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To overcome the power jitters in satellite-to-ground communications caused

by atmospheric turbulence, a type of DPSK free-space communication system,

assisted by a self-designed real-time phase lock controller, has been

established. The system can effectively compensate for power swings in

communication links and hence achieve high sensitivity. The wavelength

division multiplexing technique is applied to a four-channel DPSK system to

provide greater link capacity. With the data rate of a single channel as 2.5 Gbps

and unencoded BER as 1 × 10–3, reception sensitivity has been obtained

at −53.58 dBm (13.69 photons/bit), −53.59 dBm (13.66 photons/

bit), −53.61 dBm (13.59 photons/bit), and −53.63 dBm (13.53 photons/bit) for

each independent channel, respectively. The gap between our sensitivity result

and the theoretical limit has narrowed to about −3.5 dB. Simultaneously, the

DPSK receiver, with our self-designed phase lock controller, has stabilized

reception of optical power fluctuations that range from 0 to 40 dB.

Additionally, the impact of a four-wave mixing effect on multi-channel

system performance has been investigated in detail. Our experimental

results present a novel solution for the superior performance of free-space

communication links.
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Introduction

Because of its high-bandwidth, high-speed, and high-security features [1–5], free-

space optical communication (FSOC) offers a feasible and valid solution for bottlenecks in

microwave communication and for realizing massive real-time transmission of data.

Concurrently, and because of the inherent benefits of its small size, lightweight, and low
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power consumption—capable of keeping up with the

communication demands of booming space activities—the

FSOC terminal can be considered an ideal satellite payload [6,

7]. Thus far, the data rate of satellite laser communication links

has been found to approach Gbps magnitude [8, 9]. However,

through wavelength division multiplexing (WDM) technology,

this rate is predicted to reach magnitudes of dozens, even

hundreds, of Gbps [10, 11].

Under the diverse modulation method, the proven

techniques of FSOC are mainly divided into two main

categories: non-coherent and coherent communication

systems. Intensity modulation and direct detection (IM-DD)

are utilized in non-coherent systems, which have the

advantages of simplicity of structure and high reliability

(although with undesirable levels of reception sensitivity) [12].

By contrast, coherent communication systems, which combine

phase modulation with coherent detection, deploy the coherent

superposition of local-oscillator (LO) and signal optical fields,

supporting high sensitivity, high modulation rates, and strong

anti-interference capability [13, 14]. Coherent communication

modes mainly consist of binary phase shift keying (BPSK) and

differential phase shift keying (DPSK). Since the DPSK format

has less strict requirements for laser source linewidth, many

commercial or strategic demonstrations have a preference for

such systems, including the Laser Communications Relay

Demonstration (LCRD), Integrated LCRD Low-Earth Orbit

User Modem and Amplifier Terminal (ILLUMA-T), and the

Japanese Data Relay System (JDRS) [15–17]. Due to the

turbulence of the atmosphere, satellite-to-ground laser

communication links suffer from random optical power

fluctuations of the order of milliseconds (ms), which lead to

inferior demodulation of the DPSK signal and an increase in the

system bit-error rate (BER). To weaken the negative impact of

these random fluctuations, several methods have been explored

to reduce the penalty associated with other photoelectric devices

[18]. Clearly, the optimal solution is to fundamentally smooth

out or level of this kind of power jitter.

To this end, a real-time phase lock controller, based on a

large-scale power jitter compensation method, has been designed

to effectively compensate for optical power swings ranging from

0 to 40 dB. Applying this controller and theWDM technique, the

resulting four-channel DPSK communication system has

competitive receiving sensitivity that approaches the

theoretical limit. Meanwhile, the impact of the four-wave

mixing effect of high transmitted optical power on multi-

channel system performance is elaborated in detail. The

phase-lock controller can be considered an alternative solution

for the power fluctuation problem in FSO communication links.

At the same time, the WDM technique can be effectively

combined with our self-designed phase-lock controller, which

means the controller has potential in the application of

multiplexed high-speed laser communication systems. Our

demonstration indicates that adding a phase lock controller to

the DPSK system leads to an improvement in receiving

sensitivity, which in turn lays a vital foundation for

optimizing the performance of the receiving terminal while

mitigating the effects of optical power jitter.

