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Scientific organizations are creating carbon nanotube-based composites like

VC5C7[m,n] and HC5C7[m,n], which indicate significant response against

voltage. Imbalance-based irregularity indices determine the degree of

irregularity of a certain molecular structure and, as a result, determine the

properties of a molecular substance. In this article, we aim to compute

irregularity indices of two nanotubes, VC5C7[m,n] and HC5C7[m,n]. We

produce formulas for the irregularity of these two nanotubes, which are

functions depending on the parameters of the structure m and n. We

compare our results graphically and conclude that VC5C7[m,n] is more

irregular than HC5C7[m,n].
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Introduction

The chemical graph theory is rich with novel developments of functions and

polynomials to foresee physiochemical aspects of chemical structures without using

tools of quantum mechanics. One type of such a function is imbalance-based irregularity

indices which determine the molecular complexity of the chemical substance under

discussion. Carbon nanotubes are allotropes of carbon with a cylindrical-shaped

nanostructure. These cylindrical-shaped carbon particles have amazing properties,

which are significant for nanotechnology, optics, electronics, and various fields of

material science and development [1–3].

Regarding flexible modulus and elasticity, carbon nanotubes are the stiffest and

most grounded materials individually. This quality results from the covalent sp2
bonds framed between the carbon atoms. A multi-walled carbon nanotube was

analyzed in 2000, which has a tensile strength of 63 gigapascals. The adaptability

and quality of carbon nanotubes make them of potential use in controlling other

nanoscale structures, which suggests that they will have a basic activity in

nanotechnology building [4–7]. Molecular topologists are interested in studying

the complexity, pattern, combinatorial properties, and irregularities of molecular

structures. A basic tool is the conversion of the molecular structure into a graph

theoretic model, where vertices are used as toms and edges are used as bonds.

OPEN ACCESS

EDITED BY

Fernando A. Oliveira,
University of Brasilia, Brazil

REVIEWED BY

Weigang Sun,
Hangzhou Dianzi University, China
Ali Mehri,
Babol Noshirvani University of
Technology, Iran

*CORRESPONDENCE

Muhammad Mobeen Munir,
mmunir.math@pu.edu.pk

SPECIALTY SECTION

This article was submitted to
Interdisciplinary Physics,
a section of the journal
Frontiers in Physics

RECEIVED 17 June 2022
ACCEPTED 22 September 2022
PUBLISHED 17 November 2022

CITATION

Munir MM (2022), Irregularity molecular
descriptors of VC5C7[m,n] and
HC5C7[m,n] nanotubes.
Front. Phys. 10:969598.
doi: 10.3389/fphy.2022.969598

COPYRIGHT

© 2022 Munir. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 17 November 2022
DOI 10.3389/fphy.2022.969598

https://www.frontiersin.org/articles/10.3389/fphy.2022.969598/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.969598/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.969598/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.969598/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.969598&domain=pdf&date_stamp=2022-11-17
mailto:mmunir.math@pu.edu.pk
https://doi.org/10.3389/fphy.2022.969598
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.969598


In this article, we aim to compute the imbalance-based

degree of irregularity of carbon nanotubes. The molecular

graphs of carbon nanotubesVC5C7[m, n] and HC5C7[m, n]
are shown in Figures 1, 2, respectively. One is interested to

know the degree of the molecular complexity of these tubes

comparatively so that an overview of the properties

depending upon the molecular complexity can be

understood. By using linear regression, a stochastic

relationship can be established between the

aforementioned irregularity indices and different

properties such as standard enthalpy of vaporization,

boiling point, entropy, and acentric factor. The structures

of these nanotubes consist of cycles C5 and C7 (C5C7 net

which is a trivalent decoration constructed by alternating C5

and C7) by different compounds. It can cover either a cylinder

or a torus.

The two-dimensional lattice of VC5C7[m, n] is shown in

Figure 3, and the two-dimensional lattice of HC5C7[m, n] is

shown in Figure 4.

In order to proceed with our main objective, we have to be a

bit familiar with some notions and notations of the graph theory.

We consider only a simple and connected graph G with vertex V,

edge set E, and du and dv, the degree of vertices u and v,

respectively. A topological invariant is an isomorphism of the

graph that preserves the topology of the graph. A graph is said to

be regular if every vertex of the graph has the same degree. A

FIGURE 1
Molecular graph of VC5C7 .

