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We show that Shannon’s information entropy provides a correct physical insight

of localization effects taking place in structured fields fashioned by eigenmodes

upon substrate. In particular, we find that the localization exchange among

levels when an avoided crossing occurs is explainable in terms of an

informational trade among those levels. We use it to characterize the

resonant Zener-like effect in two types of ultrasonic superlattices, one made

of metamaterial slabs and the other made of Plexiglas and water cavities. When

the gradient of the layer cavities is varied along the narrow region where the

avoided crossing appears, it is found that Shannon’s entropy of both levels

maximizes at the critical gradient showing the levels’ anti-crossing.
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1 Introduction

Information theory [1] boosted an increasing number of interdisciplinary

applications in the last 3 decades. The entropy functional is becoming significant to

characterize complexity in stochastic thermodynamics, where the formal equivalence

between the Gibbs and Shannon expressions is merging the once distant concepts of order

and information [2–6]. In the quantum realm, novel and counter-intuitive ways of

processing and transmitting information are transforming technologies from conceptual

roots [7–10]. Shannon entropy opened new avenues of interpretation of well known

physical phenomena in crystallography [11, 12] and atomic physics [13–16]. In molecular

biology, Turing-like proteins process nucleic acid molecules, which are genetic

information carriers, by coupling chemical energy to entropy reduction, hence

embodying information as another manifestation of entropy, like heat to energy [17, 18].

When a physical field is multiply scattered at material interfaces, it forms eigenmodes,

which are strong field enhancements spatially localized due to the boundary conditions.

These modes are actually the result of the non-Markovian interaction between the

interfaces through the impinging field. They can be found in particles [19, 20],
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including plasmonic devices [21, 22], with current applications

such as optical binding [23, 24], nano-antennas [25–27] and

biological sensing [28–31].

Here, we introduce Shannon entropy in situations where

localization plays a fundamental role. There are several indicators

of the spatial spreading of an eigenmode, among others the

inverse participation ratio [32, 33]. However, we propose

Shannon entropy because it is a global concept, coupling

information and complexity from wave phenomena to

virtually any discipline in science. Particularly, it will be

employed to study the dynamics of the acoustical analogue

[34] of the electronic Zener effect [35], a phenomenon that

was previously observed in semiconductor superlattices [36,

37]. This will be done by analyzing the avoided crossing

occurring between acoustic levels belonging to different

minibands in ultrasonic superlattices. We next introduce the

Shannon functional for a general field and report an in-depth

analysis for the acoustic case of a multilayer of a fluid-like

metamaterial. Results for an array of water cavities and

methyl-metacrylate (Plexiglas) layers, which is the structure

studied in [34], will be also presented to address significance

in real systems.

2 Shannon entropy in acoustics

Shannon entropy has been defined in atomic physics as

Sρ � −∫ ρ(r)ln ρ(r)dr, where ρ(r) � |ψ(r)|2 is the probability

density distribution of a given electronic pure state. For

classical fields, however, there is not an equivalent

magnitude having an interpretation of a probability

distribution. To overcome this issue we have exploited the

analogy between electronic states in quantum mechanics and

electromagnetic or acoustic levels in material structures.

Optical fields can excite so-called Mie resonances on

nanoparticles, whether whispering-gallery modes or

plasmons depending on the absorptive nature of the

nanoparticle [38, 39]; likewise, slabs of a solid material in

air sustain acoustic vibrations that are quasibound. The

resonant behavior of these fields are eigenmodes in their

associated wave equations, with the boundary conditions

imposed by the material interfaces, thus considered the

quantum counterparts of the atomic levels.

From the analogy with atomic systems, we introduce the

following probability distribution function:

P r( ) ≡ u r( )| |2/∫ u r( )| |2dr, (1)

where |u(r)|2 is the square norm of the field. In optics, this

quantity is the dot product of the electric (magnetic) field and its

complex conjugate. In acoustics, the probability of Eq. 1 is

obtained similarly by normalizing the square of the

displacement field, u(r). These square norms are proportional

to respective field intensities. Therefore, a probability density so

defined is proportional to a field intensity, a relation that adds

physical meaning to P(r). It will play in a classical field the same

role as the electronic density distribution in quantum mechanics.

The Shannon’s information entropy is defined by:

Su � −∫P r( )lnP r( )dr. (2)

This quantity is an information measure of the spatial

delocalization of the field level in the corresponding material

system, hence yielding the uncertainty in the field localization.

