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Understanding how interurbanmovements canmodify the spatial distributionof the

population is important for transport planning but is also a fundamental ingredient for

epidemicmodeling.We illustrate this on vacation trips for all transportationmodes in

China during the Lunar NewYear and compare the results for 2019with the ones for

2020where travel banswere applied formitigating the spread of a novel coronavirus

(COVID-19). We first show that inter-urban travel flows are broadly distributed and

display both large temporal and spatial fluctuations, making their modeling very

difficult. When flows are larger, they appear to be more dispersed over a larger

number of origins and destinations, creating de facto hubs that can spread an

epidemic at a large scale. Thesemovements quickly induce (in about a week for this

case) a very strong population concentration in a small set of cities. We characterize

quantitatively the return to the initial distribution by defining a pendular ratio which

allows us to show that this dynamics is in general very slow and even stopped for the

2020 Lunar New Year due to travel restrictions. Travel restrictions obviously limit the

spread of the diseases between different cities, but have thus the counter-effect of

keeping high concentration in a small set of cities, a priori favoring intra-city spread,

unless individual contacts are strongly limited. These results shed some light on the

statistics of interurban movements and how they modify the national distribution of

populations, a crucial ingredient for devising effective control strategies at a national

level.
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Introduction

The 2020 Chinese Lunar New Year period witnessed the outbreak of a novel coronavirus

(COVID-19) in Wuhan, China, which quickly infected other countries before becoming a

pandemic [1]. The proximity of this outbreak with the Chinese Spring Festival, a period of travel

with high traffic loads, provided terrible conditions for the spread of this disease. With an
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increasing amount of confirmed cases, more attention has been

devoted to modeling the spread of COVID-19 from various

aspects such as determining the value of the reproductive number

[2–7], of the incubation period [8–10]. In general, analytical modeling

plays of course an important role in the prediction of the spread and

allows in particular to test control strategies [11], whichwas verified in

this case too [12–22]. Particularly importantwas the estimatimation of

probability to export the disease in other countries [19, 23, 24], and

were how effective travel restrictions inside China [19].

Demographic information and mobility, either under the

form of data or given by transportation models (see for example

the review [25]), are crucial for modeling infectious diseases [26],

including this COVID-19. This sort of data is also useful for

transport planning [27], city livability [28], for congestion

analysis and prediction. Mobility in general concerns either

the global scale with movements between countries [18–21],

or the national scale between cities, or even inside cities

[20–22]. Here we will mostly focus on inter-urban mobility

for all types of transport modes, and in contrast with most of

the epidemiological studies, we will not model the spread of the

disease and instead but will focus on two –interrelated– aspects.

First we will focus on statistical properties of movements between

cities (in a holiday period) and how the population distribution is

affected by these large scale seasonal migrations. This leads us to

the second aspect that we will consider, namely, the possible

impact of these movements on the epidemic spread between

cities. More precisely, we will investigate the statistical properties

of traffic flows between cities during the Chinese Spring Festival

in 2020 and in 2019. These movements are essentially due to

workers coming back to their hometown for the new year

holidays and must not be confused with interurban migration

where individuals change their town residence. An important

point to note is that the comparison of the traffic flows for

2019 and for 2020, where travel restrictions took place, gives us

an opportunity to uncover some fundamental properties of

mobility. This knowledge is fundamental for understanding

and modeling mobility at the national scale. Additionally, it is

worth to note that network measure for spatial-temporal

weighted networks could also provide fundamental

information and deserves future attention [29, 30].

Results

Statistics of interurban flows

We will first study standard statistical properties of

interurban flows, obtained from migration data provided

by Baidu Qianxi (see Material and Methods). This dataset

enables us to monitor the traffic flows between cities. For each

day d (d = 1, 2, . . ., T), we extract the number of individuals N

(i, j, d) going from city i to city j with any travel mode. The

migration data can thus be taken as a directed, weighted

network of flows between the set of n = 296 cities of China

whose populations are also known (see Material and

Methods). We collected the data for the Spring Festival of

2020 (from Jan. 1st to Feb. 12th, 2020), and for assessing the

impact of travel bans, we also collected the data for the Spring

Festival of 2019 (which according to the Chinese lunar

calendar takes place from Jan. 12th to Feb. 23rd, 2019).

