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Adaptability lies at the heart of effective teams and it is through management of

interdependence that teams are able to adapt. This makes interdependence a

critical factor of human-machine teams. Nevertheless, engineers building

human-machine systems still rely on the same tools and techniques used to

build individual behaviors which were never designed to address the complexity

that stems from interdependence in joint activity. Many engineering approaches

lack any systematic rigor and formal method for identifying, managing and

exploiting interdependence, which forces ad hoc solutions or workarounds.

This gap between theories of interdependence and operable tooling leaves

designers blind to the issues and consequences of failing to adequately address

interdependence within human-machine teams. In this article, we propose an

approach to operationalizing core concepts needed to address

interdependence in support of adaptive teamwork. We describe a formalized

structure, joint activity graphs, built on interdependence design principles to

capture the essence of joint activity. We describe the runtime requirements

needed to dynamically exploit joint activity graphs and to support intelligent

coordination during execution. We demonstrate the effectiveness of such a

structure at supporting adaptability using the Capture-the-Flag domain with

heterogeneous teams of unmanned aerial vehicles and unmanned ground

systems. In this dynamic adversarial domain, we show how agents can make

use of the information provided by joint activity graphs to generally and

pragmatically react and adapt to perturbations in the joint activity, the

environment, or the team and explicitly manage and exploit

interdependence to produce effective teamwork. In doing so, we

demonstrate how flexible and adaptive teamwork can be achieved through

formally guided design that supports effective management of

interdependence.
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1 Introduction

Teaming is a dynamic activity that comes to life as agents1

work together towards a common goal. Understanding the

factors of teaming is critical to produce effective human-

machine teams. Approaches to understanding teaming are as

numerous as they are multidisciplinary, involving human

sciences (sociology [1], linguistics [2], psychology, etc.),

engineering sciences (distributed artificial intelligence,

constraint satisfaction problems, planning [3], synchrony [4])

and human machine cognition often trying to bridge the two

(theory of mind, common ground [5], communication, trust [6]).

On one hand, research in theoretical models for understanding

teaming is extensive and cohesive, with some empirically

deriving principles of cooperation (e.g., in cognition enabled

multi-agent systems [1]). On the other hand, the applied aspect

of teaming and its understanding has been assessed to be far less

consistent across the research community [7]. As systems

become more sophisticated and take on increasingly complex

roles, the need for tools which help researchers, designers and

engineers consider and exploit all dimensions of teaming are key

for both effectiveness and acceptance.

According to the concept of bounded rationality [8], agents

are required to work together in any system of substantial

complexity. Whether due to the distribution of skills,

capabilities and knowledge or simply to improve aspects of

performance, teaming is unavoidable and makes coordination

between agents a pragmatic requirement. Malone and Crowston

define coordination as “the act of managing interdependencies

between activities” [9]. Johnson and Bradshaw make the case that

“the understanding of interdependence is key to characterizing

human-machine teamwork in an understandable, actionable, and

generalizable manner” [10]. Interdependence is sometimes

characterized as interference (which can be positive or

negative) [1, 11] or as dependence [1]. A few types of

interdependence and their impact on task quality and

maximum duration were formalized by Decker as non-local-

effects [12]. It is clear from the research community that

interdependence is a key component to teams [9, 13, 14] and

makes the need for a theory of interdependence fundamental [10,

15]. However, interdependence is complex and for that reason it

has historically been avoided.

Adaptability is a central aspect of teaming. The capacity to

adapt is often correlated with team performance. There is a

significant body of research on adaptive autonomy [16–18] which

followed the definition of levels of automation, and defined

adaptive autonomy as switching between levels of automation.

This work demonstrated the impact of automation design

choices on human-machine performance. Other work has

focused more broadly on adaptability [19], not limiting it to

levels of automation. Adaptability is about allowing agents to

understand and react to change cognitively or physically.

Adapting allows agents to mitigate adverse effects and

opportunistically take advantage of situations to improve

performance along specified dimensions of teaming. We posit

that adaptability is the ability to negotiate and manage the

interdependencies within the team to yield behavior classified

as good teamwork.

Given the importance of human-machine systems, there are

surprisingly few tools available to support designing, building,

execution and interaction with human-machine teams. Existing

tools typically target a single aspect of human-machine systems,

such as distributed communications, or task allocation. Our

desire is to develop a more comprehensive approach based on

the extensive body of research on teaming. In a previous paper,

Understanding Human-Autonomy Teaming through

Interdependence Analysis [20], we provided principles to

identify and understand interdependencies within a human-

machine-system, helping designers design effective teaming

systems. We now take the next step of providing tools to

operationalize these principles in practice.

In this paper, we present joint activity graphs (JAGs), a

formalism providing a systematic method to capture the

essential elements necessary to describe and execute joint

activity. We also introduce the JAG Engine as a runtime JAG

interpreter and a means to execute multi-agent behavior. This

engine handles the aspects of teaming that must be dynamically

determined, such as team composition, task participation/

allocation, and communication. The JAG Engine leverages the

JAG formalism to support runtime teamwork through

management of interdependence. Together, these tools

provide designers and builders a practical and systematic

approach to creating joint activity behaviors that support

coordination processes within a team. Because JAGs are

grounded in teamwork theory, they also enable a highly

adaptive system. To demonstrate the range of adaption

possible, we provide examples grounded in a Capture-the-Flag

(CTF) domain. CTF is a fast-paced adversarial domain requiring

quick and responsive adaptation within the team to be successful.

This systematic approach, combined with the formalism

described in this paper, help define and expose the different

types of interdependence common to a broad range of activities

and their associated coordination requirements, which in turn

supports good teamwork.

2 Background

Providing agents with a computational means to determine

their own behavior is necessary for agents to be useful. Many

approaches have been developed over the years, such as planning

systems [21], and reactive behaviors [22]. However, these are1 In this paper agent indistinguishably refers to human or machine.
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behavior architectures, not guidance on how to develop specific

behaviors suitable for joint activity. We next discuss some

representational techniques important to the design of joint

activity.

2.1 Hierarchical task networks

Per Erol, in 1994, “most of the practical work on AI planning

systems during the last 15 years has been based on Hierarchical

Task Network (HTN) decomposition” [23], and while HTNs now

share the scene with machine learning, this statement mostly still

holds true [3]. HTNs introduced the concept of compound tasks

which were lacking in classical automated planning systems such

as STRIPS [21] and PDDL, dramatically reducing the search

space at the expense of domain knowledge. HTNs provide

declarative goals and a rich constraint language on intermediate

states that can express a large space of interactions. A key

challenge with HTNs is their lack of support for parallel activity,

which is critical in joint activity. Classical HTN planning does not

explicitly preclude parallel behavior (in that an agent can execute

multiple plans in parallel) but unfortunately does not concern itself

with the complexity and relationships that may arise from parallel

activities. We will see in Section 4.2.2.2 that we take the opposite

approach and assume that all activities can be executed in parallel

unless otherwise constrained.