Like the Shannon entropy [1], Su increases with increasing

uncertainty (i.e., spreading of the field state). We should point

out that the velocity or the pressure can be equally employed in

the definition of P(r) since they are related quantities in linear

acoustics. We don’t expect any change in the conclusions of this

work when using any of them.

Themain purpose of this work lies beneath Eqs 1, 2. They can

be applied to any classical system containing interacting modes

yielding the characterization of their spreading in terms of

informational exchange. It is important to stress that the

Shannon entropy, as it is here introduced, is more general

than the inverse participation ratio since it can be applied not

only to disordered systems. It, indeed, serves as a measure of

localization of vibrating states. However, we do not think that it

carries information about the group or phase velocity of a given

mode or its density of states. Therefore, it is not a criterion for the

rate of information transfer along a channel or a waveguide.

Moreover, for a running (propagating) mode the integral (1)

becomes singular since the normalization integral diverges.

3 Results and discussion

In what follows, we use Su to get physical insight in the

dynamics of an acoustic system in which two interacting acoustic

levels present an avoided crossing region. The repulsion of the

acoustic modes (as the external field adiabatically changes)

illustrates how the avoided crossing effect is a mechanism for

sound localization reordering with frequency.

Let us consider structures like the one schematically depicted

in Figure 1A, consisting on a multilayer made of m coupled

cavities, Wm, enclosed by m + 1 metamaterial slabs, Am. For an

easy realization, we also consider that the metamaterial slabs Am

are made of a finite sonic crystal (SC) defined by a two-

dimensional (2D) periodic distribution of solid cylinders

embedded in a fluid background. These type of structures are

feasible and have been employed to observe acoustic Bloch

oscillations and Zener tunneling (ZT) using water as the

background fluid [40, 41]. They are studied here because, in

the homogenization limit, the SC-based metamaterial slabs Am

behave as fluid-like materials whose effective parameters (density

and sound velocity) can be tailored with practically no limitation
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by changing the filling fraction of the underlying lattice and/or

the solid material employed in its construction [42–44].

Therefore, the structure shown in Figure 1A is simplified to

that depicted in Figure 1B, where the clusters of cylinders are

replaced by homogeneous fluid-like layers and the transmission

coefficient can be easily obtained by applying the transfer matrix

(TM) method [45].

The TM calculations are performed using the system

described in Figure 1B made of eight (m = 8) water cavities

and using the following inputs: ρA = 5ρW and cA = 0.78cW, where

ρW (= 1 g/cm3) and cW (= 1.48 × 105 cm/s) are the density and

sound velocity in water, respectively. The values ρA and cA
represent the effective parameters obtained from the

homogenization algorithm [43] applied to rectangular clusters

made of rigid cylinders embedded in an inviscid fluid

background and arranged in a hexagonal distribution whose

filling fraction is 0.68. The case of the perfect superlattice is

studied with layer thicknesses dA = 0.08 cm and dW = 2dA,

respectively.

The displacement field amplitude, log|u(z)|2, inside the

perfect superlattice made of eight water cavities and the

corresponding transmission spectrum through the complete

structure are shown in Figures 2A,B, respectively. Two

minibands, MB1 and MB2, are clearly observed in the

transmission; miniband MB1 is approximately centered at the

frequency corresponding to the first Fabry-Perot resonance of a

water cavity with thickness dW (i.e., at cW/2dW = 462 kHz). The

modes in MB1 are strongly localized in the water cavities but

those in MB2 are mixed and their spatial localization is not

sharply defined.

To observe the resonant Zener-tunneling (ZT) effect, we break

the translational symmetry by introducing a thickness gradient in

the thicknesses, dW, of the water cavities. Such a gradient plays the

role of a driven force producing effects similar to those of the

electric field in an electronic superlattice [34]. The magnitude of

the gradient is given by the dimensionless parameter

Δ 1/dW( ) � 1/dWℓ
( ) − 1/dWℓ−1( )[ ]/ 1/dW1( ), (3)

where dW1 � 0.08 cm is the thickness of the first (ℓ = 1) cavity.

