
Using meta-reasoning for
incremental repairs in
multi-object robot manipulation
tasks

Priyam Parashar1*†, Ashok K. Goel2 and Henrik I. Christensen1

1Contextual Robotics Institute, University of California, San Diego, San Diego, CA, United States,
2Georgia Institute of Technology, Atlanta, GA, United States

Robots tasked with object assembly by manipulation of parts require not only a

high-level plan for order of placement of parts but also detailed low-level

information on how to place and pick the part based on its state. This is a

complex multi-level problem prone to failures at various levels. This paper

employs meta reasoning architecture along with robotics principles and

proposes dual encoding of state expectations during the progression of task

to ground nominal scenarios. We present our results on table-top scenario

using perceptual expectations based in the concept of occupancy grids and key

point representations. Our results in a constrainedmanipulation setting suggest

using low-level information or high-level expectations alone the system

performs worse than if the architecture uses them both. We then outline a

complete architecture and system which tackles this problem for repairing

more generic assembly plans with objects moving in spaces with 6 degrees of

freedom.

KEYWORDS

cognitive artificial intelligence, cognitive robot architecture, robot system
architecture, knowledge-based (KB), task planning, task and motion planning,
meta-reasoning

1 Introduction

Industrial robots, i.e., robots producing consumer goods at industry-scale, have

remained the fastest growing market in recent times [1]. This reliability and demand

are attributed tomodel-based programming paradigms [2–7] which enable program-and-

replay for manipulation tasks. Model-based programming assumes access to completely

modeled objects, pre-existing sets of robot-motion plans, and a structured environment

that does not change over-time. The requirements of the next Frontier in small-scale

robotics, however, cater to a scenario where the end-user wants to program the robot on

one instance of the task and expects generalization over different instantiations of the

same task or tasks that are similar in terms of objects and actions [8–10]. This problem

context brings several realistic, but presently unattainable, robotics challenges that are

summarized by the overarching question of “how to transfer known high-level plans for a

given task to a similar but different environment represented as low-level observations”?

OPEN ACCESS

EDITED BY

William Frere Lawless,
Paine College, United States

REVIEWED BY

Jiuchuan Jiang,
Nanjing University of Finance and
Economics, China
Michael Mylrea,
University of Miami, United States

*CORRESPONDENCE

Priyam Parashar,
priyam8parashar@gmail.com

†PRESENT ADDRESS

Priyam Parashar,
Meta AI, Pittsburgh, PA, United States

SPECIALTY SECTION

This article was submitted to
Interdisciplinary Physics,
a section of the journal
Frontiers in Physics

RECEIVED 22 June 2022
ACCEPTED 07 October 2022
PUBLISHED 08 December 2022

CITATION

Parashar P, Goel AK and Christensen HI
(2022), Using meta-reasoning for
incremental repairs in multi-object
robot manipulation tasks.
Front. Phys. 10:975247.
doi: 10.3389/fphy.2022.975247

COPYRIGHT

© 2022 Parashar, Goel and Christensen.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 08 December 2022
DOI 10.3389/fphy.2022.975247

https://www.frontiersin.org/articles/10.3389/fphy.2022.975247/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.975247/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.975247/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.975247/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.975247&domain=pdf&date_stamp=2022-12-08
mailto:priyam8parashar@gmail.com
https://doi.org/10.3389/fphy.2022.975247
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.975247

We focus on the class of multi-object manipulation tasks

where a task can only be achieved by correct handling of multiple

objects that leverages their affordances. Examples include getting

soup out by dipping the ladle with its concave side facing up and

attaching a screw to a washer by aligning the screw shaft and with

the washer hole. Given such objects affordances (concavity,

liquidity; shaft-feature, hole-feature) and rules governing their

interactions (contains; inserts), prior work on these tasks

reasoning writes out high-level formulae or grammar which

should be followed in achievement of the task. However, as

pointed out in [11, 12] these formulae do not elaborate “how” the

robot should move to accomplish satisfaction of the goal state

from any given initial state. Motions depend on the value of the

next state but also on low-level percepts in the current state like

vision and joint readings. When solved analytically this is a

computationally hard process. Thus, we have witnessed a shift

towards approximate solutions that leverage data and structured

principles [13]. We propose a complementary incremental

approach where we can expand the scope of the application

of a plan for a task based on trial-and-error. We address the

specific problem in which, given a motion planner, a high-level

plan for an assembly task, and the plan’s successful execution on

a specific grounding (i.e., object poses in 3-dimensional space),

how might the robot transfer the planner and the plan to a new

grounding?

