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Purpose: To develop a deep learning method to automatically monitor the

implantable collamer lens (ICL) position and quantify subtle alterations in the

anterior chamber using anterior segment optical coherence tomography (AS-

OCT) images for high myopia patients with ICL implantation.

Methods: In this study, 798 AS-OCT images of 203 patients undergoing ICL

implantation at our eye center from April 2017 to June 2021 were involved.

A deep learning system was developed to first isolate the corneoscleral, ICL,

and lens, and then quantify clinical important parameters in AS-OCT images

(central corneal thickness, anterior chamber depth, and lens vault).

Results: The deep learning system was able to accurately isolate the

corneoscleral, ICL, and lens with the Dice coefficient ranging from

0.911 to 0.960, and all the F1 scores >0.900. The relative error between

automated measurements and the ground truth for 95% (188 images out of

198) of LVs was within 10%. Intraclass correlation coefficients (ICCs) of the

machine-ground truth measurements ranged from 0.928 to 0.995.

The deep learning method also showed better repeatability than human

graders.

Conclusion: The deep learning method provides reliable detection and

quantification of AS-OCT scans for postoperative ICL implantation, which

can simplify and optimize the management of clinical outcomes of ICL

implantations. Also, this is a step towards an objective measurement of the

postoperative vault, making the data more comparable and repeatable to each

other.
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Introduction

High myopia has become a major public health issue

regarding its increasing prevalence around the world, with

10% of the world’s population estimated to be affected by

2050 [1, 2]. Nevertheless, for the correction of high myopia,

current mainstream laser-assisted refractive surgery can be risky

due to the thinning of corneal as well as structural alterations in

corneal biomolecules [3]. In recent years, the phakic intraocular

lens has been widely accepted as an option for high myopia

patients with its wide refractive correction range and

preservation of accommodation. One of the most worldwide-

used phakic intraocular lens types is the posterior chamber

phakic intraocular lens (EVO ICL; STAAR Surgical), which

involves placing an intraocular lens inside the eye without

manipulating the lens itself [4, 5]. Since the ICL is implanted

in the posterior chamber, it is crucial to monitor physiological

changes in the eye that may lead to adverse postoperative events.

For example, the inappropriate distance between the posterior

ICL surface and the anterior crystalline lens (lens vault, LV) can

lead to the risk of specific complications, such as anterior

subcapsular (ASC) cataracts, and considerable endothelial cell

loss [5, 6]. Therefore, the management of the postoperative

follow-ups is essential to the long-term success of ICL

implantation.

The development of the anterior segment optical

coherence tomography (AS-OCT) enables the acquisition

and visualization of high-resolution images of the

anterior segment structures [7, 8]. With its non-invasive

character, the device has been widely used in post-operative

follow-up for ICL implantation. Nevertheless, current

technology typically requires manual identification and

measurement of the structures, which would not be

clinically viable to manually label each parameter

individually in crowded ophthalmology clinics. Hence, an

objective method is required to automatically identify and

measure each scan.

Deep learning, a subfield of artificial intelligence (AI), has

proven to be effective for automatically analyzing ocular

images, including AS-OCT images [9–14]. However, there is

no attempt to automatically analyze AS-OCT images following

ICL implantations in patients, to whom an appropriate method

to manage the follow-ups can prevent major postoperative

complications. Herein, this study aims to develop a fully

automatic method based on deep learning to monitor the

ICL position and identify subtle alterations in the anterior

chamber for patients receiving ICL surgery, which could

promptly evaluate postoperative risks and discover adverse

events.

Methods

Subjects

This work included 203 patients undergoing posterior

chamber phakic intraocular lens (EVO ICL; STAAR Surgical)

implantation between April 2017 and June 2021 at the Eye

Center, the Second Affiliated Hospital of Zhejiang University,

College of Medicine, China. The surgeries were performed by

senior surgeons. Patients with a history of cataracts, glaucoma,

uveitis, or ocular surgery that could affect structures in AS-OCT

were excluded. The postoperative scans were obtained from the

swept-source Casia SS-1000 AS-OCT (Tomey Corporation,

Nagoya, Japan).