Figure 2C displays the amplitude log|u(z)|2 and Figure 2D

represents the total transmission through a structure with the

critical gradient Δ(1/dW)c � 10.04%, for which the acoustic ZT

effect appears. The interaction between the upper resonant

mode in MB1, here denominated as u1, and the bottom

mode in MB2, here denominated as u2, is the strongest for

this gradient, hence making maximum the total transmission

through the structure.

Figure 3 shows an in-depth analysis of the result described

above, presenting the transmission coefficient as a function of

frequency for several values of the gradient. It is observed that the

peaks in the transmission profiles are strongly reduced when the

gradient is slightly smaller or larger than the critical. In addition,

the transmission profile at the critical gradient (black line) clearly

shows a double peak, indicating the anticrossing effect between

the two interacting modes u1 and u2 with frequencies below and

above, respectively, the central frequency ω0.

FIGURE 1
(A) Scheme of the multilayered structures considered in this study, consisting of eight cavities Wm separated by nine sonic-crystal (SC)
metamaterial slabs Am embedded in a inviscid fluid with acoustic parameters ρW and cW. (B) The resulting structure after the homogenization of the
SC slabs, which are replaced by homogeneous fluid-like layers with effective parameters ρAand cA. Structures have been studied in which layers Am

have equal thicknesses, dA, while the cavities WWi have different thicknesses, dWi.
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Figures 4A,B display, respectively, the frequency and

Shannon entropy of the levels involved in the avoided

crossing. It is observed in Figure 4A that the frequency of u2
(red dashed line) is always higher than that of u1 (blue

continuous line), although both frequencies approach each

other near the critical thickness gradient. With regards to the

entropy of the modes, Figure 4B shows different behaviors,

strongly correlated with the gradient values. For small

gradients (i.e., for values much lower than the critical) the

entropy Su2 (red-dashed line) is smaller than Su1 (blue

continuous line). This behavior indicates that the sound in the

mode with frequency u2 is more localized than in u1. The entropy

difference ΔS = Su2 − Su1 is, thus, negative for small gradients. For

increasing values of the gradient, both modes shows a similar

trend, increasing their entropy up to the region between 10.02%

and 10.06%, where the modes strongly mix up and the slope of

their entropy abruptly changes from positive to negative at the

critical gradient value (10.04%). At this critical gradient, both

modes reach their maximum entropy and the entropy difference

is not exactly zero but very small; i.e., ΔS(10.04%) = 0.022 (arb.

units). Given the numerical uncertainty of the calculations, we

consider that the critical gradient represents the value at which

ΔS reverses sign. Finally, for gradients above the critical value,

namely, for Δ(1/dW)>Δ(1/dW)c, the entropy of the levels

monotonically decreases, approaching the values

corresponding to the case of non-interacting levels. In this

region, the entropy difference is always positive; i.e., Su2 > Su1,

indicating that sound in mode u1 is more localized than in mode

u2. From an information theory perspective, it can be concluded

that the information contained in the two interacting levels, u1
and u2, has been exchanged when passing through the avoided

crossing region. In other words, the spreading of the

corresponding modes has been exchanged, thus the

information, when the driven force Δ(1/dW) has been

adiabatically tuned from 9.95% to 10.06%.

To further support this interpretation, we have calculated the

lifetime of the acoustic modes involved in the resonant effect. The

complex frequency of a mode, ]i = Re(]i) + iIm(]i), is obtained by
following the procedure in [46]. The real part represents the

frequencies already plotted in Figure 4A. The resonance lifetime,

τi, of a given eigenmode, ui, is associated to the imaginary part of

FIGURE 2
(A) Transfer-matrix calculation of the square displacement of
the sound field (log|u(z)|2) inside a perfect acoustic superlattice,
corresponding to the structure depicted in Figure 1B with dA =
0.08 cm and dW = 2dA. (B) The calculated transmission
coefficient, where MB1 and MB2 stand for minibands 1 and 2,
respectively. (C) log|u(z)|2 calculated for the multilayered
structure shown in Figure 1B, with dA = 0.08 cm and dWm take the
values defined by the critical gradient thickness (10.04%). (D) The
corresponding transmission coefficient, where ZT stands for Zener
tunneling effect.

FIGURE 3
Transmission spectra around the thickness gradient for which
the Zener-like resonant effect occurs (same acoustic multilayer as
in Figure 1). The transmission is plotted for several gradients (in %)
as a function of the reduced frequency, ω/ω0, with ω0 the
central frequency at each gradient.