Data driven learning has demonstrably worked very well for

applications where noisy pixel or sensor inputs need to be

matched to symbols [14, 15] or to a regressed control output

[16]. However, the strength of these methods comes from the

ability to mine unlimited amounts of data, either through web

crawling or simulators. The robotics domain in contrast has

limited and specific data, which leads to overfitting and non-

generalized task solutions. A hierarchical model which can parse

the environment using generic symbols (which can be learned

from widely available data) but then uses specific data and

learning at lower level to ground those symbols in the given

environment and execute plans can bridge this gap [9, 13]. There

is a corollary problem to learning policies, then: given

manipulation policies and seed sets of states that lead to

success, find other connecting states such that any given

initial state leads to task success. Our approach does this by

learning state-entity sets in which the agent explores an action

space through trial-and-error and gathers enough state-data over

time to enable robust execution with learned “good states”.

More specifically, we want to balance exploitation of high-

level knowledge of goals and plans with low-level exploration

such that the agent can learn reactive repairs while maintaining

goal-driven reasoning and behaviors. Concretely, this paper

grounds assembly plans as actions on objects and leverages

known object affordances [17–19] as the key state-variable.

Object affordances in this chapter are defined as keyframes

(position, orientation) with respect to the object’s centroid

(also known as the object’s frame). This affordance-based

state description, however, is low level, continuous, and

incompatible with traditional task planning. In order to bridge

this gap we take a dual-encoding approach leveraging the task

domain definitions to also ground plans in high-level pre and

post conditions. Thus, our architecture can reason about plans

based on low-level sensor observations as well as high-level

knowledge inputs. Meta-reasoning and goal-driven reasoning

has addressed sophisticated tasks but mostly within disembodied

contexts [20–24]. For example, the REM system uses meta-

reasoning for transforming a plan for disassembling a device

to a plan for assembling it from its components [25]. In contrast

we address simpler tasks in an embodied context. This implies a

grounding of the plan reasoning and meta-reasoning in visual

encodings. The key contributions are an updated architecture for

meta-reasoning, a theory for classifying failures in embodied

systems, and grounding of meta-reasoning in perceptual

expectations. These contributions build on previous several

streams of meta-reasoning research which attacked this

question of how to account for low-level observations [25–29]

as well as robotics research investigating the conceptualization

and operationalization of robotics processes as lifted symbolic

plans and knowledgebases [2–5], [30]. Note that meta-reasoning

itself is also a computationally hard-problem [26, 31] thus we use

rule-based methods and data-based approximations in this

chapter to ground these components.

The dual-encoding methodology presented in this chapter

was observed to be more generic than low-level repair or

symbolic repair used alone, as seen in Section 6. Further an

application of this architecture with reinforcement learning used

to learn action sequences for tasks showed much faster

convergence of learning with the structure provided by the

meta-reasoner [32]. Our experiments described in Section 7

show that a hierarchical architecture with a high-level repair

module solves more instantiations of tasks than one with no

high-level repair module [33]. In the next section we present a

motivating example. Section 3 gives a quick introduction of

relevant concepts and related literature. In Section 4, we

present a first experiment which establishes the usefulness of

visually grounded lower-level expectations. In Section 5, we

present our second experiment which further refines lower-

level expectations to account for object configurations and

recovery from grounding-level failures.

2 Motivating example

Consider a robot executing a sequential plan to assemble

multiple parts together. The robot is given one task of

inserting a cylindrical housing into a matching feature on

the task-board. The housing has a wider face on one-end

which is not compatible with this insertion-feature. The

execution sequence for this task is provided in Figure 1.

We call this a nominal task sequence.

Frontiers in Physics frontiersin.org02

Parashar et al. 10.3389/fphy.2022.975247

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.975247

The robot is now tasked to achieve the same goal of

housing being inserted into the task-board in a variant

setting, namely one where the initial pose of housing is

upside-down on the table. At a high-level the current task

remains the same, so if the robot repeats the same sequence as

in the nominal setting without further reasoning it fails.