Large heterogeneity of flows
We first consider the distribution of all flows of

individuals N (i, j, d) for all cities i and j and all days d, as

shown in Figure 1A. The maximum flow is of order 105 and

the average of order 103 indicates a broad distribution. A

power law fit is consistent with this picture with an exponent

α ≈ 2.3 (Figure 1A). This heterogeneity is confirmed in

Figure 1B which shows both the average value μd and the

standard deviation σd computed over all inter-city flows (for

each day d). For most days, the relative dispersion σd/μd is of

order 5–10. This heterogeneity is probably due to the large

diversity of cities, which serve as origins or destinations of

flows (see below for further analysis). An important feature

that Figure 1B exhibits the sharp drop of the standard

deviation after Jan. 25th, the Lunar New Year (LNY),

which is mainly due to the travel ban (Supplementary

Figures S1, S3 in the Supplementary Material (SM) for a

detailed discussion) as shown below.

FIGURE 1
Statistics of interurban flows. (A) Distribution of all traffic
flows N (i, j, d) in loglog. The line is a power law fit of the form N−α

with exponent α = 2.27 with fitting method described in [29]. (B)
Average and standard deviation of the flowsN (i, j, d) averaged
over traffic flows versus the date d (from 1st January to 12th
February).
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Temporal versus spatial fluctuations
In order to understand the nature of the different

fluctuations affecting the flows N (i, j, d), we compute the

relative standard deviation Δij � σ ij
μij
, where μij and σij are the

average and standard deviation computed over time, and the

relative standard deviation Δd � σd
μd
, average over all flows, for

a given day d. We show on Figure 2A the spatial dispersion Δd

versus time and in Figure 2B the distribution of Δij. We

observe that the spatial dispersion is of order 8.3, while the

temporal dispersion is less (mainly concentrated around 1).

The main reason for heterogeneity thus lies in the flow

fluctuations between different origins and destinations,

while temporal fluctuations are smaller but not negligible.

These two sources of heterogeneity clearly represent a

challenge for modeling these flows, especially with very

simplified models. Our results indicate that the first

modeling step would be to describe the spatial

heterogeneity of flows and then to consider temporal

variations.

The next natural quantities, which can be computed over this

network, are the incoming flowsNin(i, d) and outgoing flowsNout

(i, d) defined by

Nin i, d( ) � ∑n

j�1 N j, i, d( )
Nout i, d( ) � ∑n

j�1 N i, j, d( )
⎧⎪⎨
⎪⎩ (1)

respectively. We measure in the same way as above various

measures of fluctuations, either averaged over cities or over

time, leading to the quantities Δin (out)
d , Δin (out)

i . As these

quantities are sums of random variables, we expect smaller

relative dispersions than for N (i, j, d) which is indeed what

we observe (Figures 2C,D, with typical values of relative

dispersion of order 1 (Supplementary Figures S4, S5 for

additional details). In order to get first insights about the

influence of travel bans, we compare the incoming flows and

outgoing flows versus city population in 2019 and 2020 with

days Nbefore
in, out before and Nafter

out, in after LNY. We first observe that

(Supplementary Figure S2 in SM) basically the number of

outgoing individuals before LNY corresponds approximately

to the number of incoming individuals after LNY with

Nbefore
in (out) ≈ Nafter

out (in) (and vice-versa). These relations thus

correspond roughly to the conservation of the number of

individuals traveling during the Chinese Spring Festival.