The Ethics Committee of the Second Affiliated Hospital of

Zhejiang University, College of Medicine, approved this study.

All methods adhered to the tenets of the Declaration of Helsinki.

Deep learning system development

To fully automatically obtain the values in the AS-OCT

images following ICL implantation in clinical practices, the

deep learning system consists of two approaches: the detection

approach and the quantification approach (Figure 1). We

developed the system using 598 images (75%) for training,

and the remaining 200 images for testing.

The detection approach involved automated recognition of

the corneoscleral, ICL, natural lens, and angle recess points

(Figure 1A): Each AS-OCT image was manually segmented

into 5 parts (the corneosclera, the ICL, the natural lens, and

the angle recess points for both left and right) to guide the

training of an improved U-Net network. The U-shape network

was composed of an encoder, decoder, and skip connection. The

encoder was made up of four downsampling blocks, and each

downsampling block consisted of two CBRs followed by a

pooling layer, while CBR is referred to as conv 3 × 3 layer +

batch normalization layer + ReLU layer. The decoder was

composed of four upsampling blocks, each containing an

upsampling layer followed by two CBRs. Skip connection was

employed between each downsampling block and upsampling

block at the same level to copy the features of the encoder into the

decoder for feature fusion. It is worth noting that two CBRs were

used for communication between the last downsampling block

and the first upsampling block, instead of using a skip

connection. The last block of the decoder used two conv

1 × 1+softmax layers to output a four-channel region

segmentation map and a three-channel angle recess points

positioning region map respectively. The purpose of
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segmenting the angle recess points was to help create the line of

axis oculi in the quantification approach. And to improve the

segmentation robustness of the angle recess points, regions with a

radius of 20 pixels centered on the left and right angle recess

points are used for segmentation, instead of using individual

points.

Then, the quantification approach automatically obtained

central corneal thickness (CCT), anterior chamber depth (ACD),

and LV (Figure 1B): To automatically obtain the values, we

calculated the centroid of the maximum connected area of the

angle recess area, which was the final location coordinate of the

point. Then we connected the left and right angle recess points

(angle recess to angle recess, ATA), and make the perpendicular

bisector of ATA, which represents the line of axis oculi.

Afterward, the intersections of the contour and the axis oculi

were connected to calculate CCT, ACD, and LV respectively.

For network implementation, we used the Pytorch platform

with an Nvidia GeForce RTX 3090 GPU. During model

optimization, the number of training epochs was set to 150,

and the batch size was set to 1. Dice loss was implemented with a

learning rate of 0.00003. We applied an RMSprop optimizer with

a weight decay of 1 × 10−8, and a momentum of 0.9. In terms of

the learning scheduler, we used the StepLR scheduler with the

period of learning rate decay of 10, and the multiplicative factor

of learning rate decay was set to 0.5.

Performance of the deep learning system

To assess the performance of the system, we evaluated the

segmentation performance and the quantification performance

respectively.

The segmentation performances were assessed using the Dice

coefficient, which indicates the similarity between the manual

and automated segmentation. Besides, we used the error of

X-coordinate, Y-coordinate and absolute values to assess the

performance of the two angle recess points segmentation, and

precision, recall, F1 score and mean IoU to evaluate the

performance of the corneosclera, ICL, and the lens

segmentation. For comparison, the ResNet-18, state-of-the-art

ReLayNet [15], and DeepLabel V3+ (commonly used for OCT

segmentation) [16] models were also implemented.

To assess the accuracy, reproducibility, and repeatability of

the measurement, we performed various tests involving the

FIGURE 1
Flowchart of the deep learning system, which is able to monitor the ICL position and recognize subtle alterations in the anterior chamber using
AS-OCT images for patients with ICL. (A). The detection approach: each AS-OCT image wasmanually segmented into 5 parts (the corneosclera, ICL,
lens, and angle recess points for both left and right) and put into an improved U-Net architecture for the training process. Then, the test images went
through the detection approach to generate the segmentationmap. (B). The quantification approach: the centroid of the maximum connected
area of the angle recess area was calculated and defined as the final coordinate of the points. Then we connected the left and the right angle recess,
and make the perpendicular bisector of ATA, which represents the line of axis oculi. Afterward, the intersections of the contour and the axis oculi
were connected to calculate CCT, ACD, and LV respectively.
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following measurements: G-the ground truth, D-the deep