Failure occurs because we transition into an incompatible

state from which the insertion skill cannot occur as expected.

This is shown in Figure 2. This is a simpler class of adaptation

where the same objects are being used but their relative poses

differ, so the robot’s actions need to be goal-driven but also

account for these grounded differences.

Now consider the robot is tasked with the goal of inserting a

cylindrical shaft into the housing via the central hole-feature in

it. Again, if the robot does not reason about task-relevant

correspondence between the shaft and the housing and just

repeats the insertion skill’s plan as instantiated based on

previous example then it will run into another failure. This

situation is shown in Figure 3. This is a more complex case

where the skill is the same but the object the skill is being

applied to has changed. Now the robot needs to first understand

how to adapt known affordances of objects based on previous

examples, and next to plan an action sequence to account for

the variations.

FIGURE 1
Nominal task sequence for inserting housing into the task-board.

FIGURE 2
Variant setting with upside-down housing placement which leads to failed insertion task.

FIGURE 3
Variant setting with a new object whose placement differs from housing and repetition of same insertion task without further reasoning leads to
failure.

Frontiers in Physics frontiersin.org03

Parashar et al. 10.3389/fphy.2022.975247

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.975247

An interesting aspect of this investigation is the entangled

relevance of object and grounded pose towards task success. A

robot is an acting agent, rather than a reasoning-only agent. A

high-level model of these actions would only deign to answer,

“use action A on object O.” However, we contend that it is not

enough to answer, “which object?” but the robot also needs to

know what pose of the object with respect to the given task is

actuable. A robot perceives its surroundings through 2D and 3D

images, and then extracts out relevant semantic symbols as well

as the grounded 6-dimensional pose (x, y, z position and r, p, y

rotation with respect to base coordinate system) of these symbols

in the environment. Each grounded pose of these objects may

require a different grasp and alignment from the robots to enable

their assembly which is non-trivial to plan since robots have a

different physicality and reach in the Euclidean space as

compared to humans. Prior work assumes the definition of

the action encompasses this reasoning and focuses on high-

level sequencing only. We relax this assumption, asking the

question how to capture the low-level task-relevance of object

affordances from successful high-level plans and use it to

generalize said task-plan.

Further these interactions also implicitly respect dynamics like

rigid object physics, friction dynamics, and even specific

instantiation of objects in the current world. It is

computationally intractabe to model each and every one of

these aspects separately, thus we use the past traces from

successful executions of a task to serve as heuristics on which

poses make sense for the given task. Therefore, our focus is on the

architecture which enables this learning from failures,

incorporation of new evidence into knowledge-base and better

planning rather than robustness of the object or affordance

features themselves. Our primary goal here is to motivate the

fact that the relevance of an object to a task and the function of the

object’s grounded pose within that task context are entangled

together. An agent cannot generalize to a novel situation with an

answer to only one of these two questions. Thus, in this chapter we

FIGURE 4
Overview of the system components and a temporal flow of how processes unfold across them when failures are identified.

Frontiers in Physics frontiersin.org04

Parashar et al. 10.3389/fphy.2022.975247

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.975247

explore representations encoding object affordances, evaluate if

these encodings improve example-based instantiation of novel

tasks and present a framework which uses these encodings to

facilitate automatic learning from agent’s failures.

3 System overview

Figure 4 shows the lifecycle of a typical repair process

described in this chapter. The key components of this

framework are as follows:

1. A task: A task is amulti-actionmotion sequencewhich achieves a

given goal state. Given a goal-state the HTN planner chooses the

correct task. Thereby given the current state and overarching task

it generates the next action towards that task.

2. An action: An action is defined as a skill-label (move, insert,

etc.) along with its supporting arguments. In this chapter, we

first discuss repair of objects as arguments and then expand

scope for repairing embodied poses.

3. A low-level episodic memory: We assume the robot has past

episodic memory of at least one successful execution of the

task under consideration. This memory is assumed to have

low-level information about objects and pose perception

based on sensors during execution. Given a task and next

action, one can query the expected state after successful

execution of that action. One can also query the set of

states which successfully lead to execution of a given action.