Work based on hierarchical models is often concerned with

task decomposition but seldom with answer synthesis (how to re-

compose subtasks back together to fulfill the goal they

decompose and their interactions) [24]. Duarte proposes a

hybrid controller [25] as a solution to the answer synthesis

problem [24] as presented by Smith and demonstrates that

controllers can be synthesized hierarchically by applying it to

the swarm multi-agent domain [26]. With regards to distributed

artificial intelligence, Durfee compared the agent coordination to

a search in hierarchical space which very cleverly approaches the

problem of synthesis by grouping and abstracting behaviors at

multiple levels [27] fully taking advantage of the composition

capabilities of hierarchical task networks.

Decomposition and synthesis are critical components of

designing joint activity. Choices made will enable or hinder

exploitation of associated interdependencies and will have a

substantial impact on teamwork. We build on the strengths of

HTNs and extend it to include an understanding of

interdependence (supported by the 4S framework for

understanding teamwork [28] and interdependence analysis

[29, 30]), as well as a generalization of synthesis.

2.2 Behavior trees

Behavior trees are a form of hierarchical decomposition of

agent behavior that has its genesis in video games. They were first

proposed as good engineering practice to handle the complexity

of large systems and allow behaviors to be more reactive to

changes in requirements (such as behaviors of non player entities

in video games).

Behavior tree use in robotics and artificial intelligence has

been steadily growing in last decade [31]. They are a hierarchical

decomposition of agent behavior, grounded in execution, data

driven, and reusable which makes them a go-to model when

designing agent behaviors. In these respects, they are similar to

the joint activity formalism that we present in Section 3.

However, behavior trees are significantly different in other

aspects. They were initially designed with single agent

behavior in mind (with sparse and disconnected attempts to

be augmented to support multi-agents). Thus, they hide

interdependencies, resulting in ad hoc solutions when trying

to apply them to build joint activity (multi-agent behavior). They

are re-evaluated often, typically multiple times per second, and

do not hold state. Behavior trees stateless nature and their lack of

data flow make data usage within a behavior pragmatically

hidden and require the use of back channels for information

sharing, such as a blackboard. Like HTNs, parallel execution is

not precluded (behavior tree formalism has been augmented with

an explicit parallel node) but there is no context support for the

resulting interdependencies.

In contrast, a joint activity graph is always designed from a

multi-agent perspective, with single agent behavior being the

degenerate case. JAGs are event driven, as opposed to being

reevaluated at regular intervals, providing observability into

teamwork processes, enabling causality tracing and adaptation

explanation. In stark contrast to a behavior tree’s lack of state and

blackboard back channel, data flow (i.e. inputs, outputs and

bindings) is a central part of the JAG model. This makes

tying data to joint activities possible and in turn enables and

simplifies the process of identifying relevance of information (see

Section 6.3). JAG inputs further specify its behavior and as such

are part of the context necessary to make decisions. In that

respect inputs satisfy coactive design interdependence

requirements: observability, predictability and directability

(OPD) [29].

We build on the practicality of behavior trees (composability,

grounded in execution and data driven) to augment our

framework with established practices and adapt it to the

domain of human machine teaming.

2.3 TAEMS

In his inspirational thesis, Decker describes a generalization

of Durfee’s Partial Global Planning [27] called TÆMS or

Generalized Partial Global Planning [12]. TÆMS is described

as a “domain-independent coordination framework for small

agent groups” [32]. It expands on the domain specific

limitation of Partial Global Planning by including a more
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abstract and hierarchical representation of the joint activity

allowing a generalized identification and management of

coordination relationships (interdependencies).

Our work heavily builds upon and extends this work, both in

the structure (task decomposition and quality) and

interdependencies (non local-effects). Decker formalises

hierarchical synthesis in the form of quality accrual functions

(e.g., min, max, average) making it consistent with task

interdependence (see Section 4.2.1). Decker also formalises a

significant set of interdependencies (e.g., enables, facilitates) and

their measurable effect on tasks’ quality and duration.

Joint activity graph expands this work to also include OPD

requirements as team interdependencies [29]. Most, if not all,

concepts described in TÆMS have direct overlap or are

generalized in the joint activity graph formalism that we propose.

3 Joint activity graphs

Joint Activity Graphs (JAGs) are a new method to describe

joint activity in a way that is executable. Our goal with JAGs is to

provide a rigorous and systematic method for defining joint

activity that can be run in a distributed manner and achieve

behavior that would be described as good teamwork. A key design

principle when employing JAGs is that all work should be

designed as joint work [20], meaning the JAG should be

designed with an understanding that multiple agents will be

involved in performing the work. This is a dramatic shift from the

typical single-agent behavior mindset.

JAGs describe the solution space of joint behaviors. They

capture the goals and actions necessary, as well as the options

and contingencies available. Because of this, JAGs are not simply a

plan, but a description of the set of alternatives available to the team.

A major challenge in defining a JAG is understanding the

interdependencies within the joint work. Teamwork is complex

and involves the interplay of dimensions such as team goals, task

work, team composition, execution strategies and

interdependencies as discussed in 4. Malone and Crowston

stated that “one of the most intriguing possibilities for

coordination theory is to identify and systematically analyze a

wide variety of dependencies and their associated coordination

processes” [14]. The JAG structure is defined to provide a

framework for capturing the interdependence systematically. It

provides a common structure onto which teaming information

within a joint activity is captured. This structure allows designers

to systematically consider a broader range of teamwork aspects at

design time than commonly supported by current tools and

techniques. The JAG definition includes the hierarchical work,

similar to HTNs. It also includes synthesis functions in a more

generic manner than found in behavior trees. Lastly the JAG

includes the necessary information for capturing data flows.

Formally, a jag d is defined as the tuple

d � 〈Jd, sd, Id, Od, Bd〉

Jd is the set of joint activity graph children of d

Jd � d1, d2, . . .{ }

sd is a synthesis function over its own inputs and Jd’s outputs

⋃
|Jd |

n�1
Odn ∪ Id( )↦sd Od

Id is the set of d’s input parameters

Id � i1, i2, . . .{ }

Od is the set of d’s output parameters

Od � o1, o2, . . .{ }

Bd is the set of bindings representing the output-input data

flow within d

Bd � b1, b2, . . .{ }

where

bk ∈ ⋃
|Jd |

n�1
Odn ∪ Id( ) × ⋃

|Jd |

n�1
Idn ∪ Od( )

These features, represented in a JAG definition, capture

the essential elements needed to interpret interdependencies

within joint activity. An example of a generic JAG definition,

such as the jag pictured in Figure 1 would be defined as

follows:

d � 〈 da, db{ }, sd,∅,∅,∅〉
da � 〈 da,1, da,2{ }, sda,∅,∅, oa,11 , ia,21( ){ }〉
da,1 � 〈∅, sda,1,∅, oa,11{ },∅〉
da,2 � 〈∅, sda,2, ia,21{ },∅,∅〉
db � 〈∅, sdb,∅,∅,∅〉

It should be noted that the JAG formalism intentionally does

not describe the team or the strategy. This is consistent with the

interdependence design principles [20], appropriately separating

these concerns. The formalism, as we will show, does work with

both at runtime.

This JAG formalism is beneficial in a variety of ways. First, it

provides a framework for tracking the information necessary for

understanding the teaming context within an activity.