learning system, A-expert s, B-expert c. The ground truth

measurements were obtained by manually labeling the edges

of the corneosclera, ICL, natural lens, and angle recess points in

the test sets and connecting the intersections of the contour and

the axis oculi to calculate CCT, ACD, and LV respectively. The

relative error, defined as the ratio of the absolute error (D vs. G)

and the ground truth value, was used to evaluate the accuracy of

the measurements. Bland-Altman plots were used to visualize the

distribution of discrepancy between the measurements of ground

truth and the deep learning system. The intraclass correlation

coefficient (ICC) was used to indicate the degree of agreement

and correlation between individual measurements (G vs. D; G vs.

A; G vs. B). ICCs of 0.41–0.60, 0.60–0.80, and 0.80–1.00 were

taken as moderate, substantial, and excellent agreement,

respectively [17]. The root mean square (RMS) difference was

calculated to assess human-ground truth differences and

machine-ground truth differences, as well as the repeatability

of different methods.

Results

Patient characteristics

In total, 798 AS-OCT images from 203 patients (406 eyes)

collected from April 2017 to June 2021 were included for

analysis after 5 images were excluded (due to poor quality).

We used 598 images from 102 patients (204 eyes) for training

and validation (training:validation = 7:1) and 200 images from

101 patients (202 eyes) for testing. In the test set, 2 test images

were further excluded in the measurement step due to invalid

segmentation. The patients were in stable recovery with a

mean follow-up period of 130 days. The mean and standard

deviation of participant age was 28.6 ± 6.4 years (ranging from

19 to 52 years). There were 67 (33.0%) male participants and

136 (67.0%) females. The flowchart of the deep learning

system and an example of the performance are shown in

Figure 1.

Segmentation performance

To create the line of axis oculi in the quantification approach,

we segmented the angle recess area in the first step. The

segmentation performance of the angle recess area was

evaluated using the error of X-coordinate, Y-coordinate,

absolute value, and Dice coefficient. The system was able to

locate the angle recess area accurately. The mean-variance of the

left angle recess area was 0.013 ± 0.034mm for X-coordinate

and0.001 ± 0.031mm for Y-coordinate, and 0.037 ± 0.030mm

for absolute values (Figure 2). The Dice score was 0.865. The

mean-variance of the right angle recess area was

−0.038 ± 0.050mm for X-coordinate, −0.023 ± 0.049mm for

Y-coordinate, and 0.063 ± 0.054mm for absolute values

(Figure 2). The Dice score was 0.865 for the left angle recess

and 0.788 for the right. Compared with the traditional ResNet-19

model, our method exhibited a much higher performance

(Supplementary Table S1).

To obtain the edges of the corneoscleral, ICL, and natural

lens, these structures were also separated in the first step. Table 1

lists the segmentation performance of the corneosclera, ICL, and

natural lens (using the Dice score, mean IoU, precision, recall,

and F1 score), which indicated that the network possessed the

ability to accurately identify the structures. The Dice score of

these structures ranged from 0.911 to 0.960, and the mean IoU

ranged from 0.868 to 0.923. The precision, recall, and F1 score of

these structures ranged from 0.945 to 0.971, 0.894 to 0.976, and

0.926 to 0.960 respectively. Compared with previous models, the

numerical results showed that our U-Net-based method

outperformed the Deep Label V3+ and ReLayNet models

(Supplementary Table S2), especially in recognizing the

corneoscleral.

Measurement performance

Based on the performance of the segmentation step, we

developed an automatic method to quantify these essential

anterior segment parameters (ATA, CCT, ACD, and LV).

Table 2 lists the outcomes of the automated measurements

and ground truth.

We evaluated the accuracy of automated measurements

using relative errors between the output measurements and

the ground truth, as shown in Figure 3. The relative errors

FIGURE 2
The segmentation performance of the angle recess area. The
blue and orange dots represent the X-coordinate and
Y-coordinate errors of the angle recess area, respectively.
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indicated the high accuracy of the deep learning measurement.

