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The transverse momentum distributions of deuterons and anti-deuterons in Au

+ Au collisions at
����

sNN
√

= 14.5, 62.4 and 200 GeV with different centralities are

studied within the framework of the UrQMD model combined with the

conventional phase-space coalescence model. A strong reversed correlation

between R0 (the maximal relative distances between hadrons) and P0 (the

maximal relative momentum between hadrons) can be seen. It is also time-

dependent. The number of particles generated are inconsistent with

experimental data for 40, −,60% and 60, −,80% centralities because

deuterons have plenty of time to react with other particles, this effect

becomes more obvious with the decrease of beam energy. Our results can

quantitatively describe the STAR data for 0, −,10%, 10, −,20% and 20, −,40%

centralities.
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1 Introduction

A great opportunity to explore the properties of strongly interacting substances at

extreme densities and temperatures was provided by heavy-ion collisions (HICs) at ultra-

relativistic energies [1–5]. More investigation is warranted about the generation

mechanism of the particles and fragments in the ultra-relativistic HICs, as it may

provide important information on the quantum chromodynamics (QCD) phase

transition from quark-gluon plasma (QGP) to hadron gas (HG) [6, 7]. In the past

2 decades, many experiments have been carried out at the Relativistic Heavy Ion Collider

(RHIC) near the critical energy for the transition from hadronic matter to QGP [8]. The

theoretical studies on the production of particles and anti-particles are been going on for

years, for example, the coalescence model, thermal model and transport models [9–21]. In

particular, the study of transport phenomena is very important for understanding many
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fundamental properties [22, 23]. The transverse momentum

spectrum of particles produced in high-energy collisions is of

great research value because it can provide us with key

information about the dynamic freezing state of the

interacting system [24]. In the dynamic freezing stage, the

effective temperature is not the actual temperature, which

describes the sum of the excitation degree of the interacting

system and the influence of the lateral flow [25].

The underlying mechanism for the generation of light (anti-)

nuclei in relativistic heavy ion collisions is still under

investigation. The traditional phase space polymerization

method can be widely applied to HICs in large beam energy

range [26]. It is of great significance to study deuteron generation

at RHIC energy using the traditional coalescence model. In

addition, there is a strong correlation between the particle’s

coordinates and momentum, and this correlation varies over

time. Therefore, the time evolution of the parameter set (R0, P0)

needs to be scanned within a reasonable range so that the

coalescence process produces the same yield [26]. From these

experiments, the effect of coalescent parameters on the (anti-)

deuteron and its transverse momentum distribution can be

observed. The inverse law correlation between R0 and P0
should be described in detail in the third section.

In this paper, the Ultra-relativistic Quantum Molecular

Dynamics (UrQMD) transport model is adopted to produce the

transverse momentum distributions of (anti-)deuterons in Au + Au

collisions at
����

sNN
√

= 14.5, 62.4 and 200 GeV, and comparisons were

made with experimental data from the STAR collaboration [27]. The

main purpose of this work is to study different reaction mechanisms

of Au + Au collisions at
����

sNN
√

= 14.5, 62.4 and 200 GeV, such as the

effect of coordinate space and momentum space correlation on

deuteron and anti-deuteron yields. In the calculation, hadrons

with relative distances less than R0 and relative momentum less

than P0 are considered to belong to a cluster.

FIGURE 1
Time evolution of R0-P0 contour plots of (anti-)deuteron from the central Au + Au collisions at

����

sNN
√

= 14.5 GeV. The blue areas represent the
range of experimental data from the STAR collaboration [27].

Frontiers in Physics frontiersin.org02

Yuan et al. 10.3389/fphy.2022.971407

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.971407


2 Ultra-relativistic quantum
molecular dynamics transport model
and the coalescence model

2.1 The UrQMD model

The UrQMD model is a microscopic multi-body transport

method that can be used to study proton-proton (pp), proton-

nucleus (pA) and nucleon-nucleus (AA) interactions in the energy

range from SIS to LHC. The transport model is based on covariant

propagation of color strings, constituent quarks, and double quarks

(as string ends) with meson and baryon degrees of freedom [28]. It

can combine different reaction mechanisms and give theoretical

simulation results of various experimental observations. In this

model, by introducing the formation time of hadrons produced

by string fragments, the degree of freedom of subhadrons is entered

[29–31]. They predominate in the early stages of heavy ion collisions

(HICs) with high SPS and RHIC energies.