FIGURE 2
Molecular graph of HC5C7 .

FIGURE 3
Two-dimensional lattice of VC5C7.

FIGURE 4
Two-dimensional lattice of HC5C7.
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topological invariant is called an irregularity index if this index

vanishes for a regular graph and is non-zero for a non-regular

graph. Regular graphs have been extensively investigated,

particularly in mathematics. Their applications in the

chemical graph theory initiated the discovery of nanotubes

and fullerenes. Paul Erdos stressed the study of irregular

graphs for the first time in history in [8]. In the Second

Krakow Conference on Graph Theory (1994), Erdos officially

posed an open problem as “the determination of extreme size of

highly irregular graphs of given order” [9]. Since then, irregular

graphs and the degree of irregularity have become one of the core

open problems of the graph theory.

A graph in which each vertex has a different degree than

the other vertices is known as a perfect graph. The authors of

[10] demonstrated that no graph is perfect. The graphs lying

in between are called quasi-perfect graphs, in which all except

two vertices have different degrees [9]. Simplified ways of

expressing irregularities are irregularity indices. These

irregularity indices have been studied recently in a novel

way [11, 12]. The first such irregularity index was

introduced in [13]. Most of these indices used the concept

of the imbalance of an edge defined as imballuv � |du − dv|
[14, 15]. The Albertson index, AL(G), was defined by

Albertson in [15] as AL(G) � ∑
UV∈E

|du − dv|. In this index,

the imbalance of edges is computed. The irregularity

indices IRL(G) and IRLU(G) are introduced by Vukicevic

and Gasparov [16], as IRL(G) � ∑
UV∈E

|lndu − lndv| and

IRLU(G) � ∑
UV∈E

|du−dv |
min(du,dv ), respectively. Recently, Abdoo

et al. have introduced a new term “total irregularity

measure of a graph G,″ which is defined as [17–19]

IRRt(G) � 1
2 ∑
UV∈E

|du − dv|. Recently, Gutman et al. have

introduced the IRF(G) irregularity index of the graph G,

which is described as IRF(G) � ∑
UV∈E

(du − dv)2 in [20]. The

Randic index itself is directly related to an irregularity

measure, which is described as IRA(G) � ∑
UV∈E

(du −1 /2 −
dv

−1 /2)2 in [21]. Further irregularity indices of similar

nature can be traced in [21] in detail. These indices are

given as IRDIF(G) � ∑
UV∈E

|dudv − dv
du
|, IRLF(G) � ∑

UV∈E

|du−dv |�����
(dudv)

√ ,

LA(G) � 2 ∑
UV∈E

|du−dv |
(du+dv), IRD1 � ∑

UV∈E
ln{1 + |du − dv|},

TABLE 1 Edge partition of the VC5C7[m,n] nanotube.

Number
of edges (du, dv)

Number of indices

(2, 3) [24mn − 6m]
(3, 3) 12m

TABLE 2 Test values for the irregularity indices of the nanotube VC5C7[m,n].

Irregularity indices for the VC5C7[m, n] nanotube

Irregularity index m = 1
n = 1

m = 2
n = 2

m = 3
n = 3

m = 4
n = 4

m = 5
n = 5

IRDIF(G) � ∑
UV∈E

|dudv − dv
du
| 15 70 165 300 475

IRR(G) � ∑
UV∈E

|du − dv| 20 88 204 368 580

IRL(G) � ∑
UV∈E

|lndu − lndv| 7.29837 34.05906 80.28207 145.9674 231.1150

IRLU(G) � ∑
UV∈E

|du−dv |
min(du,dv) 9 42 99 180 285

IRLU(G) � ∑
UV∈E

|du−dv |�����
(dudv )

√ 7.348469 34.2928 80.8331 146.9693 232.7015

σ(G) � ∑
UV∈E

(du − dv)2 18 84 198 360 570

IRLA(G) � 2 ∑
UV∈E

|du−dv |
(du+dv) 7.2 33.6 79.2 144 228

IRD1 � ∑
UV∈E

ln{1 + |du − dv|} 12.4766 58.2243 137.2431 249.5329 395.094

IRA(G) � ∑
UV∈E

(du −1 /2 − dv −1 /2)2 0.3031 1.4143 3.3336 6.0612 9.5969

IRGA(G) � ∑
UV∈E

ln du+dv
2

�����
(dudv )

