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Entanglement, as a crucial feature of quantum systems, is essential for various

applications of quantum technologies. High-dimensional entanglement has the

potential to encode arbitrary large amount of information and enhance

robustness against eavesdropping and quantum cloning. The orbital angular

momentum (OAM) entanglement can achieve the high-dimensional

entanglement nearly for free stems due to its discrete and theoretically

infinite-dimensional Hilbert space. A stringent limitation, however, is that the

phase-matching condition limits the entanglement dimension because the

coincidence rate decreases significantly for high-order modes. Here we

demonstrate relatively flat high-dimensional OAM entanglement based on a

spontaneous parametric down conversion (SPDC) from an ultrathin nonlinear

lithium niobite crystal. The difference of coincidences between the different-

order OAM modes significantly decreases. To further enhance the nonlinear

process, this microscale SPDC source will provide a promising and integrated

method to generate optimal high-dimensional OAM entanglement.
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1 Introduction

Light with a helical phase exp (imϕ), which carries orbital angular momentum

(OAM), has attracted close attention in the last few decades and found numerous

photonic applications, such as high density data storage [1, 2], optical imaging [3–8],

holography [9, 10], astrophysics [11, 12], optical manipulation [13–15] and in the optical

interferometer for the detection of gravitational waves [16]. In addition, the OAM of light

serves, in a sense, as an “alphabet” that allows information to be encoded into the spatial

wavefunction of light. The key motivation is that the OAM has potentially an unlimited

number of states [17, 18]. In the classical domain, the OAM can increase the capacity of

optical communication links ranging from implementation in fibre [19, 20], over-city

links [21] and free-space [22], and can also operate in mm-wave [23]. Actually, each OAM

mode can be considered as an individual quantum degree of freedom [24, 25]. Quantum

mechanically, the OAM occurs in discrete values of mZ per photon, where m is in
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principle an unbounded integer. The OAM opens many

promising perspectives for quantum communication and

computation [26, 27]. Zeilinger’s group firstly realized the

OAM-entangled photon pair [28] and verified that the

maximum dimension of the OAM entanglement can reach

10,000 [29], which shows the great potential and novel

advantage in the high-dimensional quantum information such

as teleportation [30] and quantum communication [31–33]. A

spontaneous parametric down conversion (SPDC) process is the

most common workhorse for the generation of the OAM-

entangled photon pairs [34, 35]. Albeit convenient, this

process exhibits several drawbacks. For example, photon pairs

generated in this way have a non-uniform OAM distribution,

which constrains the increase of dimension [26]. The

entanglement property of the OAM states is determined by

the overlap between the transverse modes of the pump and

photon pairs because the transverse intensity profile of the OAM

mode depends on its topological chargem. The dimensionality of

the two-photon OAM states can be increased with the use of

perfect optical vortex (POV) in the pump because the POV is a

class of size-invariant modes [36, 37]. The versatile high-

dimensional quantum states are generated by using the

structured pump [38–40]. Recently, the entangled OAM

photon pairs are generated in the multiple SPDC processes by

the path identity [41].

In addition, the non-uniformity of OAM entanglement is

also restricted by the longitudinal phase mismatching. High-

order OAMmodes have the larg phase mismatch, which leads to

the low generation efficiency. This restriction can be improved by

utilizing the microscale flat-optics quantum source [42]. Here we

have achieved relatively flat high-dimensional OAM

entanglement in an ultrathin film of lithium niobite (LN) via

the SPDC, which is impossible in a single bulk source. Being free

from the phase matching constraints, the ultrathin source can be

fabricated of any materials with large second-order susceptibility.

Our method provides a new platform of high-dimensional OAM

entanglement on which to investigate fundamental quantum

effects but it also has practical applications.

2 Theory

In the paraxial approximation, photons carrying OAM can

be described by a Laguerre-Gaussian mode LGm
p . The radial

index p shows the number of radial zero crossings and the

azimuthal index m is the topological winding number,

corresponding to OAM carried by the mode, mZ per

photon. Figure 1A shows the intensity and phase

distributions of the LG modes with different OAM. A

typical SPDC process, which a Gaussian beam propagating

along the x direction pumps a nonlinear crystal with a length

of L, as shown in Figure 1B, produces a pair of highly

correlated, lower-frequency photons, commonly termed

signal and idler photons. The generated two-photon

quantum state by the SPDC is given by [43].

