
Atmospheric turbulence
forecasting using two-stage
variational mode decomposition
and autoregression towards
free-space optical
data-transmission link

Yalin Li1*, Lang Li2,3,4, Yingchi Guo2,3,4, Hongqun Zhang1,
Shiyao Fu2,3,4, Chunqing Gao2,3,4 and Ci Yin1

1Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China, 2School of
Optics and Photonics, Beijing Institute of Technology, Beijing, China, 3Key Laboratory of Information
Photonics Technology, Ministry of Industry and Information Technology of the People’s Republic of
China, Beijing, China, 4Key Laboratory of Photoelectronic Imaging Technology and System, Ministry of
Education of the People’s Republic of China, Beijing, China

Free space optical communication (FSOC) is a promising technology for

satellite-to-earth communication systems, where vector beams, especially

orbital angular momentum (OAM), can further increase the capacity of the

optical link. However, atmospheric turbulence along the path can introduce

intensity scintillation, wavefront aberrations and severe distortion of spatial

patterns, leading to data degradation. Forecasting atmospheric turbulence

allows for advanced scheduling of satellite-to-earth data transmission links,

as well as the use of adaptive optics (AO) to compensate for turbulence effects

and avoid data transmission link performance degradation. Therefore,

atmospheric turbulence forecasting is critical for practical applications. In

this work, we proposed a hybrid atmospheric turbulence forecasting model

based on a two-stage variational mode decomposition (TsVMD) and

autoregression model. The variational mode decomposition (VMD) algorithm

is first used, to our best knowledge, to denoise the observed atmospheric

turbulence dataset, and then is used again to decompose the datasets into

several intrinsicmode functions (IMFs). Finally, the autoregressionmodel is used

to predict each IMF independently. And the predictions of each IMF are

combined to obtain the final atmospheric turbulence predictions.

Experiments employing the observed turbulence datasets and two additional

methodologies were carried out to verify the performance of the proposed

model. The experimental results show that the performance of the proposed

model is much superior to that of the comparative methods.
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1 Introduction

Free-space optical communication (FSOC) offers flexibility,

security, and large-signal bandwidth as compared to traditional

microwave communication [1–3]. It has attracted considerable

attention due to the increasing demands for high capacity and

speed in satellite-to-earth data transmission links [4–8].

Recently, there has been a great amount of research in using

spatially structured light for FSOC. Among them, the orbital

angular momentum (OAM) modes of light have been used most

frequently and effectively to increase the information capacity of

optical links [9–12]. However, atmospheric turbulence, mainly

generated by vertical wind speed gradients and thermal

convection, can significantly limits the practical range of

satellite-to-earth optical communication. The non-uniformity

of the medium refractive index will cause beam intensity

scintillation, resulting in power fluctuations in the optical

links as well as time-varying wavefront aberrations and spatial

mode distortion, all of which can lead to severe performance

degradation of the systems [13–17]. Adaptive optics (AO) is a

promising way to compensate for wavefront aberrations caused

by atmospheric turbulence. However, AO cannot compensate for

all the turbulence effects under all possible conditions [18]. In

weak turbulence condition, AO can significantly improve the

performance of FSOC, yet it still has limited ability in strong

turbulence. Consequently, satellite-to-earth optical

communication can only be arranged in mild and weak

turbulence conditions to ensure the quality of communication

[19–21]. Therefore, forecasting atmospheric turbulence to

scheduling the satellite-to-earth communication is crucial and

mandatory.

In the field of FSOC, the most relevant and common

parameter for the analytical description of the atmospheric

turbulence intensity characteristics is the Fried coherence

length (r0). r0 is the integral value of the turbulence intensity

in the transmission path and can also be used to calculate

atmospheric turbulence parameters such as seeing and

scintillation index.

Amounts of studies have been done in atmospheric

turbulence forecasting, the most dominant approach is to

forecast atmospheric turbulence using mesoscale

meteorological parameters. Using various mesoscale numerical

models such as Meso-NH, the fifth-generation Penn State/NCAR

Mesoscale Model (MM5), the European Center for Medium-

Range Weather Forecasts (ECMWF), the Weather Research and

Forecasting (WRF) to forecast the spatial distribution of

meteorological parameters, and then reconstructing the spatial

distribution of atmospheric turbulence base on the relationship

between meteorological parameters and atmospheric turbulence

parameters. This approach has been applied and validated at

many observatories and the results show that the method can

play a non-negligible positive role for applications on long-time

scales and large-spatial scales, such as astronomical observations

[22–34]. However, this approach is not adaptable to satellite-to-

earth optical communication, which requires high accuracy and

high temporal resolution atmospheric turbulence forecasting.