Additional information about team context, such as team

composition, task allocation, and task progress, while not

defined in the JAG, can be tracked through the JAG. This

enables individual agents to make effective single agent

behavior choices that are consistent with good teamwork

decisions. Second, the framework provides agent

coordination mechanisms to facilitate appropriate team

interactions at runtime based on that team context

reasoning (see Section 4). In other words, the formalism
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provides the minimal situation awareness necessary for

collaborative contexts.

Before explaining how the JAG formalism helps address

interdependence, we will first expand on the broad range of

sources of interdependence that occur within joint activity. To do

so, we will reference the 4S interdependence framework for

understanding teamwork [28].

4 Teamwork challenges

One of the main reasons understanding teamwork is

challenging is because teamwork involves a wide range of

interdependencies. It should not be a surprise that different

kinds of teamwork can be distinguished according to the

types of interdependence involved. For example, lifting a

couch together involves different interdependencies than

sharing a hammer. Each type of interdependence can involve

different coordination mechanisms necessary to manage it. For

example, lifting a couch might require agreeing and reacting to a

start signal (“lift on 3”), while sharing a hammer could

require verbal notification of completion or even simple

observation of availability of the hammer. As such,

operationalizing teamwork requires developing support

for managing a range of interdependent relationships

using a range of coordination mechanisms and

techniques. Johnson et. al [28], proposed a framework for

organizing many of the important concepts associated with

teaming based on the interdependencies at play. The

framework is organized on four facets: state, structure,

skills, and strategy. Here we expand on this framework.

4.1 State interdependence

State interdependence refers to interdependence resulting

from the need to coordinate and share resources across team

members.

FIGURE 1
Example of joint activity graph representation showing decomposition, synthesis and data binding between two siblings.
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We propose expanding this category with two common state

types that generate interdependence constraints on the team:

information and resources.

4.1.1 Information interdependence
Information creates interdependence based on each agent’s

need-to-know. Teamwork is built on common ground [2], and so

it should be no surprise that team members would need to share

information to operate effectively as a team. This need generates

information interdependence as each team member experiences

their own view of the activity. This type of interdependence is

often referred to as a need for situation awareness [33], common

ground [2] or shared mental models. Regardless of the phrasing,

each implies that discrepant knowledge between agents can lead

to poor team performance while consistent knowledge would

result in improved team performance. Examples of the type of

information teammates depend on are task assignment (who is

working on what), task commencement (what has been started),

task completion (what has been finished), task outputs, including

status (successful or failure) and results (values or decisions).

A key challenge for information interdependence is

determining information relevance. As with most aspects of

teaming, there are two sides to the issue. The first is an agent

recognizing information it receives as relevant and

understanding how that information might impact their own

understanding of past, present or future decisions and adapting

based on the new information. The other side of the issue is an

agent understanding when new information it discovers might be

relevant to others. This involves being able to identify who is

dependent on what information and when. This is made more

difficult in fluid teams without fixed roles. Even with fixed roles,

dynamic activity means that some information will likely become

irrelevant with time and effective teammates should

recognize this.

4.1.2 Resource interdependence
Resources create interdependence by constraining what can

be done. A person can only carry so much and a robot can only

drive to one location at a time. Resource constraints are probably

one of the most studied types of interdependence. It is well

known that if two activities require the same resource, one can

block the other, creating a sequential interdependence constraint

[34]. Resources can be things in the environment, like a printer,

but the agents themselves can be viewed as a resource as well. For

example, person A can help person B carry something, and

person A can help person C carry something, but it is unlikely

person A can help both person B and C simultaneously, thus

creating a sequential interdependence constraint. A key challenge

with resource constraints is identifying them and being able to

coordinate them effectively as a team.

Information and resources share very similar coordination

requirements. One substantial difference is that information can

be replicated, usually at low cost compared to physical resources.

Once replicated information can then be used in parallel as if

there were two of the same resource available. This is one of the

many ways to address state interdependence.

4.2 Structural interdependence

Structural interdependence refers to types of

interdependence caused by the structure or organization of

the work. It comes from two main sources: the taskwork and

the team organization [28]. Interactions in highly complex and

tightly coupled systems can be difficult to predict. Different level

of abstractions are needed at different levels of operation with no

holistic understanding of its interdependence. In high risk

systems this may lead to catastrophic consequences [35].

Understanding the interdependence resulting from the system

itself and its organization is key in identifying potential critical

paths and address them adequately.

4.2.1 Task structure interdependence
Taskwork generates interdependence in both the

decomposition process and in the synthesis process.

4.2.1.1 Task decomposition

Decomposition of the joint activity generates taskwork

interdependence. Structural interdependence is determined by

the decomposition boundary of the activity. This boundary is

often a design or engineering driven decision. Arguably, tasks can

always be further decomposed into sub-tasks but eventually the

level of decomposition becomes unwieldy or even absurd. The

decision of where the boundary lies often varies with the domain

and agents under consideration. The coordination mechanisms

involved in a command and control situation are different than

those required in a mechanical repair situation and so are the

abstractions at play. Goals and requirements may also

dynamically change at run time and adaptive teams should be

able to adjust task boundaries to provide flexibility in their plans.

The process of decomposition itself is not a challenge, it is

understanding the implications of how those changes impact

interdependence that is difficult.

4.2.1.2 Task synthesis

When tasks are decomposed they must eventually be

recomposed, creating interdependence. In distributed problem

solving, answer synthesis and behavior composability are critical

abstractions of complex distributed systems [24]. Synthesis

provides practical mechanisms that address structural

interdependence. The key challenge for synthesis to be

operationalized is defining how tasks’ outputs are generically

combined given the range of possibilities.

When decomposing a joint activity, there is a requirement to

explicitly define synthesis functions capturing how the output/

state of the joint activity is derived from the output/state of the
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sub-tasks. This allows designers and reasoning engines to

understand and exploit decomposition related

interdependencies. For example, Boolean logic could be used

to define synthesis functions. Consider the activity of going to

lunch. It can be decomposed into eating lunch and paying for

lunch. Here, the success of going to lunch depends on the success

of both children. This type of synthesis can be captured with a

Boolean operator such as and; both children have to succeed for

the parent to be considered successful. Changing the success

synthesis function to or, would completely change themeaning of

the activity and associated types of interdependence.

4.2.2 Team organization interdependence
4.2.2.1 Team decomposition (roles)

Another way to generate interdependence is through

organizational choices. Similar to task decomposition, one’s

choices about the team structure can create boundaries and

interdependence. Distribution of work is another reason why

coordination is necessary [13]. For example, having an

engineering department and a purchasing department will

require the engineering department to go through purchasing

for parts, creating a sequential interdependence. Effective

organization design typically involves designing roles to

reduce the degree of interdependence to allow roles their

maximum freedom.

4.2.2.2 Team participation

Some organizations have fixed predefined roles continuously

performed by the same individuals, making participation

constant and predetermined. Teamwork in general is more

fluid, allowing flexible roles and intermittent participation to

allow the team to adapt. This is particularly important for teams

that do not have the resources to cover all work and may need to

choose what is attended to.