ψ
∣∣∣∣ 〉 � ∫∫dksdkiΦ ks, ki( )â†s ks( )â†i ki( ) 0| 〉, (1)

where |0〉 is the multimode vacuum state, while â†s(ks) and

â†i (ki) are creation operators for the signal and idler modes with

FIGURE 1
(A) The intensity and phase for OAM |m| = 1 and |m| = 5. High-dimensional OAM entanglement from the type-0 SPDC in a thick (B) and ultrathin
(C) nonlinear LN crystal orthogonal to the pump (D) and (E) is the simulated spiral spectrumof 11-dimensional OAMentanglement in the nonlinear LN
crystal with length of L = 0.6 mm and L = 6 μm respectively. The pump is a Gaussian modem = 0. The coincidences of the different OAM state are
normalized by the coincidence at OAM m = 0.
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the transversal wave vectors ks and ki, respectively. Φ(ks, ki)
represents the joint amplitude with the following structure

Φ ks, ki( )∝F ks, ki( )sinc ΔkL/2( ), (2)

where F(ks, ki) describes the mode function of the Gaussian

pump beam at the input face of the nonlinear crystal. Here we

consider only LG modes with p = 0, correspondingly we simplify

as LGm
p → LGm. One can decompose the quantum state |ψ〉 in

the base of the eigenstates of the OAM operator under the OAM

conservation as

ψ
∣∣∣∣ 〉 � ∑

m

Cm,−m m| 〉s −m| 〉i (3)

where |m〉s and | −m〉i correspond to the signal and idler modes,

respectively. The coincidence amplitudes Cm,−m is written as

Cm,−m � ∫∫ dksdkiΦ ks, ki( )LGm ks( )LG−m ki( ), (4)

where LGm(k) is the Laguerre-Gaussian mode function in the

spatial frequency domain at x = 0. The coincidence probability is

Pm,−m � |Cm,−m|2 , which gives the value of the joint detection

probability for finding one photon in the signal mode |m〉s and
one photon in the idler mode | −m〉i . It is clear that the

coincidence probability Pm,−m is mainly determined by the

phase matching. If the |0〉s|0〉i mode is assumed to be phase

matched, the phase mismatching of high-order OAMmodes can

be calculated analytically as [42].

ΔkL/2∝ − m| | πL
4λ

ω2
0

z2R
1 − 2zR

L
arctan

L

2zR
( ), (5)

where zR is the Rayleigh range of the mode |0〉s|0〉i and ω0 is the

beamwaist of the down-converted beam, respectively. For a type-

0 degenerate phase matching process, λs = λi = 2λp is satisfied. We

use a common value of λ = 2λp to replace λs and λi. According to

Eq. 5, the phase mismatching increase with the topological

charge m of the down-converted photon because the high-

order modes have a larger divergence angle, which will

decrease the longitudinal component of the wave vector, as

shown in Figure 1B. Comparing with the mode |1〉s| − 1〉i, the
mode |5〉s| − 5〉i suffers from the larger longitudinal phase

mismatching and has the lower coincidence probability. In

this case, the longer nonlinear crystal will further increase the

difference of the coincidence probabilities between the different

OAM modes, although it can improve the total efficiency of the

photon pairs generated by the SPDC. We calculate the spiral

spectrum of the high-dimensional OAM entanglement for the

LN crystal with L = 0.6 mm, as shown in Figure 1D. The

brightness of photons greatly decreases for the high-order

OAM modes, which often limits the usefulness of the high-

dimensional OAM entangled states in the quantum experiment.

When the length of the nonlinear crystal decreases to L = 6 μm, as

shown in Figure 1C, the difference of coincidence probabilities

between the different OAM modes is dramatically reduced and

the spiral spectrum becomes flat, as shown in Figure 1E. The

ultrathin nonlinear crystal not only allows very large longitudinal

mismatch, but also leads to a very broad spectrum of emitted

photons, both in frequency and in angle [42].