Atmospheric turbulence is forecasted by meteorological

parameters such as temperature, humidity, and wind speed,

which means that the accuracy of the forecast results is

limited by the accuracy of the meteorological forecast

parameters. But in fact, the spatial and temporal scales of

atmospheric turbulence are much smaller than the highest

resolution typically achieved by mesoscale meteorological

forecasts [22]. Lots of studies demonstrated that

meteorological parameters forecast is sensitivity to the

orography, the horizontal and vertical resolution of mesoscale

numerical model which is far more enough to resolve thin

atmospheric turbulence layers of tens of meters [35–37]. In

several cases, the accuracy of using WRF model to forecast

atmospheric turbulence for the next hour is not even as good

as the accuracy of using the current value directly [22, 38]. In

addition, it is difficult to accurately describe the relationship

between meteorological parameters and atmospheric turbulence

in either empirical or physical models [39]. Empirical models

were developed for a specific condition and location [40], their

applicability is questionable, for example, the Submarine Laser

Communications (SLC) models which based on the

observational data from Mt. Haleakala, Hawaii can hardly

achieve satisfactory result elsewhere. Physical models [41]

were generally based on some assumption that may cause a

reduction in model accuracy or even failure under particular

conditions. Recently, some advanced artificial intelligence

techniques were used to establish the forecasting models and

have demonstrated its prowess by capturing the temporal

evolution of atmospheric turbulence remarkably well [42–44],

but its forecast accuracy is still limited by its dependence on

meteorological forecast data.

Since atmospheric turbulence has a certain short-term

correlation, using this property can greatly improve the

short-term atmospheric turbulence forecast accuracy and

temporal resolution [45, 46]. Several researchers proposed

using real-time measurements and filtering techniques to

improve the forecast performances on shorter time scales

[47, 48]. Despite the unprecedented prediction accuracy

achieved, there is still much room for development. The

instruments measure atmospheric turbulence by analyzing

the amplitude and phase perturbations of a light-wave,

which inevitably introduces measurement noise [49].

Therefore, the real-time measurement should be

preprocessed to remove noise. The nonlinear and

nonstationary features of atmospheric turbulence were not

taken into consideration. Hence, the forecast accuracy is

limited, especially at sudden changes.

In this study, a new hybrid method, two-stage variational

mode decomposition and autoregression model (TsVMD-AR) is

proposed, which is based on a two-stage variational model
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FIGURE 1
Schematic diagram of TsVMD-AR model.
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decomposition and an autoregressive model that can overcome

these limitations for short-term atmospheric turbulence

forecasting. We use variational mode decomposition (VMD)

[50] to decompose the observed atmospheric turbulence time-

series datasets (Fried parameter r0 ) into intrinsic mode functions

(IMFs) and identify noise IMFs according to the threshold of the

correlation coefficients between IMFs and the original datasets.

Then, reconstructing useful IMFs for second stage VMD,

decompose the dataset into IMFs again. After that, using

autoregression (AR) model to forecast each intrinsic mode

function (IMF). Meanwhile, experimental results show that

the TsVMD-AR can well experimentally forecast short-term

atmospheric turbulence and have advantages compared with

previous work.

2 Methods

2.1 The whole process of the proposed
model

The schematic diagram of TsVMD-AR is depicted in

Figure 1. In this model, the two-stage variational mode

decomposition was used to denoising and decomposing the

FIGURE 2
First-stage VMD results and correlation coefficients of period 1. The correlation coefficients between the observed time series and the
decomposed Components (A), the results of the first stage VMD (B).

TABLE 1 The correlation coefficient between the observed time series and the decomposed components.

Components IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 IMF11 IMF12

Correlation Coefficient 0.82 0.23 0.10 0.15 0.61 0.21 0.07 0.06 0.08 0.78 0.12 0.28
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observed atmospheric turbulence dataset, and autoregression

model was applied to forecast each IMF and obtain the

ensemble forecast results. The detailed descriptions are given

as follow:

2.1.1 Denoising the observed atmospheric
turbulence dataset

The first stage of VMD is used to remove noise from the

observed atmospheric turbulence dataset. As mentioned earlier,

the observed atmospheric turbulence dataset contains noise,

which will seriously reduce the performance of forecast model.