√ 0.3673 1.7145 4.0414 7.3479 11.6343

IRB(G) � ∑
UV∈E

(du 1 /

2 − dv
1 /

2)2 1.8184 8.4857 20.0021 36.3674 57.5817

IRRt(G) � 1
2 ∑
UV∈E

|du − dv| 9 42 99 180 285
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IRGA(G) � ∑
UV∈E

ln( du+dv
2

�����
(dudv )

√ ), and

IRB(G) � ∑
UV∈E

(du
1 /

2 − dv
1 /

2)2. Further details are given in

[21–32]. There were various attempts to quantify the

irregularity of a graph, of which the Collatz–Sinogowitz

index, Bell index, Albertson index, and total irregularity

are the best known [13–15]. It has been mathematically

proven that no two of these irregularity measures are

mutually consistent, namely, that for any two such

measures, irrX and irrY, there exist pairs of graphs G1 and

G2, such that irrX (G1) > irrX (G2) but irrY (G1) < irrY (G2).

People working in related fields have used the

aforementioned indices to capture the irregularity of

chemical graphs, and occasionally, these indices

depict properties such as symmetry and stability of

isomers [21].

These irregularity indices have applications in determining

the properties of alkane isomers [21]. These applications pushed

others to think in this direction. Most recently, authors have

computed irregularity indices of chemical substances [33–36].

Hussain et al. established closed forms of the aforementioned

irregularity indices for some benzenoid systems in [35] and some

nanostar dendrimers in [36]. The present article can be treated as

a continuation of the articles [35, 36].

The main results

In this section, we present our main results about the

theoretical computation of irregularity indices of the

aforementioned nanotubes.

Theorem 1: For m, n> 0, the irregularity measures of

VC5C7[m, n] are

1 IRDIF(VC5C7[m, n]) � 20mn − 5m;

2 IRR(VC5C7[m, n]) � 24mn − 4m;

3 IRL(VC5C7[m, n]) � 9.73116mn − 2.43279m;

4 IRLU(VC5C7[m, n]) � 12mn − 3m;

5 IRLU(VC5C7[m, n]) � 4
�
6

√
mn − �

6
√

m;

6 σ(VC5C7[m, n]) � 24mn − 6m;

7 IRLA(VC5C7[m, n]) � 9.6mn − 2.4m;

TABLE 3 Edge partition of the C5C7[m,n] nanotube.

Number
of edges (du, dv)

Number of indices

(2,2) m

(3,3) 8m

(2,3) (12mn − 4m)

TABLE 4 Test values for the irregularity indices of the nanotube HC5C7[m,n].

Irregularity indices for the HC5C7[m, n]nanotube

Irregularity index m = 1
n =
1

m = 2
n =
2

m = 3
n =
3

m = 4
n =
4

m = 5

n = 5

IRDIF(G) � ∑
UV∈E

|dudv − dv
du
| 6.667 33.334 80.001 146.668 233.335

IRR(G) � ∑
UV∈E

|du − dv| 8 40 96 176 280

IRL(G) � ∑
UV∈E

|lndu − lndv| 3.2437 16.2186 38.9246 71.3618 113.5302

IRLU(G) � ∑
UV∈E

|du−dv |
min(du,dv) 4 20 48 88 140

IRLU(G) � ∑
UV∈E

|du−dv |�����
(dudv )

√ 3.26598 16.3299 39.1918 71.8516 114.3095

σ(G) � ∑
UV∈E

(du − dv)2 8 40 96 176 280

IRLA(G) � 2 ∑
UV∈E

|du−dv |
(du+dv) 3.2 16.0 38.4 70.4 112.0

IRD1 � ∑
UV∈E

ln{1 + |du − dv|} 5.54517 27.7258 66.54213 121.9939 194.0812

IRA(G) � ∑
UV∈E

(du −1 /2 − dv −1 /2)2 0.13469 0.67347 1.616328 2.963268 4.71429

IRGA(G) � ∑
UV∈E

ln du+dv
2

�����
(dudv )

√ 0.163287 0.81644 1.95945 3.592335 5.715079

IRB(G) � ∑
UV∈E

(du 1 /

2 − dv
1 /

2)2 0.80816 4.04082 9.697969 17.7796 28.2857

IRRt(G) � 1
2 ∑
UV∈E

|du − dv| 4 20 48 88 140
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8 IRD1(VC5C7[m, n]) � 16.635528mn − 4.158882m;