3 Experimental results

As the experimental setup shown in Figure 2A, we use an x-

cut ultrathin film of MgO-doped LN on a fused silica substrate as

a nonlinear medium. The LN ultrathin slice had a thickness of

~6 μm. The pump source is a femtosecond (fs) pulsed laser at a

central wavelength of 405 nm, with a pulse duration of ~140 fs

and a repetition rate of ~80 MHz to create photon pairs at a

degenerate wavelength of 810 nm by the SPDC. Benefiting from

the largest element d33 of the nonlinear susceptibility tensor, the

polarization of the pump fs laser is oriented along the z axis of the

FIGURE 2
(A) The setup used to detect SPDC from the x-cut ultrathin LN
film. The pump power is 250 mw. HWP: halfwave plate, BS: beam
splitter, L1 and L2: lens (B) The coincidence rate of the
fundamental mode (m = 0) versus the pump polarization
direction, for the emission polarized along z (blue squares, red fit)
and along y (green triangles). θ is the angle between the pump
polarization and the y axis. The coincidence time is 1s.
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ultrathin LN film. Under the condition of type-0 degenerate

collinear phase matching, down-conversion photon pairs have

the same polarization. The 10 nm narrow bandwidth interference

filters (centred at the wavelength of 810 nm) are used to improve

the spectral purity of the correlated photon pairs and to block the

remaining pump.

To confirm that the SPDC was mediated by the d33 element

of the nonlinear susceptibility tensor, with the pump, signal, and

idler photons all polarized along the z axis, we have measured the

polarization dependence of the coincidence count, as shown in

Figure 2B. The coincidence count depends on the angle θ

between the pump polarization and the y axis as sin2θ (blue

squares, red fitting curve) and reaches the maximum value only

when the signal and idler photons are polarized along the z axis.

In contrast, for the emission polarized along the y axis, almost no

real coincidences were observed (green circles). Then we use two

separate q-plates to transform the incoming field to a

fundamental Gaussian mode, which is the unique mode that

can be coupled into the single mode fibers, for measuring the

OAM of the photon pairs. In the collinear configuration, OAM is

conserved in the SPDC, hence we expect the OAMs of the signal

and idler photons to be anticorrelated, i.e., the coincidence count

is high only when ms = −mi. Figure 3 shows the measured

coincidence counts for different combinations of signal and

idler photon modes. For each combination the polarization-

dependent coincidence counts verifies that the correlated

photon pairs are generated from the ultrathin LN by the

SPDC. Figure 4 shows the spiral spectrum of the 11-

dimensional OAM entanglement and it becomes relatively flat

comparing with thick nonlinear crystal. The measured

coincidence of the high-order OAM state is lower comparing

with the theoretical simulation because the collection efficiency

decreases with the increment of the OAM sate. In addition, we

observe that the SPDC of ultrathin crystal has better robustness

for the position of the pump. When the crystal shift 1mm from

the focus of the pump, the decrease of the maximum coincidence

counts for difference mode of photon pairs is about 5%.

4 Conclusion

In conclusion, we have demonstrated the relatively flat high-

dimensional OAM entanglement based on the SPDC in the

ultrathin LN crystal which allows large longitudinal phase

mismatching and decreases the difference of coincidence rate

FIGURE 3
The coincidence rate versus the pump polarization direction
for different mode combinations of the signal and idler photons
from the SPDC. θ is the angle between the pump polarization and
the y axis. The coincidence time is 1s. The insets are the
intensity distributions for corresponded OAM.

FIGURE 4
The measured spiral spectrum of 11-dimensional OAM
entanglement from the SPDC in the ultrathin LN film. The
coincidence time is 1s.
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between the different OAM mode. This state might be required

for quantum experiment. Although we use the highest nonlinear

component available in LN, but the efficiency remained much

lower than for phase-matched SPDC in a macroscopic crystal.

The generation efficiency can be optimised by using the

nonlinear material with the giant second-harmonic generation

[45]. Recently, metasurfaces offer an ultracompact and versatile

platform for enhancing nonlinear optical processes by designing

Bound State in the Continuum (BIC) resonances, which support

a high confinement of the optical field within the nonlinear

material [46, 47]. Then SPDC efficiency can be dramatically

increased when the signal and idler photons are supported by

BIC resonances [48] to generate high-dimensional

hyperentanglement in the frequency and OAM regimes for

increasing the quantum information capacity.
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