Principle and experiments

Principle large-scale power jitter
compensation

In the high-speed DPSK transceiver system, a pseudo-

random bit sequence (PRBS) from a pattern generator is

differentially pre-encoded and then transferred to a

Mach–Zehnder modulator (MZM) to generate the DPSK

optical signal. The transmission function can be presented as

follows: [19]

Eout(t) � Ein(t) cos{ π

2Vπ
[Vin(t) − Vbias]} exp{ − j

πVbias

2Vπ
},
(1)

where Eout(t) and Ein(t) = eiωct represent output and input optical

fields, respectively; ωc = 2πf0 is the angular frequency of the

optical carrier, with f0 being the frequency; Vπ is the half-wave

voltage of MZM; and Vin(t) and Vbias are the driving and bias

voltage of MZM, respectively. When Vbias = Vπ, Vin(t) = V (t)·
a(t), with a(t) = ±1 [a(t) represents the 1 or 0 bit in the pre-coded

PRBS], the DPSK optical signal can be generated with the

transmission function as follows: [20]

Eout(t) � −jEin(t) sin[π2 a(t)] � −ja(t)eiωct, (2)

After modulation, the optical signal was transferred to a

high-power Er3+-doped fiber amplifier (EDFA) before being

routed to optical antenna for further transmission over the

free-space channel. Subsequently, the DPSK signal can be

captured by the receiving terminal and defined mathematically

by the following transmission function:

ERX(t) � A(t)Eout(t), (3)

where ERX(t) represents the optical field of the received signal and

A(t) is the random fluctuation function of optical power.

After a certain free-space distance of transmission, the optical

signal is detected by the collimator at the receiving terminal. As

illustrated in Figure 1A, an optical coupler (OC1) is introduced

before the normal demodulation process. One of the signal

branches enters the delay line interferometer (DLI) (path 1,

Figure 1A), and the other branch is transformed into the

electrical signal via a photodetector (PD), before being

imported into the phase-lock control system (path 2,

Figure 1A). The path 1 optical signal is converted into a

detectable electrical signal by a balanced photo-detector (BPD)

and is processed by the integrated transimpedance amplifier
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(TIA). Next, one channel of the output electrical signal is

inputted into the envelope detection unit for peak-to-peak

detection and is then transferred into the phase lock

controller. Subsequently, two independent electrical signals

from path 1 and path 2 undergo time synchronization, power

jitter removal, as well as correlation detection with a scrambler

signal, in order to calculate and update the bias voltage of DLI in

real time. The optimized bias voltage guarantees the working

position of DLI, and thus ensures the superior DPSK receiving

performance.

The output optical field after OC 2 can be resolved by the

following matrix:

(E1

E2
) � (ERX(t)

ERX(t − T)) � (−jA(t)a(t)ejωct

−jA(t − T)a(t − T)ejωc(t−T)eiΔϕ
),
(4)

where T is the reciprocal of the system rate and Δϕ is the absolute

phase-delay. Since the variation frequency of spatial optical

power swings is much less than the signal rate, the

approximate condition A(t)≈A(t-T) can be adopted to simplify

the calculation. Meanwhile, the transfer matrix M of the OC

3 can be expressed as

M � (
�
ρ

√
j

�
ρ

√
j

�
ρ

√ �
ρ

√ ), (5)

where ρ is the splitting ratio of OC 3 (Figure 1A). Therefore, the

matrix of the optical field at the output port of OC 3 can be

conducted as

(E3

E4
) � M(E1

E2
)

� (−jA(t) �
ρ

√
ejωct[a(t − T)e−jωcT + jejΔϕa(t)]

−jA(t) �
ρ

√
ejωct[ja(t − T)e−jωcT + ejΔϕa(t)] ). (6)

The optical signal expressed in Eq. 6 will be detected by a

BPD and conditioned by a TIA. Assuming ρ = 0.5, the output

current from BPD (I1 and I2) is supposed to be defined by the

corresponding input optical field of BPD (E3 and E4) as follows:

{ I1 ∝P1 � |E3|2 � A2(t)[1 − a(t − T)a(t) sin(ωcT + Δϕ)]
I2 ∝P2 � |E4|2 � A2(t)[1 + a(t − T)a(t) sin(ωcT + Δϕ)] .