9 IRA(VC5C7[m, n]) � 0.4040820576mn − 0.1010205145m;

10 IRGA(VC5C7[m, n]) � 0.4898639342mn

−0.1224659836m;

11 IRB(VC5C7[m, n]) � 2.424492346mn − 0.6061230864m;

12 IRRt(VC5C7[m, n]) � 12mn − 3m.

Proof:

In order to prove the aforementioned theorem, we have to

consider Figures 1, 3. Table 1 shows the mathematical

distribution of the types of edges into two different classes.

FIGURE 5
Demonstration of IRDIF.

FIGURE 6
Demonstration of AL.

FIGURE 7
Demonstration of IRA.

FIGURE 8
Demonstration of IRRt.
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Now using Table 1 and the aforementioned definitions, we have

1. IRDIF(G) � ∑
UV∈E

|du
dv

− dv
du
|

IRDIF(VC5C7[m, n]) � 12m|3
3
− 3
3
| + [24mn − 6m]|3

2
− 2
3
|

� 12m|0| + [24mn − 6m]|3
2
− 2
3
| � [24mn − 6m]|3

2
− 2
3
|;

2. IRR(G) � ∑
UV∈E

|du − dv|
IRR(VC5C7[m, n]) � 12m|3 − 3| + [24mn − 6m]|3 − 2|

� 12m|3 − 3| + [24mn − 6m]|3 − 2| � [24mn − 6m];

3. (G) � ∑
UV∈E

|lndu − lndv|
IRL(VC5C7[m, n]) � 12m|ln 3 − ln 3| + [24mn − 6m]|ln 3 − ln 2|

� 12m|ln 1| + [24mn − 6m]|ln 3 − ln 2|

� [24mn − 6m] ln 3
2
;

4. IRLU(G) � ∑
UV∈E

|du − dv|
min(dudv)

IRLU(VC5C7[m, n]) � 12m
|3 − 3|

3
+ [24mn − 6m] |3 − 2|

2

� 12m
|0|
3
+ [24mn − 6m] |3 − 2|

2

� [24mn − 6m] 1
2
� 12mn − 3m;

5. IRLU(G) � ∑
UV∈E

|du − dv|������(dudv)
√

IRLU(VC5C7[m, n]) � 12m
|3 − 3|�

9
√ + [24mn − 6m] |3 − 2|�

6
√

� 12m
|0|�
9

√ + [24mn − 6m] |1|�
6

√ � 24mn − 6m�
6

√ ;

6. σ(G) � ∑
UV∈E

(du − dv)2

σ(VC5C7[m, n]) � 12m(3 − 3)2 + [24mn − 6m](3 − 2)2

� 12m(0)2 + [24mn − 6m](3 − 2)2 � 24mn − 6m;

7. IRLA(G) � 2 ∑
UV∈E

|du − dv|
(du + dv)

IRLA(VC5C7[m, n]) � 2[12m |3 − 3|
(9) + [24mn − 6m] |3 − 2|

(5) ]

� 2[12m |0|
(9) + [24mn − 6m] |1|(5)] �

48mn − 12m
5

;

8. IRD1 � ∑
UV∈E

ln{1 + |du − dv|}
IRD1 � 12mln{1 + |3 − 3|} + [24mn − 6m] ln{1 + |3 − 2|}

� 12mln{1} + [24mn − 6m] ln{1 + 1}
� [24mn − 6m] ln 2 + 12 ln 1 � [24mn − 6m] ln 2;

9. IRA(G) � ∑
UV∈E

(du −1 /2 − dv
−1 /2)2

IRA(VC5C7[m, n]) � 12m( 1�
3

√ − 1�
3

√ )2 + [24mn − 6m]( 1�
3

√ − 1�
2

√ )2

� 12m(0)2 + [24mn − 6m]( 1�
3

√ − 1�
2

√ )2

� [24mn − 6m]( 1�
3

√ − 1�
2

√ )2;

10. RGA(G) � ∑
UV∈E

ln
du + dv

2
������(dudv)

