gr xp, yp; θ( )∣∣∣∣∣ ∣∣∣∣∣2, Lb

i �
1
Nb

∑Nb

p�1
gi xp, yp; θ( )∣∣∣∣∣ ∣∣∣∣∣2,

(53)

fr � z2Êr

z�x2 + z2Êr

z�y2 −
�k
2

γ2
Êr, fi � z2Êi

z�x2 + z2Êi

z�y2 −
�k
2

γ2
Êi + B�ρ, (54)

gr � Êr − Re El/E0( ), gi � Êi − Im El/E0( ), (55)

where p denotes the sampling point, Nd and Nb are the numbers

of sampling points in the computational domain and on the

boundary surface, respectively.wd
r ,w

d
i ,w

b
r andw

b
i are the weights

of the loss function. Ldr/i is the loss function related to the scaled

PDE, and its minimization (Ldr/i → 0) enforces Eq. 48 at a set of
finite sampling points in the computational domain. Lbr/i is the

loss function related to the SIBC, and its minimization (Lbr/i → 0)
enforces Eq. 50 at a set of finite sampling points on the boundary

surface.

Throughout this study, a fully connected feedforward neural

network was adapted, and four hidden layers and 30 neurons per

layer were used. In deep learning, tanh, sigmoid, Rectified Linear

Unit (ReLU) and Swish functions are commonly used as

nonlinear activation functions. See e.g., Refs. [32, 33]. Smooth

activation functions are required in PINN. Since ReLU is not

differentiable at the origin, we do not choose it here. For this

study, the Swish function [32] is used, because it tends to work

well for various chamber geometries, compared to the tanh and

sigmoid functions. This activation function was not used in the

previous studies [27, 28]. B = 1 and (wd
r , w

d
i , w

b
r , w

b
i )=(10,1,10,1)

were chosen.

3.3 Impedance computation

After training the neural network, one can predict the field

Êz(x, y; θ) for any position (x, y) in a vacuum chamber. In order

to estimate integrated effect of the field on the beam in the

frequency domain, the concept of coupling impedance is

commonly used in accelerator physics. Here the coupling

impedance is defined as [4].

Z‖ x, y( ) � −Êz x, y; θ( )
I

, (56)

where I =Qβc is the total beam current. The coupling impedance

(per unit length) at any position inside the source domain of (46)

is obtained from (56). Although one can define the impedance

averaged over the source domain, its evalution is out of the

present paper. This paper focuses on the local impedance defined

in (56).

4 Results and discussion

To show the feasibility of the presented approach, we apply it

to the impedance analysis of multilayer vacuum chambers with

circular and elliptical cross section. Here, we assume the vertical

dimension (height) h = 2b = 10 mm as in [20] and γ = 10,000,

which is corresponding to the ultrarelativistic case. The PINN-

predicted results are verified in comparison with simulation

results of the recently developed BEM.

First, the coupling impedance of a circular vacuum chamber

of infinite thickness is simulated for different wall materials (Nd,

Nb)=(1,578, 200) was used for a circular chamber. The domain

and boundary sampling points were generated as in Figure 4,

where the coordinates are scaled with s0 = 5 mm.

FIGURE 7
Coupling impedances of a round Gaussian beam with σr = 0.5 mm moving on the axis of the circular vacuum chamber with the three-layer
structure of copper (Cu), stainless steel (SS), nonevaporable getter (NEG). Real part (A) and imaginary part (B).
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Figure 5 shows the coupling impedances of a round

Gaussian beam with σx = σy = σr = 0.5 mm on the axis of

the circular chamber for copper (Cu), stainless steel (SS) and

nonevaporable getter (NEG). As expected, both the real and

imaginary parts of the coupling impedance decrease at each

frequency point as σc increases. For example, the impedance of

FIGURE 8
PINN-simulated field distribution Ez over a domain surrounded by the innermost wall of a three-layer elliptical vacuum chamber (A) sampling
points (B) real part (C) imaginary part.

FIGURE 9
Coupling impedance of a roundGaussian beamwith σr=0.5 mm for an elliptical vacuum chamberwith the three-layer structure of copper (Cu),
stainless steel (SS), nonevaporable getter (NEG) (A) nonperturbative model (B) perturbative model.
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the copper vacuum chamber is smaller than those of the other

two. For each σc, at low frequencies, the frequency dependence

of the real part is very similar to that of the imaginary part.

This feature originates from the frequency dependence of Eq.

23 and also the fact that the magnetic field on the resistive wall

is very similar to that on the PEC wall in a limited frequency

range. However, at high frequencies, the real part is different

from the imaginary one. This is not surprising. From the

impedance theory [5], it is known that the above low

frequency characteristic is valid for (|Zs|ωb)/(2cZ0)≪ 1. In

this example, it reads f ≪7.2 THz for Cu and b = 5mm,

f ≪1.8 THz for SS and b = 6mm, f ≪0.71 THz for NEG and

b = 5mm, respectively. This feature is confirmed in Figure 5.