The UrQMDmodel and quantum molecular dynamics (QMD)

model are based on the parallel principle: hadrons are represented by

Gaussian wave packets in phase space, and the phase space of

hadrons propagates according to Hamiltonian equations of

motion [32],

_ri
→� zH

zpi
→, _pi

→� −zH
z ri
→. (1)

Here, ri
→ and pi

→
are the coordinate and momentum of the hadron

i, respectively. The Hamiltonian H consists of the kinetic energy

T and the effective interaction potential energy U,

H � T + U. (2)

This microscopic transport approach simulates multiple

interactions of in-going and newly produced particles, the

excitation and fragmentation of color strings and the formation

and decay of hadronic resonances. For higher energies, the treatment

FIGURE 2
Time evolution of R0-P0 contour plots of (anti-)deuteron from the central Au + Au collisions at

����

sNN
√

= 62.4 GeV. The blue areas represent the
range of experimental data from the STAR collaboration [27].
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of subhadronic degrees of freedom is very important. In the current

model, these degrees of freedom enter by introducing the formation

time of hadrons produced by string fragments. The phase transition

to the quark-gluon state is not explicitly incorporated into the model

dynamics. However, a detailed analysis of the model in equilibrium

state gives an effective Hagedorn type equation of state [33].

In this paper, we mainly study the effect of the correlations

between coordinate and momentum spaces on the yields and the

transverse momentum distribution of deuteron and anti-

deuteron with the cascade mode in the RHIC energy region.

In the nextwork, we will focus on the influence of potential on

production of light particles in this energy region.

2.2 The coalescence model

The coalescence model describes the formation of hadronic

clusters in the kinetic freeze-out stage of a heavy-ion collision. A

pair of final (anti-) nucleons with similar momentum can merge

to form a deuteron or anti-deuteron with total momentum P

[34]. In the calculation, we use a conventional phase space

clustering model [35] to construct clusters, in which hadrons

with relative distances less than R0 and relative momentum less

than P0 are considered to belong to a cluster. As a rule of thumb,

the parameter set (R0, P0) can be selected in the range of (3-4 fm,

0.25–0.35 GeV/c) to describe the experimental data of HICs [26].

In this article, we will investigate the effects of different set of R0

and P0 on the yield of (anti-)deuteron over the evolutional time.

3 Time evolution and transverse
momentum distributions of the
production of (Anti-)deuterons

3.1 The time evolution of (anti-)deuterons

The time dependence of the production of (anti-)deuterons

in the mid-rapidity (|y| < 0.3) for 0, −,10% centrality should be

FIGURE 3
Time evolution of R0-P0 contour plots of (anti-)deuteron from the central Au + Au collisions at

����

sNN
√

= 200 GeV. The blue areas represent the
range of experimental data from the STAR collaboration [27].
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considered since they might be produced by different

mechanisms. The time evolution of the yield of (anti-)

deuterons at
����

sNN
√

= 14.5, 62.4 and 200 GeV are shown in

Figure 1, Figure 2 and Figure 3, respectively. The blue area

represents the range of experimental data. In the view ranges

of R0 and P0, it is clear that too many deuterons are produced

before 40 fm/c at
����

sNN
√

= 14.5 and at 62.4 GeV, which are

unstable and will subsequently fission. In the meantime, too

many anti-deuterons are produced before 50 fm/c. If we select

parameter sets of (R0, P0) (3.8 fm, 0.3 GeV/c), the data can be well

described. For
����

sNN
√

= 200 GeV, the parameter sets of (R0, P0)

(3.575 fm, 0.285 GeV/c) can be selected. These parameter sets of

(R0, P0) are commonly used by researchers and are appropriate

for this study [7, 26].