4. A meta-reasoning component: This component compares the

current state with the expected state. It assumes a failure

taxonomy to be present and follows rule-based assessment of

whether a failure is present or not. It then either asks the

deliberative planner to continue or passes on the failure

category as well as low-level details to the repair module.

5. A repair module: Given failed action and current task, the

repair module generates suggestions for next action which can

lead to previously known states which led to success. We

assume the HTN knowledgebase has actions which can bridge

transformation from current state to “promising states” [32].

The biggest reason for failures in robotics is due to non-

determinism over initial state and stochastic execution of actions.

In this chapter, we focus on failures induced by missing availability

of correct objects and associated table-top rearrangement (Section 6)

and wrong positioning of objects (Section 7). Line items three to five

described above are core contributions towards generating such

repairs for an embodied system.

4 Related work

It is agreed in robotics that hybrid systems that can do both

deliberation and reactive revisions pave the way for more complex

robotic applications [34, 35], but there does not exist a systematic

theory of how to combine distinct levels of planning, reaction, and

learning. For instance, ROS [36], a roboticsmiddleware commonly

used in research and adopted by some circles in industry [37], uses

hybrid planners at both navigation and manipulation level which

use both global and local planning behaviors. Parashar et al [38]

proposed a hierarchy of failures for such multi-layered

architectures, as seen in Figure 5, attempting to scope

systematic investigation. This paper is scoped at the level of

understanding objects and pose related failures.

Architecturally this paper is informed by cognitive robotics

systems like CoSy Project [34] and CRAM [39] and paves a

bridge between such hybrid architectures and meta-reasoning

components [40, 41]. Given heuristic or expert knowledge about

a process, ameta-reasoning system (Figure 6) generates expectations

about the state of the world given the actions applied to it, compares

the observed state of the world with the expected state, andmaps the

discrepancy between expectation and observation into one or more

repairs at the deliberative level [25, 26]. The recognition of a failure

through a comparison of the expected state and the observed state

can be challenging if the observations are made through low-level

sensors and the expectations are encoded in terms of abstract

knowledge representations. We seek a more general strategy for

comparing expected and observed states and recognizing failures for

the robotics domain.

Our work has some similarity with [23], since they too use

HTN plans annotated with expectations to conduct meta-level

reasoning over their incomplete plans. However, their

expectations are of a conceptual form, abstracted on top of

environmental symbols. Jones and Goel [29] present

“Empirical Verification Procedures” which ground all high-

level concepts and axioms known to the agent in lower-level

precepts in a video game. Prior work [32, 42, 43], combines meta-

reasoning with reinforcement learning using purely visual form

expectations. However, they still use symbolic descriptions or

computerized descriptions of visuals which simplifies the

perception part of the problem.

Finally, to ground the planning problems we make use of

formalism provided by Hierarchical Task Networks. STRIPS

planning enables a search-based planning solution in the state-

space of the planning domain, however given the repetitive structure

of assembly plans, HTNs fare better in terms of efficiency as they

allow reuse of expert knowledge. Such procedural and routine-based

problems occur in scheduling and logistics regularly, and

hierarchical task networks [44] (HTNs) have been used to

instead express procedures for completing tasks. HTN planning

was formalized and operationalized via the SHOP [45] and

SHOP2 [46] planners in the International Planning

Competition(s). HTNs are a popular way of designing domain-

configurable as well as domain-specific planning domains [47], with

the procedures defining search control over the state-space to make

planning faster. A comprehensive review of different HTN planners

is provided in [48].

Frontiers in Physics frontiersin.org05

Parashar et al. 10.3389/fphy.2022.975247

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.975247

5 Background

5.1 Hierarchical task networks and
assembly task domain

We use the HTN formalism [49] for defining our task

planning domain and problem. The domain is given as

D � <P, T , M . . . > . T is a set of tasks in the domain, and

M is a set of methods (recipes) defining how to decompose  ∈ T
to smaller subtasks which is called its task network.When  cannot

be further decomposed then  ∈ P and is called a primitive action,

which is directly executed by the underlying agent. γ is the set of

preconditions defined as grounded symbols and predicates over

grounded symbols for each method. A method  can be applied

on task  while in state  if name() �  and  satisfies γ(). δ
is the set of effects that executing primitive-action  will affect on

the world-state: if  ∈ P is executed in  then next state:

′ � ( − δ−() + δ+())

δ−() and δ+() represent minus and add effects

respectively. The assembly task domain that these HTNs

operate on is based upon the domain formulation presented

in [56] and does not cover those details in the current scope. In

the later experiments we explicate relevant aspects of the task

planning domain to ground our understanding and discussion.