Participation in joint activity represents joint commitment, a

requirement for teamwork [5, 13]. Participation is often assumed

or ignored in system design, but it is an important dimension that

plays a critical role in interpreting interdependence. An

implementation that is unable to account for participation is

blind to key information necessary for effective teaming.

Participation must also account for interdependence in the

form of task constraints. The structure and task decomposition

choices may limit team composition and participation. In his

book Group Processes and Productivity, Steiner [36] presented a

categorization of joint activity (group tasks) along three

dimensions, one of which was whether the task was divisible

or unitary (component). Divisible means the task can be divided

and distributed to individuals. The example Steiner gives is a

multi-question test, where each question could be given to a

different student. Unitary means the task cannot be divided.

Steiner uses a test with a unique single question as an example.

He posits that, because the question cannot be broken down into

sub-questions, this makes this task unitary and that “the group

would be required to work together to discuss and determine the

correct answer [. . .]”. A limitation of the unitary category is it

does not differentiate tasks that can only be done by a single

person. For example, giving a group a single pill that must be

swallowed. Only one person can do it and no others can

contribute. This is a different type of interdependence than

the single question, in which all team members could

contribute to the answer.

4.2.2.3 Team synthesis

Simply distributing work creates a need for a synthesis

function, similar to task decomposition. The synthesis strategy

used is related to the second dimension proposed by Steiner [36],

which he characterized as the interdependence characteristic of the

joint activity. Steiner proposes the categories of, additive (all team

members’ work contributes to the task - shoveling snow),

compensatory (group averaging—averaging weight estimates),

disjunctive (single decision—answer to a math problem),

conjunctive (all team members must contribute - climbing a

mountain as a group) and discretionary which is a combination of

any of the previous ones. Each of these synthesis strategies involves a

different type of interdependence and different coordination

mechanisms.

Practically, team synthesis is different from task synthesis in

that it is not about reasoning over children’s outputs but rather over

multiple outputs for a given joint activity instance. In Steiner’s “single

question test” example, each student participates in the same joint

activity generating multiple, potentially different, outputs to the

question. These outputs must be reconciled to produce the unified

joint activity output. For example, by using team operators (a

particular type of team synthesis) on a hierarchical decomposition

of joint activity, Tambe demonstrated how selective and efficient

communication could be achieved in a distributed environment [37].

Another aspect of team synthesis is the understanding of

participation status in joint activities. For example, if a goal is

conjunctive, meaning it must be completed by all members of the

team, recognizing when a teammate is not capable of

participating in the goal (e.g., due to capability requirements

or resource constraints) will allow a reasoning process to

understand that this sub goal should not be undertaken by

anyone or should trigger early failure if it had been started by

some agents already.

Team synthesis is challenging because it often involves awareness

of several other interdependencies. For example, to accomplish team

synthesis effectively, an agent may need to be aware of state

information, task structure, and team participation.

4.3 Skill interdependence

While state and structure interdependencies are about being

able to identify and understand interdependence, skill is about

having the supporting coordination mechanisms to address
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them. For example, if one is dependent on knowing when their

teammate has finished using the hammer, one could employ several

mechanisms to coordinate. One could actively observe the teammate

with the hammer to see when they put it down (i.e., monitoring).

Alternatively, one could ask the teammate to provide a notification

when complete. Both mechanisms are effective each with their own

advantages and constraints. Eachmechanism requires specific skills or

abilities to be successful. For example, monitoring only requires effort

by the person doing themonitoring and alleviates the burden from the

one being monitored. The disadvantage is that it can require

significant attention, possibly reducing team productivity. It also

creates a single point of failure. Notification requires more

coordination effort by both parties, but frees each from the

monitoring burden, potentially allowing better use of time.

While there are potentially an endless number of

coordination mechanisms, many can be categorized as being

able to recognize the existence (or lack of) interdependence

between one or more parties, understand the communication

or behavior pattern necessary to manage that interdependence,

and the means to execute it. This means recognizing when

observed changes in the environment are relevant to others

on the team and sharing them (information), recognizing

someone is constrained to doing one task at a time and

providing assistance (resource), recognizing that tasks have

sequential interdependence and providing the waiting party

notification of completion (decomposition), sharing task

results (synthesis), and notifying only those relevant to the

activity (participation). These pattern generalizations are how

people can leverage teamwork skills in new situations.

4.4 Strategy interdependence

Teaming strategy is about having the competency to discern

how and when to engage a coordination skill to impact a state or

structural interdependence in order to improve some quality

within the team. Effective teamwork involves trying to improve

behavior qualities. This aligns with Steiner’s third category of

coordination challenges: focus [36]. Steiner provided only two

discrete categories: maximizing (improving throughput) or

optimizing (improving quality). Decker [12] generalized this

concept by introducing a quality to tasks as an abstract

representation of the task’s focus as well as a task’s duration

as one of its prime characteristics. A key challenge with focus, and

strategy in general, is that it often varies based on circumstances

and rarely can be set in stone a priori, hence it is not part of the

JAG formalism, but a runtime consideration of that formalism.

5 Evaluation domain

We desired to have an evaluation domain that exercised the

broad range of types of interdependence described in Section 4.

As part of the Defense Advanced Research Projects Agency

(DARPA) program called CREATE (Context Reasoning for

Autonomous Teaming), we developed a new evaluation

domain. The goal of CREATE was to investigate new

decentralized teaming approaches for physically

distributed groups of agents. The program’s focus was on

solutions that demonstrated “context reasoning”, enabling

agents to be resilient to uncertainty and adapt to unexpected

events in the absence of centralized control. This provided a

perfect test case for operationalizing interdependence design

principles. We chose to base our evaluation domain on

Capture-the-Flag (CTF). CTF is a dynamic adversarial

game that has many of the desired characteristics that

demand complex teaming, in particular many of those

discussed in Section 4.

One limitation of traditional CTF is that it is mainly

disjunctive activity (e.g., shooting, carrying the flag). It was

desirable to have an evaluation domain that exercises a

broader range of activity types. We looked to enhance the

CTF domain leveraging Steiner’s interdependence categories

[36]. Some domains only provide additive tasks (e.g., foraging,

search), others only provide disjunctive tasks (e.g., image

recognition, decision making), while others are solely

conjunctive (e.g., carrying a large table together).

Our new version of CTF has unique rules that foster a wider

variety of teaming activities to better exercise different

interdependence requirements. It consists of adversarial

teams composed of heterogeneous agents: unmanned

aerial vehicles (UAV) and unmanned ground systems

(UGS). The objective is to find the enemy’s flag and bring

it back to your team’s base (color coded endzones in

Figure 2). A UAV can find and pick up the enemy flag,

and deliver it to their base (disjunctive task). UAVs can also

pick up and move UGS, which cannot move on their own.

UGS are non-mobile smart mines that can suppress the

enemy UAVs, sending them back to their base. UAVs can

deploy UGS (additive task) as a defensive tactic. Instead of

shooting each other as in traditional CTF (disjunctive task),

the UAVs can temporarily suppress one another, sending

them back to their base. UAVs achieve this by outnumbering

the enemy players (conjunctive task). The visual range of the

UAVs and UGSs were restricted to increase the value of

sharing information between team members. This

combination of activities required teams address a broader

range of interesting teaming challenges than traditional CTF.