Figure 4 show the yields of (anti-)deuterons as the time

evolution in the 0, −,10% centrality Au + Au collisions at
����

sNN
√

= 14.5, 62.4 and 200 GeV at mid-rapidity (|y| < 0.3).

The red lines are the results calculated from the cascade mode

of UrQMD model. The shaded bands are the experimental

data. It can be found that the stopping times should be 50 fm/

c for deuterons and 60 fm/c for anti-deuterons for
����

sNN
√

=

14.5 and 62.4 GeV, and the corresponds stopping times for
����

sNN
√

= 200 GeV should be 30 fm/c for deuterons and 45 fm/c

for anti-deuterons. Therefore, these stopping times are

adopted in the following calculations. From Figure 4, one

can also find that the deuterons produced at the

lower energies need a longer time to be spatially

separated [36].

The scanning of R0 and P0 located in the colored regions of

Figure 1, Figure 2 and Figure 3 is useful because they are reliable

in the (anti-) deuteron data description of the mid-rapidity

region. It is clear that the (anti-)deuteron production rate of

RHIC can be well described by the cooperative method of

UrQMD + coalescence if the UrQMD stop times are properly

combined and the parameter set of (R0, P0) in the coalescence is

chosen.

FIGURE 4
The yields of (anti-)deuterons as the time evolution in Au + Au collisions at

����

sNN
√

= 14.5, 62.4 and 200 GeV at mid-rapidity (|y| < 0.3) for 0, − ,10%
centrality. The lines are the calculations under certain conditions (R0, P0). The shaded bands are the corresponding experimental data which taken
from the STAR Collaboration [27]. The dash lines are orientation lines.
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3.2 Transversemomentum distributions of
(anti-)deuterons

Figures 5–7 show the transverse momentum spectra for

deuterons at mid-rapidity (|y| < 0.3) in Au + Au collisions at
����

sNN
√

= 14.5, 62.4 and 200 GeV with 0, −,10%, 10, −,20%,

20, −,40%, 40, −,60% and 60, −,80% centralities. The signs +

lines are the results calculated from the cascade mode of the

UrQMDmodel, and the circles are the experimental data. It is

found that the calculated results of UrQMD model agree well

with the experimental data except for
����

sNN
√

= 14.5 GeV at the

40, −,60% and 60, −,80% centralities. At
����

sNN
√

= 14.5 GeV for

the 40, −,60% and 60, −,80% centralities, most of our

calculations are lower than the experimental data. We

know that the deuterons produced at large impact

parameter have plenty of time to react with other particles

[36], and some of observed deuterons come from the nuclear

fragments [27]. The impact of this effect will be further

studied.

Figures 8–10 show the transverse momentum spectra for

anti-deuterons at mid-rapidity (|y| < 0.3) in Au + Au collisions at
����

sNN
√

= 14.5, 62.4 and 200 GeV for 0, −,10%, 10, −,20%,

20, −,40%, 40, −,60% and 60, −,80% centralities. The signs +

lines are our calculated results using the UrQMD model with

cascade mode shown in the every panel. The circles are the

experimental data. It is found that the calculations of the UrQMD

model are in keeping with the experimental data well at
����

sNN
√

=

200 GeV. At
����

sNN
√

= 14.5 GeV, due to anti-deuterons are mainly

produced in fireball shells, and the antideuterons produced have

a low probability of interacting with other particles, the

transverse momentum spectra of anti-deuterons is more. Since

the relative suppression of anti-nucleons recedes with increasing

energy, anti-deuterons can form much closer to the fireball

center. Deuteron and antideuteron formation have the same

FIGURE 5
In the

����

sNN
√

= 14.5 GeV Au + Au collisions, 0, − ,10%, 10, − ,20%, 20, − ,40%, 40, − ,60% and 60, − ,80% centrality in t = 50fm/c in the deuteron
transverse momentum spectrum. Calculations are represented by signs + lines. Experimental data from the STAR collaboration [27] are represented
as circles. The parameter sets of (R0, P0) is (3.8 fm, 0.3 GeV/c).
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geometry at energies around
����

sNN
√

= 200 GeV [34]. Therefore,

the theoretical calculation results can describe the experimental

data well at
����

sNN
√

= 200 GeV.