More specifically, for all measurements of ATAs and ACDs, 89%

of CCTs and 95% of LVs, the relative error between automated

measurements and ground truth was within 10% compared with

the ground truth.

We also assessed the degree of agreement and correlation

between measurements using ICCs. The ICCs between the

deep learning method and the ground truth of ATA, CCT,

ACD, and LV ranged from 0.928 to 0.995, indicating excellent

agreement between the automated method and the ground

truth. The Bland-Altman plots (Figure 4) also confirmed the

excellent agreement and acceptable limits of agreement

between the automated method and the ground truth, with

the bias ranging from −0.05 to 0.01 mm. Furthermore, the

RMS difference between ground truth and various methods of

measurement (Figure 5) showed that human-ground truth

TABLE 1 The segmentation performance of the structures in AS-OCT following ICL implantation.

Dice MeanIoU Precision Recall F1 score

Two points

Left angle recess 0.865 — — — —

Right angle recess 0.788 — — — —

Three planes

Corneosclera 0.960 0.923 0.945 0.976 0.960

ICL 0.928 0.873 0.971 0.894 0.931

Lens 0.911 0.868 0.953 0.901 0.926

TABLE 2 The outcomes of the automated measurement and ground truth.

The automated measurement
Mean ± SD (mm)

The ground truth
Mean ± SD(mm)

ATA 9.499 ± 0.329 9.551 ± 0.324

CCT 0.639 ± 0.050 0.600 ± 0.048

ACD 2.887 ± 0.283 2.876 ± 0.284

LV 0.726 ± 0.266 0.729 ± 0.275

ATA, angle recess to angle recess; CCT, central cornea thickness; ACD, anterior chamber distance; LV, lens vault; SD, standard deviation.

FIGURE 3
The relative error of the automated measurement (Machine vs. Ground truth). The relative error = the absolute error/the ground truth × 100%.
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differences were not significantly different from machine-

ground truth differences in most cases. In addition, the

error bars of RMS differences between A, B, and G

measurements showed that the deep learning method

(without error bars) possessed better repeatability than

human experts.

Discussion

Postoperative follow-ups should be effectively managed to

prevent major complications for patients undergoing ICL

implantation. With the development of the AS-OCT, subtle

changes in the anterior chamber could be discovered and

FIGURE 4
Bland-Altman plots between deep learning system (D) and ground truth (G) measurements. (A) Bland-Altman plots for ATA. (B) Bland-Altman
plots for CCT. (C) Bland-Altman plots for ACD. (D) Bland-Altman plots for LV.

FIGURE 5
The RMS difference between ground truth and different methods of measurement.
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quantified during the follow-ups. In this study, we presented a

deep learning method to automatically monitor the position of

ICL and promptly identify minor changes in the anterior

chamber, including detecting the main structures (the angle

recess area, corneoscleral, ICL, and natural lens) and

quantifying the anterior chamber parameters (ATA, CCT,

ACD, and vault) in AS-OCT images for postoperative ICL

patients. The method was based on the U-Net architecture

and achieved human expert-level performance.

U-Net, comprising an encoder and a decoder network

connected by skip connections, has been showing great

promises in segmenting medical images [18–23], including

assisting in clinical follow-ups [24–26]. In this study, we

developed an improved U-Net architecture for the

segmentation module, which includes the segmentation of

angle recess points and other structures. Traditionally, in

localizing key points of ophthalmic images, the convolutional

neural networks (CNN) regression method, such as ResNet18, is

usually applied to output the coordinates of the target point [13].

Nevertheless, in our multi-task application scenario, using one

network for each task would increase the computation and

training costs, and tasks cannot promote each other’s

performance through interaction. In this study, a more

simplified and efficient method was introduced. The method

regarded the localization task as finding the segmentation map of

the target point regions and the centroids of their largest

connected region, to obtain the coordinates. In this way, the

two tasks can be completed with only an improved U-Net,

without integrating multiple networks, enhancing the

simplicity and versatility of the model. Compared with

previous models, our method showed a higher accuracy with

an absolute error of 0.037 mm for the left angle recess area and

0.063 mm for the right angle recess area (0.487, 0.389 for the

Resnet-18 model). In addition, the angle recess points are the key

anatomic landmark in the next quantification process, whose

performance can be affected by the radius of the points.