Specifically, our modified CTF domain exercises all of the

types of interdependence described in section 4. For instance, the

addition of the mine laying task created information

interdependence (Section 4.1.1) with regard to where to lay

mines and resource interdependence (Section 4.1.2) to

coordinate who would lay each mine. There is variety in the

activity decomposition (Section 4.2.1.1), as the main activities

(retrieving flag and laying mines) can be completed in parallel,
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while the sub-activities of each have sequential dependence

(e.g. pickup before delivery). The task synthesis

requirements (Section 4.2.1.2) vary as some tasks can be

done asynchronously, like mine laying, while other tasks

must be done conjunctively, like UAV suppression of the

enemy. The team must chose how to balance offensive and

defensive strategies (Section 4.4), which directly impacts

participation (Section 4.2.2.2). Team members can

dynamically change roles creating team organizational

interdependence (Section 4.2.2.1). The team’s strategy

must account for how the combined efforts of each

individual result in effective behavior (Section 4.2.2.3).

These are only a few of the many instance of

interdependence that must be managed to produce

effective coordination by the team. Each requires

possessing the coordination skill (Section 4.3) and an

understanding of information relevance (Section 6.3) to

support good teamwork.

To exercise our framework, we developed hardware agents

(see Figure 3) as well as a virtual twin simulator in unity (see

Figure 2) that allowed the development and validation of joint

activity graphs both in simulation and hardware in a fully

distributed environment.

As a dynamic and uncertain evaluation environment, our

modified CTF fosters a broad range of interdependence

demanding a rich understanding of team context to produce

effective team performance. Although CTF is a very active

domain that involves fast-paced physical work, it also requires

a large amount of sophisticated cognitive reasoning over team

context. This reasoning is complicated by the fact that it happens

within each individual agent in a distributed manner. These

independent decisions must be synthesized and coordinated

across the team, providing an excellent evaluation domain for

assessing our interdependence design principles in practice.

6 Addressing interdependence

The JAG formalism was developed to help designers think

through the considerations necessary when designing joint

activity. It directly supports addressing state and structural

interdependence. It also provides the teaming context needed

to address skill and strategy interdependence within a team. This

is accomplished by the JAG Engine reasoning over the JAG

formalism to make coordination and strategy decisions,

discussed further in Section 7. As conveyed in 4, the various

types of interdependence relate to one another in many ways, so

there is not a one-to-one-mapping to the JAG formalism.

Instead, the elements of the JAG formalism combine in

different ways to help address all of the interdependecies in 4.

FIGURE 2
Live game of Capture-the-Flag in the simulated lab arena. This game shows a 3v3 (technically a (3 + 3)v (3 + 3) with 3 UAVs and 3 UGSs per team)
with the blue team endzone on the left and the red team endzone on the right. At this point in the game, 1 UAV in each team has been disabled.
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6.1 Decomposition

JAG’s task work component, d, is a hierarchical

decomposition of the joint activity. It defines the activity

search space for the agents and is consistent with Durfee’s

distributed goal search [27] and Smith’s synthesis

requirements [24]. The main purpose of hierarchical

decomposition is to understand task work context.

As an example, Figure 1 shows two different levels of

decomposition: d decomposes into da and db. db has no further

decomposition whereas da is further decomposed into da,1 and

da,2. This decomposition has implications both in terms of

participation and interaction.

Agents select what to do next through an understanding of

the activity space as defined by the decomposition. Additionally,

activity decomposition provides a structural skeleton for tracking

participation of the entire team. Each agent’s participation in

joint activity can be tracked at the individual hierarchy level. This

helps scope interactions enabling level specific coordination

mechanisms. For instance, communications about sub-tasks

do not need to be broadcast to the entire team but only to the

agents participating at that level of the hierarchy (see Section 6.3).

Similarly roles and responsibilities can be defined at each

individual level of decomposition.

Decomposition also allows designers and agents alike to

define and act at different abstraction boundaries. Consider a

grab behavior defined as dgrab. On one hand, a human could

undertake the dgrab behavior as a ‘primitive’ limiting

observability, predictability or directability into the task. This

would prevent team members from interacting with the different

parts of the process involved in the grab behavior. A machine, on

the other hand, may decompose its dgrab behavior further to allow

team members to interact, contribute and/or support the

different sub processes at play within the machine during the

activity.

There might be practical reasons for relying on higher

abstraction levels. For instance, humans can grab things pretty

reliably whereas current machines may need more support

throughout the whole process such as finding the location of

the object or determining the best approach trajectory.

Pragmatically, the level of decomposition drives the

abstraction boundary of the behavior and in turn the type of

interdependence and the capabilities needed to manage it. The

JAG approach allows both design time and runtime flexibility for

such boundaries, facilitating human-machine joint activity.

Decomposition has other intrinsic benefits common to all

similar approaches, such as the creation of modular behaviors

and the promotion of reuse of existing designs. Since JAG designs

have interdependence considerations defined with the

decomposition, those consideration transfer with reuse.

By using a hierarchical structure, JAGs support the task
decomposition (Section 4.2.1.1) like similar approaches (see

FIGURE 3
Live game of Capture-the-Flag in the lab arena.
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Sections 2.1 and Section 2.2). However, JAGs go further and

support structural interdependence, specifically team
decomposition boundary (Section 4.2.1.1) and team
participation (Section 4.2.2.2), the importance of which will

be further discussed below.

6.2 Synthesis function

“Our ability to decompose a problem into parts depends

directly on our ability to glue solutions together”.

- John Hughes, Why Functional Programming Matters [38].

Synthesis defines the process of recomposing the task

decomposition and its results. The synthesis function sd can take

the form of any mathematical function. Examples include quality

functions min, mean or max [12, 36] (dealing with conjuntive,

disjunctive or additive aspect of tasks) as well as Boolean operator

[37] such as and or dealing with team goal requirements. As such,

joint activity graph synthesis can benefit from contributions from a

wide variety of fields such as sensor fusion and organizational theory.

Even though this synthesis function can be arbitrarily

complex, a broad range of activity can be covered by a

reasonably small set of reusable joint activity patterns. We

expect each domain will favor specific sets of functions with

significant overlap. For example, in our modified CTF domain,

all but one operators were standard Boolean operators.

Importantly, the synthesis function also acts coherently with

leaf nodes, also called primitives [13, 23, 25, 32] or methods [39].

A leaf node is a jag d whose set of children Jd is empty. As

⋃|Jd |
n�1Odn � ∅, its synthesis function sd is then reduced to:

Id↦
sd
Od

A leaf node’s synthesis function sd essentially acts on its own

inputs, then outputs a result and potentially generates non-local effects

as defined by Decker [39]. This is essentially a function call to a

machine or human interface. This synthesis function coherency is an

important distinction from classical planning and behavior modeling.

It allows joint activity designers and exploiters to consider and interact

with all levels of abstraction in the same manner.