(7)
It can be clearly seen that the value of the output current from

BPD is proportional to the input optical power. By means of a

differential operation, the output voltage Vsig of BPD can be

calculated by [21]

Vsig � (I1 − I2)R∝ 2A2(t)[a(t − T)a(t) sin(ωcT + Δϕ)], (8)

where R is the transimpedance. Simultaneously, the average

output optical power of the other phase-lock branch (�P2) can

be expressed as

�P2 � r(P1 + P2) � 2rA2(t), (9)

where r is the splitting ratio and P1 and P2 are the optical power

for paths 1 and 2, respectively. Based on Eq. 9, �P2 is proportional

to the square of the jitter amplitude A(t). Comparing �P2 and �Venv

with the normalization method, the scaled factor k can be

defined as

k � �Venv

�P2
≈
2A2(t) sin(ωcT + Δϕ)

2rA2(t) � sin(ωcT + Δϕ)
2r

, (10)

where �Venv is the peak–peak valid value of Vsig. Since r and ωcT are

constant, k is independent of the power jitter, and is only related to

the Δϕ of DLI. Thus, k can be expediently adjusted to the maximum

value to guarantee the best performance of the output signal-to-noise

ratio by controlling the DLI phase difference.

According to the actual operation of correlation detection,

determining the value and the direction of the compensation is a

matter of great necessity. To solve this problem, it is considered

preferable to introduce to the DLI a perturbation signal with

quite a low frequency. Getting through the BPD and envelope

FIGURE 1
(A) The block diagram of the high-speed DPSK receiver system. (B,C) The relationship between SNR and the harmonic component of the
perturbation signal with corresponding bias voltage.
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detection, the extracted perturbation signal carries out the

correlation detection with the initial perturbation signal at the

phase lock controller (Figure 1A).

Generally, the phase difference of DLI Δϕ can be expressed

as [22]

Δϕ � π[Vdc + Vdither]
VDLI

, (11)

where Vdc is the direct current (DC) bias voltage applied on the

DLI; VDLI, as the constant, is the required voltage for the DLI to

realize phase changing by π. The frequency of perturbation signal
Vdither = v0cos(ω0t) is 1 kHz and has no impact on the original

signal. When φ = ωcT + πVdc/VDLI and k′ = 2rk are fixed, the

updated scale factor k′ of the feedback loop in the phase lock

controller can be easily conducted as

FIGURE 2
The architecture of the four-channel DPSK coherent communication system. Inset: the spectrum of the four-channel multiplexed signal.

FIGURE 3
(A) BER for four channels of 2.5 Gbps DPSK signal. (B–E) Eye diagrams of four independent channels after demodulation.
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k′ � sin(φ + πVdither

VDLI
) � sinφ cos

πVdither

VDLI
+ cosφ sin

πVdither

VDLI
.

(12)
Expanding Eq. 12 by the Taylor series and keeping three

terms, k’ can be illustrated as

k′ � cosφ + v0 cos(ω0t) sinφ − 1
2
v20cos

2(ω0t) cosφ

− 1
6
v30cos

3(ω0t) sinφ, (13)
And by further conducting, it can be expressed as follows:

k′ � (1 − 1
4
v20) cosφ + (v0 − 1

8
v30) cos(ω0t) sinφ − 1

4
v20 cos(2ω0t) cosφ

− 1
24

v30cos
3(ω0t) sinφ.

(14)

Based on Eq. 14, the maximum value of scale factor k’ can be

approached by monitoring the value of the harmonic component of

the perturbation signal. For instance, the first harmonic component

is k1′ = (v0 − v0
3/8)cos(ω0t)sin φ, and the second harmonic

component is k2′ = −v0
2cos(2ω0t)cos φ/4. Figures 1B,C illustrate

the performance of the scale factor k’ and the harmonic components

of the perturbation signal under the same working bias voltage.