5.2 Task and motion planning

Task and motion planning (or TAMP) [50, 51] is a task

planning formalism extended to account for the continuous-

space execution that robots need to do. This is done by extending

the next-state equation from previous section and associating a

set of continuous-valued valid poses for each agent and object

FIGURE 5
The hierarchy of failures (categorised by colour) that occur in a goal-driven, multi-layered robotics architecture. The green boxes represent the
three required components to meta-reason about each class of failures.

FIGURE 6
High-level system architecture describing the 3 salient components of a meta-reasoning system. Ground-level execution relies on sensors
which read the environment state and actuators which manipulate it. The object-level reasoning component which relies on domain knowledge to
formulate long-horizon plans given the current state. Finally, themeta-reasoning component which monitors the execution of the object-level plan
and launches repairs when failures are identified.

Frontiers in Physics frontiersin.org06

Parashar et al. 10.3389/fphy.2022.975247

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.975247

implicated in state ′. LetR be the relation connecting an object

or agent oa with its valid poses under predicate , then for state

description  containing  applied on agents or objects:

R() � R((oai))

Given such symbol-to-set mapping TAMP does a hybrid

optimization over value assignment (as described in previous

sub-section) as well as finding a feasible space of continuous

execution. However, this symbol-to-set mapping is non-trivial to

define. The procedures covered in this chapter formally solve this

problem via incremental learning of these sets given successful and

unsuccessful examples and unlimited time for the robot to conduct

trial-and-error. This learning technique is the same as set-expansion

techniques used in knowledge-based information retrieval [52–54]

except we are learning the set-based relation R in 6DOF space

which does not exhibit any obvious semantic structure.

6 Reasoning across different objects

In this section, we discuss a simple table-top shape drawing

task where we ask an agent to draw an alphabet with playing

bricks. We wish to evaluate our meta-reasoning architecture that

given a variation on the original task along with visual

expectations related to its execution, can the agent provide

better plan repairs than one with only conceptual

expectations. Our experimental setup uses a Baxter with an

eye-in-hand camera setup (camera is situated on the wrist).

For evaluation we create example failure cases to compare the

meta-reasoning cycle which uses dual-encoded expectations

(visual + conceptual) against one which only uses the

symbolic-level expectations. In the following sections we

formulate this problem using task domain description, present

representations for encoding visual expectations and discuss the

processes which can utilize visual expectations to propose plan

repair instead of conceptual expectations. We also explain our

implementation for extracting these visual expectations out of an

image-stream. In the results section we present a qualitative

assessment of our system for failure recovery where failures are

induced by changing the environmental conditions to mismatch

plan pre-conditions at different depths.

6.1 Problem setup

The problem domain is to use Mega BloksTM to draw shapes

on the table-top; for simplicity will be referring to a single unit as

a block. Our system considers two different shapes of blocks: 1 ×

1 and 1 × 2; and supports two different colors: blue and red. Goals

are communicated as strings naming the shape to be drawn and

relate to a sequence of placements of specific blocks which draw

the shape. Each block’s physical placement is described by two

attributes, its orientation with respect to the table’s axis and the

location of its centroid in the workspace. When blocks are

recognized in an image, they are indexed with a number

starting at 0, e.g., b0 =<color, shape>. To describe the

placement of two blocks with respect to each other we use a

graph-based format where ψ0,1 is a coordinate system transform

between the centroid of b0 and the centroid of b1. A 1 × 1 sized

Mega Blok is of length 6.1 cm and width 6.1 cm, which we denote

as lb in the rest of this section.

To codify the pre-conditions and effects of the HTN tasks we

use a symbolic state description which include: 1) obgrip:

description of the block held in the gripper, Φ if empty and

bj if block with ID j is held in the gripper, and 2) β: set of pairs

depicting the required blocks and their mapping to recognized

blocks on the table. The overall system uses other variables for

planning purposes, but they have been abstracted because they

are not relevant to the current discussion. The only primitive

action available to planner is place (bj,x,y) which maps to a

heuristic policy under which it grasps and then moves the block

bj to (x,y).