Synthesis function definitions allow JAGs to formally capture

the processes needed to manage the synthesis interdependencies
described in Sections 4.2.1.2 and Section 4.2.2.3. A surprising

number of tools and techniques ignore synthesis, even though it

is critical to teaming. JAGs provide a general and extensible

solution to address synthesis interdependence.

6.3 I/O and information relevance

The inputs Id to a joint activity d provide the necessary

information needed by the activity. They are a common way

to parameterize activities.

The outputs Od of a joint activity d are derived from d’s inputs

and the outputs of d’s children via d’s synthesis function sd. The

synthesis function can be a simple pass-through, return one or

more child outputs, or can be an arbitrarily more complex

function returning a derived result from one or more child

outputs. This is consistent with and supports concepts such as

Decker’s sub-task quality accrual functions (min, max average)

[12], but a more general extension.

Bindings, Bd, define the information flow within an activity.

Bindings uniquely identify a data provider and a data consumer.

Inputs for an activity can be passed down and consumed by

(bound to) any child joint activity. Sibling outputs can also be

consumed as inputs by other siblings. For example, Figure 1

shows da,1’s output o
a,1
1 bound to da,2’s input i

a,2
1 .

This creates an implicit sequential interdependence

requirement [34]; da,2 cannot be started before da,1 has

completed and generated its output oa,11 . Input and output

flow is completely defined, in practice, through bindings.

I/O plays a key role in identifying information relevance. Team

performancemonitoring is one of the Big Five components of team

effectiveness [40] and is crucial in enabling adaptability. It is

common to use monitoring functions to observe, prevent

failure, and repair plans through continuous planning [41].

However, monitoring functions have to be manually defined

and managed which can be cumbersome. We propose that we

can make the process more observable and systematic with

parameterization of behaviors and explicit data flow to address

resource and information state interdependences. The data used
by joint activities is inherently relevant to that activity. If the input

changes the output may change as well. Hence, data flow identifies

what portion of the world is relevant at different levels of the joint

activity. In turn, team processes addressing information
interdependence can be executed based on this flow. These

processes help agents identify to which teammate a new piece

of information is relevant. They also help agents assess if a received

piece of information is relevant to their own ongoing activities.

Similar to good software engineering practices, we have found

that the amount of behavior parameterization is directly proportional

to the adaptability the team with regard to that behavior.

For instance the behavior dnavigate in Figure 4 behavior can be

implemented very specifically as to only be able to navigate to a

FIGURE 4
A simple jag behavior with input and outputs.
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predefined location. Without input, this behavior cannot react to

information updates. There is also no observability into the

information necessary to execute navigate. Two independent

executions will behave the same, and make managing certain

interdependencies impossible, and by extension, teamwork that

much worse. A slightly more common implementation would be

to parameterize dnavigate with a location which would be consumed

by dplan−trajectory. Updates about the location would now be known to

have an impact on dnavigate. Similarly, navigation is likely to include a

list of obstacle in its planning. If that list of obstacles is a parameter

(an input), then dnavigate can now react to new information about

obstacle location (see Section 8.2). Relevance of new information,

such as the information about the destination and obstacles, is now

systematically tied to the navigate behavior which leads to smart and

informed reactions to world changes. Relevance can now be defined

more specifically:

Information p is relevant to a behavior b if b is active and if p

matches any input from b or from a behavior whose output is

recursively consumed by b.

For example, dfollow−trajectory consumes dplan−trajectory’s output,

oplan−trajectorytrajectory which was generated using iplan−trajectoryobstacles . Any

change to an obstacle concept would therefore be relevant to

the dfollow−trajectory joint activity.

Because there is a systemic link between data and the

behavior that uses this data, the more a behavior can be

parameterized the more it can be reactive to changes in its

parameters. This awareness of information relevance can

facilitate better team adaptation. This applies generically

throughout the joint activity as defined by its data bindings.

Although outside the JAG formalism, the concept of

matching information was an important part of building an

agent knowledge base. The process of matching should be left to

the system designer to decide but it may be useful for the reader

to understand how we designed information and implemented

concept matching in our agents. Our approach was soft property

matching. Concepts (or pieces of information) are a bundle of

arbitrary property value pairs. If all properties of a concept c1

exist in another concept c2, and both values satisfying equality for

their type then c1 matches c2, however the inverse is not true. For

instance, an agent referring to a blue mine would match the

generic friendly unarmed mine concept in listing 1 and the more

specific mine instance in listing 2. However, if an agent refers to a

specific blue UGS, that agent is not referring to just any blue UGS.

This is analogous to looking for one’s favorite blue pen that was

gifted when graduating as opposed to looking for any blue pen.

Listing 1. Friendly unarmed mine concept.

{

“type”: “agent:mine”

“team”: “blue”

“armed”: false

}

Listing 2. Specific mine instance concept.

{

“type”: “agent:mine”

“team”: “blue”

“id”: “542ce2b1−c00e−47ff−8d7f−8db0fc118b13”

“name”: “blue−mine−3”

“armed”: false

“location”: (0.0, 0.15, −1.5)

}

7 Dynamic team context reasoning

While the JAG formalism helps designers consider

interdependence a priori, other types of interdependencies

only manifest themselves during joint activity execution. The

JAG Engine provides reasoning over the JAG formalism to make

coordination and strategy decisions.

7.1 JAG engine

In order to operationalize the management of

interdependence we developed an additional tool called a JAG

Engine. A JAG Engine is an execution environment that

interprets and executes joint activity graphs. It is able to use

the information captured by the formalism described in Section 3

to drive the behavior of an agent in support of teamwork. It

exposes interdependencies and provides processes to manage

them. The JAG Engine interfaces with the agents being supported

via traditional application programming interfaces for artificial

agents and user interfaces for human agents. This engine uses

user defined strategies to drive the behavior of agents following

the process models defined in joint activity graphs under

execution. The engine understands the intrinsic

interdependencies in JAGs, such as the fact that multiple

agents can participate in additive tasks, or that new

information may be relevant to specific agents based on their

joint activity participation. It is worth noting that in the case of

human agents, the processes can be exposed via user interfaces

allowing human agents to interact with the proposed courses of

action in the same way artificial agents would (e.g., accept, reject

or counter propose).

The JAG Engine, combined with the JAG formalization

provides a unique capability for system control, enabling

flexible and even dynamic shifts in control. JAG Engines have

a 1 to n relationship with agents. They can be distributed (one

engine per agent), centralized (one engine for all agents) or

anything in between (k engines for n agents where 1 ≤ k ≤ n).

The engine specification also provides an abstraction layer for

communication with built-in communication options relevant to

teaming processes (e.g. participation in a JAG, completion of a
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JAG, negotiations relevant to the strategy in use, etc.). The

specification allows for flexible strategy implementations

allowing system designers and subject matter experts to

create domain appropriate decision-making systems that

can dynamically ingest and act on the run-time teaming

context.

A JAG engine implementation provides the necessary

framework to interpret JAGs, drive team behavior using

strategies, comply with and expose interdependencies

requirements and opportunities, and interface with a team of

heterogeneous agents. The JAG Engine tracks and coordinates

participation, as well as enabling strategy to be informed by the

teaming context of the JAG. Figure 5 shows a semi expanded version

of a Capture-the-Flag joint activity graph. Such graph is a view on

joint activity definitions and is directly executable by a JAG Engine.