4 Summary and outlook

In conclusion, we give the time evolution of the (anti-)

deuteron in 0, −,10% center Au + Au collisions at
����

sNN
√

=

14.5, 62.4 and 200 GeV with the UrQMD model combined with

the coalescence. In the coalescence process, the values of the (R0,

P0) parameter set are surveyed in the ranges (3-4 fm,

0.25–0.35 GeV/c) to describe the experimental data. It is

found that there exits a strong reversed correlation between

R0 and P0 and it is time-dependent. For deuterons, the

accepted (R0, P0) band in the time period 20–50 fm/c, while

for anti-deuterons, the time evolution of the need is greater than

50 fm/c for
����

sNN
√

= 14.5 GeV, 60 fm/c for
����

sNN
√

= 62.4 GeV and

35 fm/c for
����

sNN
√

= 200 GeV. Otherwise, smaller R0 and P0 values

should be selected. In addition, we also have presented the transverse

momentum distributions of (anti-)deuterons for 0, −,10%,

10, −,20%, 20, −,40%, 40, −,60% and 60, −,80% centralities

collisions. The results show that the UrQMD + coalescence

method can describe the variation experimental data of STAR

Collaboration well at
����

sNN
√

= 14.5, 62.4 and 200 GeV. The

transverse momentum spectra of (anti-)deuterons at
����

sNN
√

=

14.5 GeV are inconsistent with experimental data for 40, −,60%

and 60, −,80% centralities, since deuterons have plenty of time to

react with other particles, and this phenomenon will become more

obvious with the collision energy decreasing. At low collision

energies, the emission source size of anti-deuteron is larger than

that of deuteron. But the influence mechanism of the spatial

separation have yet to be studied in depth, and related work is in

progress.

FIGURE 6
In the

����

sNN
√

= 62.4 GeV Au + Au collisions, 0, − ,10%, 10, − ,20%, 20, − ,40%, 40, − ,60% and 60, − ,80% centrality in t = 50fm/c in the deuteron
transverse momentum spectrum. Calculations are represented by signs + lines. Experimental data from the STAR collaboration [27] are represented
as circles. The parameter sets of (R0, P0) is (3.8 fm, 0.3 GeV/c).
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FIGURE 7
In the

����

sNN
√

= 200 GeV Au + Au collisions, 0, − ,10%, 10, − ,20%, 20, − ,40%, 40, − ,60% and 60, − ,80% centrality in t = 30fm/c in the deuteron
transverse momentum spectrum. Calculations are represented by signs + lines. Experimental data from the STAR collaboration [27] are represented
as circles. The parameter sets of (R0, P0) is (3.575 fm, 0.285 GeV/c).

FIGURE 8
In the

����

sNN
√

= 14.5 GeV Au + Au collisions, 0, − ,10%, 10, − ,20%, 20, − ,40%, 40, − ,60% and 60, − ,80% centrality in t = 60fm/c in the anti-
deuteron transverse momentum spectrum. Calculations are represented by signs + lines. Experimental data from the STAR collaboration [27] are
represented as circles. The parameter sets of (R0, P0) is (3.8 fm, 0.3 GeV/c).
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FIGURE 9
In the

����

sNN
√

= 62.4 GeV Au + Au collisions, 0, − ,10%, 10, − ,20%, 20, − ,40%, 40, − ,60% and 60, − ,80% centrality in t = 60fm/c in the anti-
deuteron transverse momentum spectrum. Calculations are represented by signs + lines. Experimental data from the STAR collaboration [27] are
represented as circles. The parameter sets of (R0, P0) is (3.8 fm, 0.3 GeV/c).

FIGURE 10
In the

����

sNN
√

=200 GeVAu +Au collisions, 0, − ,10%, 10, − ,20%, 20, − ,40%, 40, − ,60% and 60, − ,80% centrality in t=45fm/c in the anti-deuteron
transverse momentum spectrum. Calculations are represented by signs + lines. Experimental data from the STAR collaboration [27] are represented
as circles. The parameter sets of (R0, P0) is (3.575 fm, 0.285 GeV/c).
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