So, it is essential to remove the noise before the atmospheric

turbulence forecasting. Hence, we propose a joint VMD and

correlation analysis (CA) denoising algorithm.

First, decomposing the observed atmospheric turbulence

dataset using VMD algorithm. Decomposition models such as

Empirical Mode Decomposition (EMD) and Local mean

decomposition (LMD) have some inherent limitations such as

sensitivity to noise and sampling, and mode aliasing etc. So, we

use VMD to decomposes the observed atmospheric turbulence

dataset into a sequence of IMFs having both informative and

noisy components.

Secondly, classifying the IMFs using CA. Atmosphere

turbulence is a multiplicative noise that appears as the

sum of a useful signal and multiple frequency noise signals

in the frequency domain. Regarding the high frequency

components decomposed by VMD as noisy mode and

discard them directly is the common practice. Although

this method has acceptable noise reduction effect, it often

loses useful signals. To minimize the signal loss, we introduce

correlation analysis to calculate the correlation coefficient

between each IMF and the observed atmospheric turbulence

dataset, classify and remove the weak correlation

components [51].

FIGURE 3
Forecasting results of the proposed method and the contrast method for period 1: (A) observed atmospheric turbulence (blue) and forecasting
results of TsVMD-AR (red), SARIMA (green) and WRF (grey); 2D histograms of observed atmospheric turbulence verse forecasting results of TsVMD-
AR (B1), SARIMA (B2) and WRF (B3).
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2.1.2 Decomposing the denoised dataset
The second stage VMD was used to decompose the denoised

atmospheric turbulence dataset. By the first stage VMD, the

observed atmospheric turbulence dataset is decomposed and the

relevant IMFs are selected and reconstructed. Although the noise

in the observed atmospheric turbulence dataset is removed, there

is still one problem that remains: the denoised atmospheric

turbulence dataset is nonlinear and nonstationary. However,

the traditional AR model is based on the assumption that the

datasets being used to make predictions are stationary and linear.

Therefore, we again use variational mode decomposition to

decompose the denoised atmospheric turbulence dataset into

several components that can be individually forecasted.

2.1.3 Forecast the atmospheric turbulence
The final step is training ARmodel for each IMF and use it to

forecast the atmospheric turbulence. Since each IMF has different

correlation properties, it is necessary to select the appropriate AR

order for each IMF independently and train them separately. The

qualitative procedures to choose the best order are the Bayesian

information criterion (BIC) studied by Schwartz [52] and the

Akaike information criterion (AIC) of Akaike.

First, plot the autocorrelation coefficient figure and partial

autocorrelation coefficient figure of each IMF to select the order

of the autoregression model, use BIC and AIC to select the

optimal parameters. Secondly, divide each of the IMF into two

sub-sets: the training set for training the AR model and the test

set for evaluate the mode. Finally, each predicted IMF is summed

to obtain the final forecast result.

In details, the complete procedure of the proposed TsVMD-

AR framework is conducted as follows:

Step 1. Collect observed atmospheric turbulence data X �
{x1, x2,/, xN}.
Step 2. Use VMD to denoising the observed atmospheric

turbulence data:

Step 2-1. Use VMD to decompose the observed atmospheric

turbulence data X into several components, the number of

decompositions can be determined according to the

characteristics of the data

Step 2-2. Calculate the correlation coefficient between each

component and the observed atmospheric turbulence data,

removing weakly correlated components and reconstructing

strongly correlated IMFs.

Step 3. Used VMD to decompose the denoised data into several

components

Step 4. Forecast for each component using AR model

Step 4-1. Plot the autocorrelation coefficient figure (ACF) and

the partial autocorrelation coefficient figure (PACF) of each

component obtained in step 3 to select optimal values of

parameters p, d, and q in the AR model.

Step 4-2. Divide each of the components into two sub-sets: the

train set for training AR model and test set for validating the

model. Given the test set, predict each component based on the

AR model of each mode obtained in step 3

Step 5. Output the final forecasting result by add up each

forecasting result, and perform error analysis.

2.2 Variational mode decomposition

VMD algorithm is fully adaptive algorithm that decompose

an original time series into an ensemble of band-limited IMFs

[50]. The constrained variational formulation can be constructed

as follow

min
{uk},{ωk}

⎧⎨⎩∑
k

�������zt[(δ(t) + j

πt
)puk(t)]e−jωkt

�������22⎫⎬⎭, s.t.∑K
k�1

uk(t) � f

(1)
where f is the original time series; uk, ωk are shorthand notations

for IMFs and their center frequencies; K represents the number

of IMFs.