7.2 Participation

Participation in a joint activity plays a key role in managing

communication backed coordination mechanisms such as

information sharing, as well as decisions about task allocation.

Yet common techniques often ignore participation (see Section

2.1 and Section 2.2). Without rigidly defined roles, it is unclear

how proper teamwork can be achieved without an understanding

of participation.

For example, consider the JAG defined in Figure 1. da,2
requires input ia,21 from the output oa,11 of da,1. The agent

participation in da will contribute to restricting sharing of

da,1’s result with only agents participating in jag da and not

with agent participating in db. The information

interdependence exists locally and no higher than da, thus

agents not involved in this subspace of the joint activity

probably do not need to know about da,1’s result.

One key nuance we have encountered, which is lacking on

most approaches, is joint activity instance tracking. Let’s consider

the joint activity ddeploy−ugs; Two agents can participate in the

same joint activity instance, (both are working together to deploy

ugs on the left side of the field) or they can work on two separate

instances of the same joint activity (agent A deploys UGS on the

left, and agent B deploys UGS in the center of the arena). Instance

tracking together with participation proved to be key in

differentiating intent and team organization interdependence.
This has ramifications for strategy and information sharing

as well.

7.3 Strategy

In most real world problems that involve teamwork, there are

usually multiple ways to tackle the problem, each with different

costs and benefits. For teams to be successful, they must have

some goal alignment to ensure the team members are utilizing

compatible strategies (see Steiner [36] and Decker [39]). This is

another aspect of interdependence that manifests itself at run

time: team focus Section 4.4.

FIGURE 5
Joint activity graph for the Capture-the-Flag scenario - semi expanded.

Frontiers in Physics frontiersin.org13

Vignati et al. 10.3389/fphy.2022.969544

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.969544


We consider that the focus of a activity cannot be statically

set for all teamwork scenarios and thus designed joint activity

graphs to support a multidimensional representation of the

activity’s focus (or foci). It is of note that an activity’s foci is not

defined in the taskwork but rather defined outside of taskwork

as a strategy parameter that can dynamically change. For

instance, a team may decide to focus on speed while another

on quality. Often teams will have multiple competing foci and

balance them at runtime. This is essential for reusable team

behaviors across different strategic approaches. This

multidimensional abstraction of the focus represents the

agents interests in task quality (e.g., speed, accuracy,

quantity, etc.) and can inherently be specified at individual

levels in the task work and per agent. This allows our structure

to support more recent work on preferences, [42] and consider

concepts such as commitment [13] as an agreement on the work

to be done (taskwork) and the foci to work towards.

Team participation, a type of team organization

interdependence, is crucial to information relevance as well as

task and role allocation. We know that agents often work

together with the goal of improving some joint activity focus

(e.g., speed, accuracy, resource consumption). Strategy

interdependencies help understand and address the varying,

potentially conflicting or synergistic, foci at play during

execution of the joint activity, thereby addressing strategy
interdependence.

8 JAG supported adaptation

The Capture-the-Flag domain described in section 5 allows

us to exercise a broad range of teaming challenges and

operationalize interdependence design principles to show

adaptability to the environment, the team and the joint activity.

We ran teams of heterogeneous agents from size 5 (2 UAVs

and 3 UGSs) to size 23 (20 UAVs and 3 UGSs) against each other

in our virtual environment. Due to safety and space constraints,

we only ran 5v5 and 6v6 games on hardware. All these games

were run using the exact same JAG shown in Figure 5. Teams

were able to adapt and coordinate independent of scale (see video

ctf-scale in Supplemental Video S1) addressing

interdependencies described in Section 4.

Our tools enable systematic identification and management

of interdependence through its formalism. Decomposition
interdependencies are handled by the joint activity natural

hierarchical structure through jag children. Resource and
information state interdependencies are captured by joint

activity data flow definition in combination with participation

awareness. Task and team synthesis interdependencies are

reflected through each joint activity synthesis definition also

in combination with participation awareness. Skill and
strategy are exposed and addressed at run time by the JAG

Engine and user defined strategies.

8.1 Structural adaptation

Agents were able to reason over task allocation using

decomposition and strategy interdependence, and participation status.

For instance, agents would dynamically re-prioritize their

behavior to go after the enemy flag if and when they realized there

was no agent currently participating in that section of the joint

activity. This would happen when offensive agents would get

suppressed on their way to the enemy flag.

Agents would also understand whether they were participating

in the same joint activity instance (such as A and B laying down

UGS on the right side together) or in different instance of the same

joint activity (such as A laying down UGS on the right and B also

laying down UGS but in the center).

8.2 State adaptation

Agents were able to resolve resource constraints using

information and participation interdependencies. For example,

two agents would often try to deploy the same UGS. Using

participation status they were able to identify the need for

negotiation which would lead one of the agents to reevaluate

its activity to go after a different UGS. In our strategy, we used

first come first serve and distance based costs as negotiation

processes. However, it is important to note that the specific

negotiation process is less important than the identification of the

need for negotiation within context. Agents were able to quickly

adjust to new information whether it was a new location of the

flag or the enemy (which would automatically trigger planning of

a new path) or the fact that one’s own flag had been grabbed

(leading to re-prioritization of behavior to intercept the enemy

with the flag). In a dynamic and information rich environment

such as the CTF domain, information sharing and observation

are a significant source of knowledge update.

Early in design we were confronted with the “artificial”

dichotomy of information provenance. There were two

distinct but similar pathways for an agent to ingest

information depending on whether it was observed by local

sensors (vision) or received through communication by team

members. We realized that the source of information could

instead be a characteristic of the piece of information received

and that there was no need to distinguish them in processing.

Teammembers can be thought of as sensors, and the information

received can be characterized accordingly based on the sensor

(teammate) and transport medium characteristics. This makes

dealing with cognitive activities such as reifying information

simpler, robust to failure and often elegantly handled.

By associating characteristics to each information provider

(sensors, teammates) such as latency, accuracy, reliability, an

abstraction can be made over the reception of information which

does not need to distinguish local vs. remote information, and

makes handling reaction to change simpler, more consistent and
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elegant. Often, assumptions about local sensors are made which

may hide characteristics of the transport medium and source,

and leads to unnecessary special handling. In Capture-the-Flag’s

agent design, we successfully removed special information

processing based on the source or transport medium in favor

of information characterized along the dimension of interest. As

such, reacting and adapting to new information behaved

completely independently of its provenance and transport

which allowed, for example, agents to re-plan their trajectory

around enemies that were not in their vision range but in range of

a teammate (UGS or UAV) somewhere else on the field. Team

members know what information may be relevant, enemy

location in this example, because data flow and participation

indicates what information is in use at any given time (see Section

4.2.2.2 and Section 6.3). This happened without us, designers,

having to make any specific behaviors or adjustments to

existing behaviors.

Accessing agent knowledge is part of the activity and allows

situations to fail gracefully. For instance, if getting the location of

a resource is a joint activity, one agent can fail to complete the

activity which can then be completed by another agent without

special consideration. The activity of generating the location for a

resource can be completed by all members of the team and

synthesis of the answers can applied to that activity the same way

they are applied to physical activities. It also ties knowledge use to

activities which in turns enables adaptability (described in

Section 6.3) independent of the knowledge provenance.