When φ = ωcT+πVdc/VDLI = nπ, n = ±1, ±2, ±3, . . ., the first and

second harmonic components correspond to the minimum and the

maximum values, respectively. Thus, a superior signal-to-noise ratio

(SNR) has been obtained.With our self-designed phase lock system,

it is convenient to maintain the highest SNR of the output signal by

continuously calculating and updating working voltages in real time,

and apparently realizing the optimal coherent reception of theDPSK

optical signal.

2.2 Experiment setup

In view of the correlation detection compensation method,

the four-channel DPSK coherent communication system in

this effort is presented in Figure 2. Four distributed-feedback

TABLE 1 Reported BER results for different DPSK links.

Mode/Link type Rate (Gbps) Wavelength Channel(s) BER Receive power
(dBm)

Reference

RZ-DPSK 10 ~1,550 nm 1 10–3 ~ −43 [24]

Free space

DPSK 10 ~1,550 nm 4 10–3 ~ −41 [25]

Fiber

RZ-DPSK 10 ~1,550 nm 1 10–4 ~ −17 [26]

Fiber

NRZ-DPSK 10 ~1,550 nm 1 10–3 ~ −23 [27]

Fiber

NRZ-DPSK 10 ~1,550 nm 4 10–3 ~ −53/per channel This work

Free-space

FIGURE 4
(A)Applied voltage on DLI for controlling the scale factor k′. (B–D) Eye diagrams for corresponding working point ①, part ②, and part ③.
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(DFB) continuous-wave (CW) lasers (RIO, RIO0075-3-ITU-

1) generated four corresponding WDM pulse signals with

100 GHz channel spacing, 10 kHz linewidth, and the central

wavelengths of λ1 = 1,550.52 nm, λ2 = 1,551.32 nm, λ3 =

1,552.12 nm, and λ4 = 1,552.93 nm, respectively. Each

signal was independently modulated by a MZM (iXblue,

MXAN-LN-10, Vπ = 5.5 V), loaded with non-return-to-zero

(NRZ) PRBS of length 27–1 from separate data sources. The

inset of Figure 2 displays the spectrum of the four laser

sources. The multiplexed signal is subsequently amplified

by a high-power EDFA (KEOPSYS, CEFA-C-PB-HP) to

prepare for coupling with the FSOC terminal, aimed at

long-haul transmission over the free-space channel. In this

effort, an electrical-control variable optical attenuator (VOA)

is utilized to simulate the power jitter caused by atmospheric

turbulence, and the spatial optical transmission distance

is 1 m.

The faded optical signal—resulting from the power jitter

caused by atmospheric turbulence—is supposed to be

captured via the optical antenna of the receiving terminal

and coupled to the follow-up fiber. The received optical signal

is split into two separate branches via a 50:50 splitter. One of

the optical paths is applied to monitor the light power in real

time, while the other is pre-amplified and routed into four

cascaded fiber-Bragg gratings (FBGs) to faultlessly denoise

with the purpose of extracting four separate channels of the

optical signal. Each filtered optical signal is imported into the

corresponding DLI to proceed with the self-differential

demodulation of our self-designed phase-lock controller,

which compensates for the demodulation-efficiency drops

from optical power swings. Ultimately, each individual

signal is converted into a baseband electrical signal by its

corresponding BPD (Discovery Semiconductors DSC-R422)

for further measurement and analysis.

Results and discussion

Receiving sensitivity

Receiving sensitivity is an essential indicator when assessing

the performance of the free-space optical receiver. Figure 3A

FIGURE 5
(A)The amplified spectrum of four channels. (B) The correlation between optical power and the system BER.
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depicts the correlation between the communication BER and the