Structure of incoming and outgoing flows
The value of incoming or outgoing flows gives information

about the volume of migrations, but not about the number of

important origins or destinations. In order to characterize the

dispersion over different cities, we denote byO(i, d) andD(i, d),
the sets of origin of flows incoming in city i and destinations of

flows from city i (for the day d), respectively. We then use Gini

indices [30] that capture the dispersion of incoming and

outgoing flows and are given by

Gin i, d( ) � 1
2O2 �Nin i, d( ) ∑

p,q∈O i,d( )
|N p, i, d( ) −N q, i, d( )| (2)

FIGURE 2
Temporal versus spatial fluctuations. (A) Relative standard deviation of the flowsN averaged over traffic flows and represented here versus time.
(B)Distribution of the relative standard deviation ofN averaged over time. (C) Relative standard deviation ofNin(i, d) andNout(i, d) averaged over cities
and shown here versus time. (D) Distribution of the relative standard deviation of Nin and Nout averaged over time.
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Gout i, d( ) � 1
2D2 �Nout i, d( ) ∑

p,q∈D i,d( )
|N i, p, d( ) −N i, q, d( )| (3)

where O and D represent the number of elements of the setsO(i, d)
andD(i, d). The quantity �Nin(i, d) � Nin(i,d)

|O(i,d)| is the average incoming

flows and �Nout(i, d) � Nout(i,d)
|D(i,d)| the average outgoing flows. Intuitively,

if all traffic flows to city i are from one single origin city on day d, the

Gini indexGin (i, d) will be 1, while if traffic flows to city i are all equal,

the Gini index Gin (i, d) will be 0 (and similarly for Gout (i, d)).

We plot these Gini indices computed for each city versus the

traffic flows to or from this city. These Figures 3A,B show that on

average the larger the traffic flows are, the more dispersed they are

over a larger number of origins or destinations. In terms of epidemic

control, it is clear that cities with a large flow Nin and a small Gini

indexGin is themost critical, in the sense thatmany people frommany

different cities are converging to the same place. Equally, cities with a

large Nout and a small Gout should be particularly monitored, since

they can act as hubs in spreading the disease over the inter-city

network. Figures 3C,D show the top 5 critical cities, including Beijing,

Shanghai, Chongqing and Guangzhou for both the incoming and

outgoing flows, Shenzhen for the incoming flows, and Dongguan for

the outgoing flows.

Statistical structure of the national
population

An important effect of incoming and outgoing flows is that

they change the population structure. Some cities will receive a

large number of individuals while for others we expect a decrease

of their population. Migration thus affects the statistical structure

of the national population and in this section we will characterize

this effect.

Temporal evolution of population structure
In order to characterize the disparity of the population

distribution and how it varies during seasonal migrations, we

consider the population of city i at time d given by

FIGURE 4
Variation of the Gini index. Temporal variations around the
Spring Festival holidays of the population Gini index for 2019 and
2020. The horizontal dotted line represents the value “at rest”. The
vertical line indicates the day of the LNY.

FIGURE 3
Relationship between Gini index and incoming/outgoing flows. (A)Gin versusNin for all cities and days. (B)Gout versusNout for all cities and days
(shown in loglog). The thick line indicates the average of Gin (Gout) versus of Nin (Nout) and the shaded area represents the standard deviation of the
average. Top 5 critical cities for (C) incoming flows and (D) outgoing flows.
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P i, d( ) � P0 i( ) + ∑
d′#d

Nin i, d′( ) − ∑
d′#d

Nout i, d′( ), (4)

where P0(i) represents the population of city i without incoming

and outgoing flows. The Gini index for the city population of the

whole country at day d is then given by

G d( ) � 1
2n2 �P d( ) ∑

n

i, j�1
|P i, d( ) − P j, d( )|, (5)

where �P(d) � 1
n∑n

i�1P(i, d) is the average population of all cities

at day d. Intuitively, if all people gather in one city, G will be 1,

while if people spread evenly across all cities, G will be 0. For

comparison, we also define the Gini index at rest as

Grest � 1
2n2 �P0

∑
n

i, j�1
|P0 i( ) − P0 j( )|. (6)

This quantity captures the degree of population concentration

without any traffic flows, where �P0 � 1
n∑n

i�1P0(i) is the average

population of all cities without any traffic flows. We show in

Figure 4 the variation of the Gini coefficient when we take into

account migration flows.