The above constrained problem can be transformed into

following unconstrained one by quadratic penalty function α and

Lagrange multiplication λ.

L({uk}, {ωk}, λ) � α∑
k

�������zt[(δ(t) + j

πt
)puk(t)]e−jωkt

�������22
+
���������f(t) −∑

k

uk(t)
���������
2

2

+ 〈λ(t), f(t) −∑
k

uk(t)〉
(2)

The solution of Eq. 1 is obtained by found the saddle point

of augmented Lagrange in a sequence of iterative sub-

optimizations call alternate direction method of multipliers

(ADMM) [53]. The uk, ωk and λ are updated with the Eqs

3a–3c.

ûn+1
k (w) �

f̂(w) − ∑i≠k û
n
i (w) + λ̂

n(w)/2

1 + 2α(w − wn
k)2 (3a)

wn+1
k �

∫∞

0
w
∣∣∣∣ûn+1

k (w)∣∣∣∣2dw
∫∞

0

∣∣∣∣ûn+1
k (w)∣∣∣∣2dw (3b)

λ̂
n+1(w) � λ̂

n(w) + τ⎡⎣f̂(w) −∑
k

ûn+1
n (w)⎤⎦ (3c)

In the iterative process, the center frequency and bandwidth

of IMFs are continuously updated until the following stop

condition is satisfied:

∑
k

‖ ûn+1
k − ûn

k ‖2
‖ ûn

k ‖22
< e (4)
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2.3 Correlation analysis

The correlation coefficient [54] can be expressed as follows:

CCf, uk �
∑n

i�1(fi − �f)(uk,i − uk)�����������∑n
i�1(fi − �f)2√ �������������∑n

i�1(uk,i − uk)2
√ (5)

where f and uk are original datasets and IMFs obtained by VMD;
�fand uk representmathematical mean of original datasets and IMFs.

2.4 Autoregression model

Autoregression mode is very flexible at handling time-series

patterns which use uses a linear combination of past values of the

target to make forecasts [55]. The value of atmospheric

turbulence at time t based on an autoregression model can be

expressed by the following equation.

yt � c +∑p
i�1

φiyt−i +∑q
j�1

ϕjεt−j + εt (6)

where c is a constant, p and q is the number of autoregression

orders and moving average orders. φi and ϕj are the

autoregression coefficients and moving average coefficients.εt
is zero-mean Gaussian noise.

In order to determine the orders of the autoregression mode,

ACF and PACF are used. For a finite atmospheric turbulence

dataset with n observations, the estimated autocorrelation ca-n be

only obtained with the following equation.

ACF(K) � ∑n−k
t�1

(xt − �x)(xt+h − �x)∑n
t�1(xt − �x)2 (7)

where x � {x1, x2 . . . , xn−k} is the dataset being analysis; k is the

lags; n is the number of samples in the dataset.

The PACF can be attained as:

wt � (xt − �x) � ∅1kwt−1+∅2kwt−2 + . . . +∅kkwt−k + ϵt (8)

FIGURE 4
Evaluation criteria results of different forecasting models for period 1.

TABLE 2 Performance evaluations of different models for period 1–3.

Models Period 1 Period 2 Period 3

RMSE MAE MAPE IA RMSE MAE MAPE IA RMSE MAE MAPE IA

WRF 4.52 4.14 0.70 0.42 4.24 3.57 0.59 0.36 4.06 3.05 0.62 0.74

SARIMA 1.75 1.33 0.19 0.74 1.59 1.20 0.18 0.47 3.06 2.35 0.50 0.63

TsVMD-AR 0.94 0.67 0.09 0.94 0.86 0.61 0.09 0.86 1.42 0.95 0.18 0.94

Values in bold means the best performance of all methods.
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3 Case study

3.1 Study area and data description

In this study, the proposed approach is applied to the China

Remote Sensing Satellite Ground Station (RSGS, 40°27′N,
116°51′E) in Beijing, China. The datasets were collected using

the differential image motion monitor (DIMM), which is

routinely used in optical sites to accurately measure the

atmospheric turbulence. To further evaluate the performance of

the proposed method, the datasets are divided into three periods.