received optical power for each single channel loaded with

2.5 Gbps PRBS. As the unencoded BER is 1 × 10–3, which

allows forward-error correction codes to further reduce the

BER to the range of 10–9, the receiving sensitivity of the four

independent channels is measured as −53.58 dBm

(13.69 photons/bit, 1,550.52 nm), −53.59 dBm (13.66 photons/

bit, 1,551.32 nm), −53.61 dBm (13.59 photons/bit,

1,552.12 nm), and −53.63 dBm (13.53 photons/bit,

1,552.93 nm), respectively. It is impressive that there is only

about −3.5 dBm loss compared with the theoretical limit,

as −57.01 dBm (BER = exp(−ηNp/2)/2, η is also set to 1, so

that the sensitivity corresponds to an ideal photodetector; Np is

the number of photons) [23]. In our FSOC system, the penalty is

mainly introduced by an optical pre-amplifier with a 4.5 dB noise

coefficient, which is 1.5 dB larger than the theoretical limit of

3 dB. Additionally, about 1.5 dB loss caused by the out-of-band

noise of the optical filter, and 0.5 dB loss from the phase lock

controller are also taken into account. The eye diagrams for the

four recovered channels of electrical signal are displayed in

Figures 3B–E. Table 1 lists the reported BER performance of

different DPSK communication systems. Compared with these

results, the results of our experiment are objectively competitive.

Optical power jitter

An electrical-control VOA was applied to simulate the

optical power jitter with a frequency of 100 Hz and its scale

ranging from 0 to 40 dB. The applied voltage of the self-

designed phase lock controller is illustrated in Figure 4A.

Point ① denotes an initial voltage applied on DLI when the

phase lock unit is switched on and implies a lower

demodulated SNR (Figure 4B). After that, the phase lock

controller commences calculating the scale factor k′ of the
initial voltage within part ②, keeping the scale factor at a

maximum value by means of real-time voltage adjustment

with progressive SNR (Figure 4C). Part ③ signifies that the

scale factor k′ is real-time locked at a maximum value (with

the maximum SNR) by the phase lock system (Figure 4D).

On the strength of the above experiment and analysis, the

optical power swings can be effectively compensated for using

our self-designed phase lock system, which can productively

optimize the coherent demodulation procedure.

Analysis of the FWMeffect and transmitted
optical power

Although high optical power is required for free-space

long-haul transmission, the nonlinear optical (NLO) effects

within the fiber receive a further boost from the increase in the

optical power of the WDM system, especially the four-wave

mixing (FWM) effect that occurs in the amplifying procedure

within the transmitter. The optical amplification process has

been utilized to investigate the probable influence brought

about by FWM. Figure 5A exhibits the spectrum of four

amplified laser sources, with the amplified power as 1, 2, 3,

and 4 W, respectively. It is determined that the FWM effect

occurs through optical amplification and generates multiple

idle signals. With the increase in optical power, the FWM

phenomenon is harder to ignore. The difference value

between the signal light and idle 1 is 38.77, 34.91, 31.59,

and 29.05 dB, corresponding to amplified power as 1, 2, 3,

and 4 W. With the increase in the optical power, the BER is

slightly increased (Figure 5B). The optical power of λ1 =

1,550.52 nm is ~0.4 dB higher than that of the other

wavelengths. After optical amplification and

transmittance, the corresponding optical power at the

receiving terminal is also ~0.4 dB higher than that of

other wavelengths. Thus, the BER of 1,550.52 nm is better

than the other three channels. Nonetheless, the BER remains

at the same order of magnitude, which implies that the

optical-power influence on the BER need not be over-

considered.

Conclusion

In conclusion, a novel phase lock controller, based on the

large-scale power jitter compensation method, has been

designed to compensate for power fluctuations ranging

from 0 to 40 dB. In applying the self-designed phase lock

control unit, a high-sensitivity DPSK-based multi-channel

communication system was established, which realized

superior receiving performance. With the data rate of a

single channel as 2.5 Gbps and unencoded BER as 1 × 10–3,

receiving sensitivity was obtained as −53.58 dBm

(13.69 photons/bit), −53.59 dBm (13.66 photons/

bit), −53.61 dBm (13.59 photons/bit), and −53.63 dBm

(13.53 photons/bit) for each independent channel,

respectively. The gap between the results of our experiment

and the theoretical limit narrowed to about −3.5 dB. In

addition, multi-channel communication system

performance degradation caused by the FWM effect was

confirmed to be negligible, which endows communication

systems with the link capacity expansion potential of

hundreds of Gbps in the future. As indicated by the

experimentation, the self-designed phase lock controller has

the stable performance and measurement precision to meet

forthcoming requirements and hence has potential

application for satellite-to-ground laser links.
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