Frontiers in Physics frontiersin.org04

Sánchez-Dehesa and Arias-Gonzalez 10.3389/fphy.2022.971171

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.971171


its frequency, being represented in Figure 4C in units of d/cb, with

d and cb the total thickness of the structure and the sound speed

in the background fluid, respectively. Below the critical thickness

gradient, the lifetime τ2 (red dashed line) of the acoustic mode u2
is longer, which implies a lower radiative damping—hence, a

reducedmode spreading and a stronger spatial localization—. Let

us point out that viscothermal dissipation effects are not taken

into account in our calculation since they are considered very

small in these type of acoustic structures. Around the critical

gradient, the lifetimes of both levels abruptly change their trends

and intersect each other. After the avoided crossing region, the

lifetime τ1 (blue continuous line) of mode u1 becomes longer

than τ2, which spreads spatially as discussed below.

Additional physical insight of the information exchange, as a

consequence of the localization dynamics taking place across the

critical gradient is shown in Figure 5. The amplitudes of both

acoustic modes are plotted for three different gradients, the

central panel corresponding to the critical gradient. It is

observed that the greater the Shannon entropy, the larger the

acoustic mode spreading. Moreover, at the critical gradient

(10.04%), the modes resulting from the interaction are the

bonding and antibonding combinations of the non-interacting

modes, which explain the similar spreading shown by both

wavefunctions (displacement fields) in Figure 5, middle panel.

Finally, for the sake of easy implementation, we have studied

the Zener-like effect experimentally characterized in a

superlattice made of Plexiglas and water cavities [34]. The

frequency, Shannon entropy and lifetime of the two involved

levels, u1 and u2, are shown in Figures 6A–C, respectively. The

calculations are performed using structures having the same set

of parameters than those employed in the measurements [34].

The frequencies, though smoother, follow similar trends as those

displayed theoretically in the previous figure. With regards to the

entropy, we observe once again that the critical gradient (this

time 9.93%) maximizes the entropy of both levels and minimizes

FIGURE 4
(A) Frequency, (B) Shannon entropy, and (C) lifetime of the
two interacting acoustic modes, u1 and u2, near the avoided
crossing region for the acoustic structure described in Figure 1A.
The blue continuous (red dashed) lines represent the
corresponding magnitudes associated to mode u1 (u2). The
lifetime, τ, is given in reduced units.

FIGURE 5
Amplitude (in arbitrary units) of the acoustic modes u1 (blue
continuous line) and u2 (red dashed line) calculated for three
values of the thickness gradient. The value 10.04% corresponds to
the critical gradient where the avoided crossing occurs. The
values of the Shannon entropy are extracted from Figure 4B. The
vertical gray bars are guides for eye providing the location of the
metamaterial layers (their height is physically meaningless).
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the entropy difference, which reverses sign near (slightly below)

the critical gradient. The corresponding lifetimes of the non-

crossing levels (bonding and antibonding) intersect at the critical

gradient, as shown in Figure 6C, where the maximum interaction

between levels is achieved.

4 Conclusion

We have introduced the Shannon entropy in acoustics as a

characterization tool revealing the spatial spreading of acoustic

eingenmodes. The Shannon entropy is a global concept in science

and is here proposed as an alternative to other indicators employed to

measuring the localization of eigenmodes. The Shannon entropy, as it

is introduced here, is more general feature than, for example, the

inverse participation ratio since it can be applied not only to

disordered systems. We show that it represents fairly well

localization effects taking place in phenomena associated with

physical fields, like the resonant Zener-like effect. The information

exchange between levels is a translation into acoustics of the crossing

previously pointed out by von Neumann and Wigner [47], who

studied interacting levels in quantum mechanics. The Shannon

entropy is therefore an appropriate magnitude to quantitatively

estimate information exchange among field eigenmodes. Let us

stress that Shannon entropy can be experimentally determined in

any acoustical system, where direct measurements of displacement

fields can be performed, as in the structures described in [48]. The

application of information theory in studying electromagnetic

confinement produced by photonic crystals is in order, since

localization still remains an open problem. Moreover, field

eigenmodes involves localization and strong enhancements, which

are useful to engineering metasurfaces, enhancing field emission,

controlling light at the nanoscale, sensing and spectroscopy at the

single-molecule level or non-linear and ultrafast optics.
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