We plot both the results for 2019 and 2020. In both cases

we see an important increase of the Gini index in a short time

(about a week): When the LNY is approaching, people go

back from workplaces to hometowns for reunion with

families. A smaller set of cities concentrates these meetings

with the number of important cities reaching its minimum

and the Gini index reaching its peak on the LNY. Based on the

Gini index, we estimate the number of “important” cities

where the concentration takes place through [n (1 − G)],

where [·] denotes the integer part (Supplementary Material

for details where we show in Supplementary Figure S6 this

number versus time and indeed observe an important drop

when approaching the LNY). After the LNY (Jan. 25th),

individuals are going back home and the Gini coefficient

relaxes back to its original value, but much slower. We observe

that in 2020, the increase of the Gini index is larger and, due to

travel bans, the decrease even slower than normal. The reason may

be that after the outbreak of COVID-19, almost all regions have

deferred the time of resuming works and classes after the Spring

Festival holiday. For example, Shanghai proposed that companies

not crucial to the nation should not resume works before Feb. 10th

and that schools should provide online classes. At this point, the

population structure at the national level is far from being back to

normal. These different results show that these seasonal

movements induce a strong concentration of individuals in a

relative small set of cities, and that travel bans tend to keep this

situation of high concentration.

Return to “equilibrium”: Pendular ratio
We observe in Figure 4 that after the LNY there is a

decrease of the Gini index indicating a return to normal state

characterized by a lower concentration of individuals. In

order to characterize quantitatively this return to the

original state (before holidays), we measure the gap

between individuals going out from a city before the LNY

and coming back after it. This gap defines a ‘pendular ratio’

given by

R i, df( ) � ∑d̂<d#d̂+dfNin i, d( )
∑d̂−df#d< d̂Nout i, d( ), (7)

where df is a range of days around the LNY d̂. If this ratio is

much larger than 1, it means that for this city there is a large

incoming flow while for the opposite situation R (i, df) ≪ 1, a

large number of individuals are going out (compared to the

incoming flows). At large times df, we expect that R ≃ 1 since

most of the individuals have come back. We divide cities into

three categories according to the value of R (i, 1): If the value

is larger than 1.5, we classify city i as a “receiver” city. If the

FIGURE 5
Spatial distribution of different categories of cites. (A) Emitter,
receiver and transit cities according to the value of R (i, 1) for
2019 with the number of three categories of cites at lower left
corner. (B) Emitter, receiver and transit cities according to the
value of R (i, 1) for 2020 with the number of three categories of
cites at lower left corner.
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value is less than 0.5, we classify city i as an “emitter” city.

Finally, if the value is between 0.5 and 1.5, we classify city i as

a “transit” city. We represent on Figure 5 the cities of different

types on the map of China. We observe that both receiver and

transit cities are homogeneously distributed in China. In

contrast, emitters cities are in general located in developed

regions, e.g., Beijing, Shanghai, Guangzhou, and so on, as

shown in Figures 5A,B. It is interesting to note that cities of

the Hubei province (within the dashed circle in the figure) are

emitters cities in 2020, essentially due to travel restrictions

that prevented individuals to come back to Wuhan. This is

an important difference compared to the year of

2019 that appears here in the spatial structure of emitters

and receivers.

We show in Figures 6A,B the pendular ratio for 2019 and

2020 for all cities and we highlight 5 cities: Wuhan, Beijing,

Tianjin, Chongqing, and Shanghai, corresponding to the origin

place of COVID-19 and four province-level municipalities. We

note here that the curve corresponding toWuhan is at the bottom

of all cities in Figures 6B, reflecting the success of sealing off

Wuhan from all outside contact to stop the spread of the disease

since Jan. 23rd.