Therefore, it is crucial to select a proper value for the radius.

When trained on the same training data, we found that the

performance peaked at 20 pixels (Supplementary Figure S1). For

segmentation of the other structures, besides a high Dice

coefficient, the module also achieved a high F1 score and

mIoU, showing its great potential in accurately isolating AS-

OCT structures. For comparison, this method also outperformed

the RelayNet and DeepLabel V3+ models in identifying different

structures, especially for corneoscleral (Dice coefficient 0.925 vs.

0.888 vs. 0.960). Furthermore, ICCs between automated values

and the ground truth were relatively high, making it a reliable

method to assist in follow-ups in daily practice.

It is an important mitigation of vault-related adverse events

to closely observe ICLs with insufficient or excessive vault [5].

Previous studies showed the risk of cataract formation increases

when the vault is low (< 250 μm), while the risk of angle closure,

pupillary block, or pigment dispersion glaucoma increases when

the vault is high (> 750 μm) [27]. However, vault varied broadly

across studies [28], which ranges from 0 μm at two years to

1180 μm at one year of follow-up [29]. This may be due to several

factors, for example, different standards of various operators

when measuring, the size of the ICL [30], the follow-up time

when the vault was measured [31–33], the rise of the crystalline

lens [34, 35], and the age of the patient [36]. Therefore, an

objective method to automatically obtain the values can mitigate

the subjectivity of the measurement process, which may also

contribute to a better understanding of the postoperative vault.

Our results for the ICL segmentation showed a high Dice score,

mean IoU, precision, recall, and F1 score (all > 0.85), indicating

that our method can accurately detect the ICL. Also, 95% of the

relative error of LV was within 10% and the ICCs between

different measurements of LV showed excellent agreements

(all > 0.90), which illustrated that our deep learning method

can obtain the values with high reliability. In the future, with the

proposal of our deep learning method, experts are able to take full

advantage of the follow-up data and enhance the management of

ICL implantation, which also possesses the potential to optimize

the formula used for preoperative lens sizing.

Besides the vault-related adverse event, the endothelial cell

loss and other subtle changes in the anterior chamber should also

be aware. The loss of endothelial cells varied across studies, while

it is considered that the largest loss occurs during the early

postoperative period, and the surgical procedure is the main

cause of the loss [28]. Our deep learning system can separate the

corneosclera accurately (with the Dice score, mean IoU,

precision, recall and F1 score > 0.85) and automatically obtain

the CCT with excellent agreement with the ground truth (89% of

relative errors within 10%; ICCs > 0.90). In addition, age-related

alterations of the anterior chamber could affect ICL position over

the years. For example, there is an age-related increase in ciliary

muscle anteroposterior thickness, whichmight affect the position

of ICL [37]. Thus, we also obtained ACD and ATA to quantify

the changes in the postoperative anterior chamber with great

reliability (all relative errors within 10%; all ICCs > 0.95).

There are also some limitations to our study. First, our study

only included a relatively small data set with a specific population

(Chinese), which would benefit from external validation of other

ethnic groups. Second, the AS-OCT images were obtained from a

single type of equipment (Casia SS-1000 AS-OCT). This should be

further investigated if there is any difference among measurements

of various types of equipment. Finally, to better monitor the

postoperative risks, the method could be further developed into a

web-based or app-based dataset, which can also record other

information during the follow-ups. Above all, there has been an

acceleration of adopting newmodels of healthcare delivery following

the rapid changes to healthcare systems during COVID-19 [38].

In summary, we developed a deep learning method to

manage the follow-ups after ICL implantations, which can

monitor the position of ICL and identify the subtle changes in

the anterior chamber with high performance in both the
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segmentation and measurement process. This method could

assess the postoperative risk and discover the complications

timely, which can assist patients and ophthalmologists in daily

practice. Also, it is a relatively objective approach to obtain the

measurements in AS-OCT images, which can make the data

between different studies more comparable and repeatable to

each other, including eliminating the deviation caused by the

image rotation and personal equation.
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