Period 1 is from 20 December 2021 to 5 January 2022, period 2 is

from 10 January to 25 January 2022 and period 3 is from 1 May to

15May 2022. Because the datasets are large enough, simple train-test

split is sufficient, therefore, to better illustrate the effect of the model,

the top 60% of each period were chosen as training datasets, while

the remaining 40% were chosen as testing datasets.

3.2 Performance evaluation criteria

Two types of criteria were adopted in this paper to evaluate

the forecasting performance of the proposed model. The

accuracy of the forecast is assessed using mean absolute error

(MAE), mean absolute percentage error (MAPE), and root mean

square error (RMSE). The specific computational formulas are

defined as follows:

MAE � 1
m
∑m
t�1
|Rt − Pt| (9)

FIGURE 5
Forecasting results of the proposed method and the contrast method for period 2: (A) observed atmospheric turbulence (blue) and forecasting
results of TsVMD-AR (red), SARIMA (green) and WRF (grey); 2D histograms of observed atmospheric turbulence verse forecasting results of TsVMD-
AR (B1), SARIMA (B2) and WRF (B3).
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MAPE � 1
m
∑m
t�1

∣∣∣∣∣∣∣Rt − Pt

Rt

∣∣∣∣∣∣∣ (10)

RMSE �
�������������
1
m
∑m
t�1
(Rt − Pt)2

√
(11)

For tendencies forecasting accuracy, a dimensionless

indicator (IA) is used for comparisons between different

models. IA is defined as follows:

IA � 1 − ∑m
t�1(Rt − Pt)2∑m

t�1(∣∣∣∣∣∣∣Pt − Rt

∣∣∣∣∣∣∣ + ∣∣∣∣∣∣∣Rt − Rt

∣∣∣∣∣∣∣)2 (12)

For a “perfect” model, the MAE, MAPE and RMSE are

equivalent to 0, the IA is equivalent to 1.

3.3 Model process

In the proposed TsVMD-AR method, the observed

sequences are denoised using the first stage of VMD. To

achieve better noise removal, the number of decompositions

needs to be well predetermined. Lower frequency signals contain

more features that contribute to the prediction results, and as the

number of decompositions increases, so does the high frequency

part of the signal components and the noise becomes more

pronounced and less predictive. Based on our experiments, we

found that the optimal number of decompositions for the first

stage of VMD is 12, as the correlation between the observed time

series and the decomposed components rapidly weaken after this

point. Figure 2B shows the results of the first stage VMD,

Figure 2A and Table 1 show the correlation coefficients

between the observed time series and the decomposed

components. The denoising of observed datasets can be

completed by removing weakly correlated IMFs and

reconstructing strongly correlated IMFs. Based on our

experiments, we removed the weakly correlated components

with correlation coefficients less than 0.2.

The second stage VMD decomposes the denoised

atmospheric turbulence datasets into IMFs to decrease the

non-stationary and non-linear characteristics, hence making

them easy to forecast. It is also hard to tell how many

components the datasets should be decomposed into. Too few

components may not correctly extract features within the dataset,

while too many components may over-decompose, leading to

reduced accuracy and unnecessary computational overhead.

Empirically, the suitable number of components is taken as 4.

After the decomposition of atmospheric turbulence datasets,

autoregression model is applied to each IMF. In this work, AR is

employed for the prediction of each component and the order of

model is determined via the plots of ACF and the PACF.

4 Results and analysis

The forecasting results of the proposed approach and

contrast methods, including WRF and seasonal autoregressive

integrated moving average (SARIMA), are analyzed to evaluate

the TsVMD-AR model’s forecasting performance. In this study,

WRF Version 3.7 is used to obtain the atmospheric turbulence

forecasting results for RSGS. The optimal values of parameters p,

d, and q in the SARIMA model are determined using Akaike’s

Information Criteria (AIC). Python 3.9 is used to analyze and

plot the experimental results.

FIGURE 6
Evaluation criteria results of different forecasting models for period 2.

Frontiers in Physics frontiersin.org09

Li et al. 10.3389/fphy.2022.970025

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.970025


The forecasting results of the proposed method and the

contrast methods for the period 1 (20 December

2021–5 January 2022) are shown in Figure 3A. Clearly, the

forecasting results of the proposed method are more

consistent with the observed value’s trend, and its

forecasting accuracy is significantly higher, especially for

abrupt changes. The 2D histograms of the scatter plot for

observed and predicted values is shown in Figures 3B1–B3. As

can be seen, the proposed method can obtain the most

homogeneous and closest regression line distribution. In

summary, the proposed method best fits the observed value

and also has the best forecasting effect.