8.3 Strategy adaptation

Reacting to new information often means re-evaluating

activities under execution. Whether it is because they are no

longer relevant, or because they need to be restarted with a

different parametrization, tasks need to be interrupted. That said,

not all tasks can be abruptly interrupted without further

considerations. Designing interruption as a first class system

within our framework proved to be an important requirement.

Two main concepts need to be considered: partial results and

interruption procedures.

With regards to partial results, there already exists a substantial

body of research, of which we were able to take advantage: namely

anytime algorithm and its derivatives [43, 44]. Being able to

produce partial results is an important consideration when

designing adaptable joint activities. Partial results, may

influence characteristics of the results (e.g. accuracy) and as

such can be processed by synthesis without special consideration.

Some tasks may need to execute a clean up procedure before

they can interrupt a behavior (such as release a constraint on a

resource). The most blatant example of a need for interruption

procedures was delivery of UGS. Initially naively defined, the

transport of objects (UGS or flag) proved to be an interesting

scenario demonstrating how failing to handle interruption clean

up may lead to failure. While in the middle of deploying a UGS, the

suppression of the UAV attempting to retrieve the flag, triggered

another UAV to re-evaluate current priorities of active task and

switch to go after the flag. Still carrying a UGS, the UAVwas unable

to successfully grab the enemy flag but kept trying without knowing

how to “clean up” the previous behavior. This type of situation can

be really insidious and can be a common engineering problem in

structures such as behavior trees that get constantly reevaluated.

Conversely, the clean up can be a requirement of starting a task as

well and in that aspect is consistent with pre-conditions and post-

conditions in classical planning. For example, if one fails to release a

piece of tape, the clean upmay be about succeeding at the failed task

(failure to release the tape and must try again before moving on -

post-condition) or the clean upmay be about having a “hand” free to

grab something else as part of the subsequent task (need to grab

something different and must succeed before undertaking the next

task). Interruption is an inherent part of adaptability in

unpredictable environments and even more so in human

machine teams when opportunities and conflicts have a tendency

to arise. In that respect joint activity graphs enable event driven

interruption to understand and use contextual information (such as

current participation, data flow, interruption’s partial result) about

the activity at hand to clean up adequately.

In an execution driven environment such as CTF (where the

joint activity graph drives the behavior of the agents), agents default

to participation in all nodes. Capability, task type, or resource

constraints may restrict participation in joint activities. For

instance, dropping of a UGS is reserved to the agent carrying

said UGS. Note that the trajectory planning section of the drop

off joint activity would not be restricted and as such, all agents,

including UGS, can contribute a trajectory result (which is valuable

as they may have information that other agents would not have -

which indeed happenedwhenUGSwere used as scouts). An instance

of capability restriction would be activating the grab mechanisms,

which is restricted to agents capable of grabbing (not UGS).

9 Future work

In this paper, we provided a joint activity graph formalism

(Section 3) to capture the key design elements necessary for

effective teaming.We also described the JAG Engine (Section 7.1)

as a reasoning engine to interpret the JAG formalism and drive

the behavior of individual distributed agents working together as

a team. In other words, JAGs provide an understanding of team

context that enables generation of cooperative team behavior.

However, that understanding could be utilized in others ways.

Two alternatives include using the JAG representation to support

inference and prediction of human team behavior and using JAG

representations to support inference and prediction of

adversarial team behavior.

In an ongoing project called DARPA ASIST (Artificial Social

Intelligence for Successful Teams), we have had some initial success
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using JAGs to build a mental model of a human team’s joint activity

in the search and rescue domain. The goal is to use that modeling to

support an artificial social intelligence observer to use signals from the

team members to build a partial mental model of each participant.

Through this JAG-based dynamic model of the team, we aim to

enable the artificial social intelligence to generate prediction and

potentially intervene to prevent errors, help repair common ground,

or simply improve teamprocesses and performance. In a similar way,

JAG engines can be used operationally as a real-time C2 decision-aid

or for real-time monitoring of the multi-agent behavior.

We are also investigating using the same approach used

during the DARPA CREATE program in support of cooperative

teams to explore its potential with adversarial teams. Still in the

context of Capture-the-Flag, we are working on integrating a way

for agents to dynamically track the joint activity of the enemy

team using observations of the enemy’s actions as signals. This is

similar to process of using JAGs to model team behavior, as

described for ASIST. However, ASIST is using a single agent, and

this work needs to perform the assessment across distributed

agents. The challenge is enabling a distributed team of agents to

build a pragmatic mental model of the enemy’s joint activity and

then use that model to make predictions about their intentions.

This would allow the team to deploy counter-measures or take

other actions to opportunistically gain an advantage.

This future work aims to show that joint activity graphs are

an effective structure to capture and track active contribution to

tasks, helping to predict team behavior, assess team efficiency,

identify team breakdowns, and generate interventions to improve

team performance.

10 Conclusion

In this paper we have presented a new formalism, joint

activity graphs, as a tool to design joint activity. We have also

introduced the JAG Engine as a tool to interpret JAGs at runtime,

driving agent behavior. Together these tools enable human-

machine systems to manage and exploit the interdependence

within the team through the systematic use of joint activity

graphs. By providing support for understanding teaming

context, JAGs provide an rigorous and systematic approach to

effective human-machine team performance.

In Section 3 we presented a formal structure, joint activity

graphs, that systematically guides the architecture of human-

machine team systems to address these challenges. JAGs

assist designers in the design of joint activities and

provide shared contextual information at run-time that

supports coordination processes, enabling team members

to manage their interdependencies with teammates.

Specifically, it provides structures to capture hierarchical

decomposition, handling of task interdependence, agent

participation, sequencing processes, data flow and the

synthesis necessary for activity recomposition.

In Section 4, we describe the broad range of teaming

challenges in terms of types of interdependence necessary for

adaptive teamwork.

In Section 7.1, we introduce the JAG Engine. Its purpose is to

ingest and execute joint activity graphs providing the context

necessary to recognize when interdependencies arise and their

nature: operationalizing their management through adequate

coordination processes.

In Section 6 and Section 7.1 we describe how the two tools

provide support for the broad range of interdependencies in

Section 4.

In Section 8, we described how these principles of joint

activity design were applied in the concrete domain of Capture-

the-Flag to provide highly adaptive team behavior. Teams of

distributed agents were able to do at least as well as fully

centralized teams and were more resilient to breakdowns in

communication, agent failures and dynamic team re-composition

(such as the loss of a member). This demonstrates that adequate

identification and management of interdependence allows teams to

better understand information relevance [5], handle and recover

from coordination surprise, and continuously repair common

ground. The result of this adaptability is effective team

performance that can be described as good teamwork.

We hope the formally guided approach to human-machine

team design presented here proves useful to others working

toward complex adaptable teams. The approach is supported

by principles, guidelines and tools that can help designers

develop systems that support effective management of

interdependence in order to achieve flexible and adaptable

teamwork in human-machine systems.
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