√

IRGA(VC5C7[m, n]) � 12mln
3 + 3

2
���(9)√ + [24mn − 6m] ln 3 + 2

2
���(6)√

� 12mln1 + [24mn − 6m] ln 3 + 2

2
���(6)√

� [24mn − 6m] ln 5

2
���(6)√ ;

11. IRB(G) � ∑
UV∈E

(du 1 /

2 − dv
1 /

2)2

IRB(VC5C7[m, n]) � 12m( �
3

√ − �
3

√ )2 + [24mn − 6m]( �
3

√ − �
2

√ )2

� [24mn − 6m]( �
3

√ − �
2

√ )2;

12. IRRt(G) � 1
2

∑
u,v∈V(G)

|du − dv|

IRRt(VC5C7[m, n]) � 1
2
[12m|3 − 3| + [24mn − 6m]|3 − 2| ]

� 1
2
[(24mn − 6m)|1| + 12m|0|] � 12mn − 3m;

Test values of the irregularity measures of the nanotube

VC5C7[m, n] has been given in Table 2. Now, we give our

results about HC5C7[m, n] for positive values of m and n.

Theorem 2: For m, n> 0, the irregularity measures of

HC5C7[m, n] are

1. IRDIF(HC5C7[m, n]) � 10mn − 3.333m;

2. IRR(HC5C7[m, n]) � 12mn − 4m;

3. IRL(HC5C7[m, n]) � 4.865581297mn − 1.621860432m;

4. IRLU(HC5C7[m, n]) � 6mn − 2m;

5. IRLU(HC5C7[m, n]) � 2
�
6

√
mn − 2

�
6

√
3 m;

6. σ(HC5C7[m, n]) � 12mn − 4m;

7. IRLA(HC5C7[m, n]) � 4.8mn − 1.6m;

8. IRD1(HC5C7[m, n]) � 8.317766167mn − 2.772588722m;

9. IRA(HC5C7[m, n]) � 0.2020410492mn − 0.06734700964m;

10. IRGA(HC5C7[m, n]) � 0.2449319671mn − 0.08164398904m;

11. IRB(HC5C7[m, n]) � 1.212246173mn − 0.4040820576m;

12. IRRt(HC5C7[m, n]) � 6mn − 2m.

Proof:

In order to prove the aforementioned theorem, we have to

consider Figures 2, 4. Table 3 shows the distribution of edges into

three different classes.
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Now using Table 4 and the aforementioned definitions from

Table 1, we have

1. IRDIF(G) � ∑
UV∈E

|du
dv

− dv
du
|

IRDIF(HC5C7[m, n]) � m|2
2
− 2
2
| + 8m|3

3
− 3
3
| + (12mn − 4m)|3

2
− 2
3
|

� m|0| + 8m|0| + (12mn − 4m)|3
2
− 2
3
| � (12mn − 4m)|3

2
− 2
3
|;

2. IRR(G) � ∑
UV∈E

|du − dv|
IRR(HC5C7[m, n]) � m|2 − 2| + 8m|3 − 3| + (12mn − 4m)|3 − 2|

� m|0| + 8m|0| + (12mn − 4m)|1| � (12mn − 4m)|1|;

3. IRL(G) � ∑
UV∈E

|lndu − lndv|
IRL(HC5C7[m, n]) � m|ln 2 − ln 2| + 8m|ln 3 − ln 3| + (12mn − 4m)|ln 3 − ln 2|

� m|0| + 8m|0| + (12mn − 4m)|ln 3 − ln 2| � (12mn − 4m) ln 3
2
;

4. IRLU(G) � ∑
UV∈E

|du − dv|
min(dudv)

IRLU(HC5C7[m, n]) � m
|2 − 2|

2
+ 8m

|3 − 3|
3

+ (12mn − 4m) |3 − 2|
2

� m
|0|
2
+ 8m

|0|
3
+ (12mn − 4m) |1|

2
� 6mn − 2m;

5. IRLU(G) � ∑
UV∈E

|du − dv|������(dudv)
√

IRLU(HC5C7[m, n]) � m
|2 − 2|�

4
√ + 8m

|3 − 3|�
9

√ + (12mn − 4m) |3 − 2|�
6

√

� m
|0|�
4

√ + 8m
|0|�
9

√ + (12mn − 4m) |1|�
6

√ � (12mn − 4m)�
6

√ ;