Figure 4 illustrate the comparison of the evaluation criteria

for different forecasting models. Considering Figure 4 and

Table 2 together, the proposed method significantly

outperforms all other forecasting models, both in terms of the

level prediction indices (MAE, MAPE, and RMSE) and the

directional forecasting indicator (IA).

To further investigate the performance of the proposed

method in different periods, the same experimental analysis

has been performed in Period 2 and Period 3. The forecasting

results of Period 2 and 3 are given in Figures 5–8. The same

conclusion as Period 1 can be obtained. The performance of the

proposed method is further verified.

Furthermore, by comparing WFR with SARIMA and

TsVMD-AR, it is shown that autoregression models are

superior to physical models. As shown in Table 2, the RMSE,

MAPE, and MAE of the proposed method and SARIMA model

are reduced by 74.5%, 80.2%, 78.5%, and 49.4%, 53.9%, 52.4%

compared with the WRF model. The IA values of TsVMD-AR,

SARIMA, and WRF are relatively close at 0.91, 0.61, and 0.50,

respectively. The main reason is that the physical model cannot

FIGURE 7
Forecasting results of the proposed method and the contrast method for period 3: (A) observed atmospheric turbulence (blue) and forecasting
results of TsVMD-AR (red), SARIMA (green), andWRF (grey); 2D histograms of observed atmospheric turbulence verse forecasting results of TsVMD-
AR (B1), SARIMA (B2), and WRF (B3).
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sufficiently take into account the influence of terrain and features.

Thus, it can only get good trend results but has a large gap in

forecasting accuracy when compared to autoregressive models.

In particular, TsVMD-AR has certain advantages over

SARIMA. The RMSE, MAPE, and MAE of the proposed

method is reduced by 48.4%, 53.2%, and 52.7%, respectively,

when compared to the SARIMA model. It may be attributed to

the following factors:

(1) Because the observed datasets contain various types of noise,

the observed values do not accurately reflect the true

atmospheric turbulence characteristics of the atmosphere

and are therefore difficult to predict. The decomposition-

based denoising process can effectively compensate for the

effect of data noise.

(2) Due to the violent fluctuations and dramatic variations of the

atmospheric turbulence, it is difficult to extract and evaluate

the variation patterns directly by autoregressive models, and

therefore it is impossible to obtain satisfactory forecasting

results. After VMD decomposition on the dataset, the

decomposed IMFs is more stable and relatively more

regular. The interference and coupling between multi-

scale feature information in the dataset is reduced. This

makes the complex internal features of the dataset, including

linear and nonlinear features, easier to obtain and reduces

the difficulty of the forecasting model. As a result, the

prediction performance of the decomposition-ensemble

based autoregressive method is significantly improved.

(3) The proposed method extract the low to high frequency

information in the dataset by VMD, which can better capture

and forecast the sudden changes in atmospheric turbulence.

Therefore, the proposed method has better prediction

accuracy at peaks and valleys compared to the SARIMA

model.

5 Conclusion

Atmospheric turbulence can significantly degrade the

performance of optical communication systems. Therefore,

atmospheric turbulence prediction is crucial for FSOC. To

improve the accuracy and stability of the prediction, a

decomposition-set learning method called TsVMD-AR is

proposed in this paper. In this model, VMD and CA

techniques are firstly used to decompose the original datasets,

identify and remove the noise IMFs. Next, VMD is used again to

extract low to high frequency information from the dataset to

reducing the nonlinearity and non-stationary of the dataset, as

well as interference and coupling between feature information at

different scales. Finally, an autoregression model with high

stability and accuracy is used to forecast each IMF.

To investigate the forecasting performance of the proposed

model, a comparison experiment with the WRF and SARIMA

models was conducted using the observed dataset of RSGS. The

qualitative and quantitative results show that the proposed

TsVMD-AR model is apparently superior in comparison to

other models and is suitable for daily atmospheric turbulence

forecasting. The high accuracy and high temporal resolution

atmospheric turbulence forecasting based on this method can

support advanced scheduling and adaptive optical compensation

for the satellite-to-Earth optical data-transmission link, which

can avoid data transmission link performance degradation and

FIGURE 8
Evaluation criteria results of different forecasting models for period 3.
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significantly improve the reliability of the satellite-to-Earth data

transmission link.
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