Note that the geometry parameter b and the dc conductivity σc
are also included in this condition. We also find good

agreement between PINN and BEM results in both the real

and imaginary parts. This means that the wideband behavior

of coupling impedance due to both the geometric effect and

the skin effect characterized by Eq. 23 is reproduced in the

PINN simulations.

Figure 6 demonstrates a direct comparison of perturbative

and nonperturbative models in the coupling impedance for the

circular vacuum chamber with the NEG wall as shown in

Figure 5. As expected, the perturbative impedance agrees with

the nonperturbative one for f ≪0.71 THz while the perturbative

impedance is different from the nonperturbative one at higher

frequencies. This result means that the magnetic field on the

resistive wall is not same as that on the PEC walls at higher

frequencies. In other words, the effect of finite conductivity on

the magnetic field cannot be negligible as the frequency increases.

This demonstrates that the nonperturbative effect is reproduced

in the PINN framework.

Next, the coupling impedance of a three-layer circular

vacuum chamber is simulated for different inner coating

thicknesses. The same domain and boundary sampling points

as in Figure 4 and (Nd, Nb)=(1,578, 200) were used here.

Figure 7 shows the coupling impedances of a round Gaussian

beam with σr = 0.5 mm on the axis of a circular chamber of inner

radius 5 mm and outer radius 6 mm with the three-layer

structure of SS, Cu and NEG. For each of different NEG

FIGURE 10
Comparison of electric field in a three-layer elliptical vacuum chamber calculated with PINN and BEM (A) Re (Ez) along x-axis at y = 0 (B) Im (Ez)
along x-axis at y = 0, and (C) Re (Ez) along y-axis at x = 0 and (D) Im (Ez) along y-axis at x = 0.
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thicknesses of 0.01, 0.1, 1 and 10μm, the frequency dependence of

the real part of the coupling impedance is quite different from

that of the imaginary part. For all NEG layer thicknesses, we find

good agreement between PINN and BEM results in both the real

and imaginary parts. Note that a characteristic high frequency

peak in the real part is observed for the inner layer thickness of

1 μm. This peak was originally found in the impedance theory of

the circular multilayer tube [20]. Our result shows the

applicability of PINN to the impedance modeling of a circular

vacuum chamber with three-layer structure.

Finally, the coupling impedance of an elliptical multilayer

vacuum chamber is simulated. The chamber is assumed to have

themajor axis a = 9 mm and theminor axis b = 5 mm at the inner

surface. This application is not shown in our previous study [28].

For this elliptical chamber, the domain and boundary sampling

points shown in Figure 8 are generated with (Nd, Nb)

=(2,845, 360).

Figure 9 demonstrates a direct comparison of

nonperturbative and perturbative models in the coupling

impedance of a Gaussian round beam with σr = 0.5 mm for

the elliptical vacuum chamber with the same three-layer

structure as shown in Figure 2. As expected, the perturbative

results (right) are quite different from the nonperturbative ones

(right); no resonant peak is observed in the perturbative result.

This comparison clearly show even for the three-layer elliptical

vacuum chamber the nonperturbative effect is reproduced in the

PINN framework.

In the left side of Figure 9, the frequency dependence of the

real part of the coupling impedance is different from that of the

imaginary part. The highest peak in the real part is at f ≈
0.74 THz. In the bottom of Figure 8, we display the PINN-

predicted field distribution Ez over a domain surrounded by the

innermost wall at its peak frequency. Unlike the case of a circular

chamber in Ref. [28], the field distribution shown here is non-

uniform over the elliptical cross section. This feature is also

confirmed from the field curves along x- and y-axes in Figure 10.

The effect of elliptical cross section on the field is demonstrated

in these results.

We find good agreement between PINN and BEM results for

both the real and imaginary parts of the impedance in Figure 9

and also for the electric field distributions along the x- and y-axes

in Figure 10. These results clearly show the applicability of PINN

to multilayer vacuum chambers other than the circular one.

5 Conclusion

This paper has presented a deep learning-based approach for

calculating the wakefields of a relativistic charged particle beam

with transversally Gaussian charge density distribution in an

infinitely long multilayer vacuum chamber with arbitrary cross

section. This approach is based on PINN and SIBC of a

multilayer structure derived from TL theory. It has been

successfully applied to circular and elliptical vacuum chambers

with the three-layer structure of SS, Cu and NEG in the

nonperturbative model. The PINN results have been cross-

checked with the recently developed BEM ones. The effects of

chamber geometries and three-layer structure on the coupling

impedance have been demonstrated in the framework of PINN.

In this study, a transversally Gaussian charge density

distribution is assumed. Therefore, the presented method

cannot model a uniform charge density with hard edges, point

and ring charges as often used in accelerator physics. A solution

to this limitation will be presented in near future. On the other

hand, the method has been formulated for two-dimensional

problems in the frequency domain. As future works, its

extensions to three-dimensional problems and the time

domain are under consideration.
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