6. σ(G) � ∑
UV∈E

(du − dv)2
σ(HC5C7[m, n]) � m(2 − 2)2 + 8m(3 − 3)2 + (12mn − 4m)(3 − 2)2

� m(0)2 + 8m(0)2 + (12mn − 4m)(1)2� 12mn − 4m;

7. IRLA(G) � 2 ∑
UV∈E

|du − dv|
(du + dv)

IRLA(HC5C7[m, n]) � 2[m |2 − 2|
(4) + 8m

|3 − 3|
(9) + (12mn − 4m) |3 − 2|

(5) ]

� 2[m |0|
(4) + 8m

|0|
(9) + (12mn − 4m) |1|(5)] �

2(12mn − 4m)
(5) ;

8. IRD1 � ∑
UV∈E

ln{1 + |du − dv|}
IRD1 � mln{1 + |2 − 2|} + 8mln{1 + |3 − 3|} + (12mn − 4m) ln{1 + |3 − 2|}

� mln{1 + |0|} + 8mln{1 + |0|} + (12mn − 4m) ln{1 + |1|}
� mln1 + 8mln1 + (12mn − 4m) ln 2 � (12mn − 4m) ln 2;

9. IRA(G) � ∑
UV∈E

(du −1 /2 − dv
−1 /2)2

IRA(HC5C7[m, n]) � m( 1�
2

√ − 1�
2

√ )2 + 8m( 1�
3

√ − 1�
3

√ )2 + (12mn − 4m)( 1�
3

√ − 1�
2

√ )2

� m(0)2 + 8m(0)2 + (12mn − 4m)( 1�
3

√ − 1�
2

√ )2

� (12mn − 4m)( 1�
3

√ − 1�
2

√ )2;

10. IRGA(G) � ∑
UV∈E

ln
du + dv

2
������(dudv)

√
IRGA(HC5C7[m, n]) � mln

2 + 2

2
���(4)√ + 8mln

3 + 3

2
���(9)√ + (12mn − 4m) ln 3 + 2

2
���(6)√

� mln1 + 8mln1 + (12mn − 4m) ln 5

2
���(6)√

� (12mn − 4m) ln 5

2
���(6)√ ;

11. IRB(G) � ∑
UV∈E

(du 1 /

2 − dv
1 /

2)2

IRB(HC5C7[m, n]) � m( �
2

√ − �
2

√ )2 + (12mn − 4m)( �
3

√ − �
2

√ )2 + 8m( �
3

√ − �
3

√ )2

� m(0)2 + (12mn − 4m)(0)2 + 8m( �
3

√ − �
3

√ )2

� (12mn − 4m)( �
3

√ − �
2

√ )2;

12. IRRt(G) � 1
2

∑
u,v∈V(G)

|du − dv|

IRRt(HC5C7[m, n]) � 1
2
[m|2 − 2| + 8m|3 − 3| + (12mn − 4m)|3 − 2|]

� 1
2
[m|0| + 8m|0| + (12mn − 4m)|1|]

� 1
2
[12mn − 4m] � 6mn − 2m.

Graphical analysis, discussions, and
conclusion

In this section, we present our computational analysis of the

irregularity of both of these nanotubes and compare the results

obtained. We used 3D graphs in which the Z-axis represents the

values of the irregularity indices and the other two axes are devoted

tom and n.We used a BLUE graph to show the behavior irregularity

indices of VC5C7[m,n], and a GREEN graph shows the graphical

behavior irregularity indices ofHC5C7[m,n]. Following Figure 5 is
the irregularity demonstration for the index IRDIF, which shows

that VC5C7[m,n] is more irregular than HC5C7[m,n].
In Figure 6, we give a demonstration for the irregularity index

AL. Again it can easily be concluded that VC5C7[m,n] is more

irregular than HC5C7[m,n]. It is evident from the graphs and the

two tables where comparative values for the calculated indices are

given. Values obtained by most irregularity indices for VC5C7 are

higher than those for HC5C7 for the same values of parameters m

and n. So, as far as computational irregularity is concerned,

VC5C7 is more irregular than HC5C7. The same trends are

shown by all other irregularity indices; please see Figures 7, 8.

Based on the aforementioned comparative analysis, we conclude

that VC5C7[m,n] is more irregular than HC5C7[m,n] for all

irregularity indices discussed in this article. This conclusion can

be useful in nano-engineering and electronics.
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