In Figures 6C,D, we show this pendular ratio for 2019 and

2020 for the different types of cities (we average over cities in

a given category, emitter, receiver or transit). Results show

that the standard deviation is small for the three groups

adding credit to their definition. In addition, compared to

2019, the values of R (i, 1) corresponding to 2020 are much

smaller. In 2019, the pendular ratio of all the three types of

cities returns to 1, meaning that the majority of individuals

who went away for the holidays came back. The situation for

2020 is very different with a pendular ratio for all types of

cities that converges to a value less than 1 (even less than 0.5),

indicating that the majority of people who went away for the

holidays did not come back yet. This result remains

consistent with the conclusion of Gini index (Figure 3)

about a larger concentration in cities and the effect of

travel bans.

Finally, we note here that we additionally implemented our

whole analysis at the province level (Supplementary Material)

and the results obtained are similar to those obtained at the city

level.

Discussion

Our findings thus concern four different aspects. First, the

traffic flows between cities are very heterogeneous not only

spatially but also from a temporal perspective. Such a large

heterogeneity could be induced by the large flows observed

during this particular period of the Spring Festival and also by

travel bans. We note here that similar results apply also to an

aggregated level, i.e. the incoming and outgoing flows for

provinces also display important heterogeneities. This

FIGURE 6
Pendular ratio comparison. (A) Pendular ratio for all cities versus days df from LNY in 2019. We highlight five important cities. (B) Pendular ratio
for all cities versus days df from LNY in 2020with highlight of 5 cities. (C)Average values of the pendular ratio over cities according to the classification
(receiver, emitter or transit cities) versus days from LNY in 2019. The colored areas correspond to one standard deviation. (D) Mean value of the
pendular ratio over cities according to the classification versus days from LNY in 2020 with the shaded area representing the corresponding
standard deviation.
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heterogeneity aspect is crucial for understanding and

modeling epidemic spreading for which we know its

importance [31, 32] and more generally for most processes

on networks [33]. We quantify the dispersion of origins/

destinations of the incoming/outgoing flows showing that for

larger flows we have a larger variety of origins and

destinations. We also show that during these seasonal

migrations of the Spring Festival, the national structure of

population changes quickly with a larger concentration in a

small set of cities. This concentration decays normally in time

after the festivities but travel bans slow down this return to

the initial state. It is natural to try to stop the geographical

spread of the disease by interurban movements, but on the

other hand, large concentration in cities can favor the spread

at the city level and increase the number of infected cases.

This concentration can be compensated by a more important

control at the individual contact level which is what was done

in cities such as Wuhan. These results are in line with

epidemic modeling results [21], where travel quarantine is

effective only when combined with a large reduction of intra-

community transmission.

The study presented here focuses on this particular and

very important event of the Chinese Lunar New Year, and it

would be interesting to test these properties for other events

and for other countries where a large fraction of the

population moves within the country. Our results highlight

the importance of mobility studies for modeling a variety of

processes and in particular for understanding and modeling

the spread of epidemics. Effective mitigating strategies need

to take into account the change of population structure that

we exhibited here.

Methods

Data

We obtained the migration data from Baidu Qianxi

(http://qianxi.baidu.com), by using Baidu Location Based

Services, and Baidu Tianyan, for all transportation modes.

It provides the following two datasets: Migration index

reflecting the size of the population moving into or out

from a city/province, and migration ratio capturing the

proportion of each origins and destination. We collected

the data during Chinese Spring Festival period of 2020

(from Jan. 1st to Feb. 12th, 2020). For parallel comparison,

the migration index during the same period of 2019 (re-scaled

according to Chinese lunar calendar, from Jan. 12th to Feb.

23rd, 2019) is also used.

In addition to the migration data, we collected the

demographic from China Statistical Yearbook (http://www.

statsdatabank.com), an annual statistical publication, which

reflects comprehensively economic and social development of

China. It covers key statistical data in recent years at both the city

level and the province level. We collected the data of population

of 31 province-level regions and 296 city-level regions from

China Statistical Yearbook 2019, the latest edition provided.
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