6.2 Approach: Hierarchical representation
of expectations

In order to scope the search complexity, the high-level

planning framework uses lifted symbolic descriptions, however

if a failure is noted the meta-reasoner needs access to lower-level,

continuous observations which is encoded in the expectations.

Our overall planning then is hierarchical in nature, where high-

level planner assigns a block symbol to the place action and then a

lower-level simple reasoner assigns the requisite (x, y).

Leveraging this dual-level planning, we encode a hierarchical

schema of expectations. The higher-level level of expectations has

block symbols describing the relation between a shape and

required block units. The lower-level stores cropped visual

grid-maps centred on each block to capture a locally detailed

description of its placement. Each grid-map is of length 3lb × 3lb

to include the block and some of the surrounding context. We

chose a size which records the surrounding context as such mid-

level features have been seen to work better for task-level

reasoning when compared to hyper-local object-specific

features. Readers should note that such a low-level description

would require domain knowledge to be encoded since its form is

tightly integrated with the goal of the problem itself.

The plans are annotated with expectations at the primitive

action level and bubbled up to be associated with the task by

assigning the parent task the expectation of the last primitive

action in its decomposition. Typical HTN methods/tasks have

only symbolic pre-conditions associated with each possible

decomposition and then pre and post-conditions associated

with each action under it. By bubbling up these grid-based

Frontiers in Physics frontiersin.org07

Parashar et al. 10.3389/fphy.2022.975247

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.975247

encodings we add more information to our HTN description

which also accounts for the final goal of the task.

6.3 Implementation

The HTN plan is executed by an expert kinesthetically

driving the agent (hold on to the agent’s arm and move it to

perform the required actions) to annotate the plan with resulting

“ideal profile” of expectations. After each place action the user

presses a key to record the block which was placed as well as its 2-

dimensional location with respect to the table-top coordinate

system. After the full execution, the expectation annotator creates

two kinds of databases: one of the complete annotated plan

executions, denoted as Pa, which maps each action-step i to

demonstrated < bj,x,y > instance. The other one stores the low-

level grid-maps and symbolic expectations annotated by the

causing action(s) which points back to the parent task itself,

denoted by Edb. This action-to-expectation mapping can be

many-to-one. The second database is key for creating a two-

way communication protocol between sensor information and

plan knowledge even when symbol grounding fails during run-

time.

Edb is populated using an expectation extractor module. The

expectation extractor uses a top-view image feed of workspace,

via the robot’s eye-in-hand setup, to extract expectations

associated with each action and task. The block-level

description of a symbol is extracted by performing HSV

color-thresholding for blob detection on the tabletop view of

the symbol under-construction. Once a colored blob is found, its

shape is assigned by comparing blob-axis with lb. Next, the visual

expectation is the image within a 3lb × 3lb bounding-box centred

on the centroid of the blob, and a quantized view of the form of

the blob, i.e., a grid-map is created. A grid-map is like an

occupancy grid where the occupancy of a cell is decided based

on the color presence of the block on a uniformly colored

background. The resolution of the grid-map is 0.5 × lb.

6.4 Experiment and results

An embodied system can encounter two kinds of failures:

logical or physical. By physical wemeanmisplacement of gripper,

wrong state of gripper, etc. This work does not address these

failures. In the rest of the paper when we explain our algorithm,

we are addressing only the logical failures, i.e., missing blocks,

unexpected configuration of blocks, etc. We broadly classify the

logical failures into two kinds, one where known entities are

observed in an unseen configuration thus going against the

explicit nature of pre-conditions, and one where unknown

entities are observed breaking the planner’s assumptions. We

present here an example case where we create both kinds of

failures by manipulating the environment. In this example, we

have provided the agent with the plans for shape A and H

(Figure 7), using two 1 × 1 blocks for H rather than one 1 ×

2 block. We use these shapes because they possess the kind of

form similarities, we want our algorithm to identify. We want to

see if our expectations can help in creating connections between

pieces of knowledge already stored in our database better than

symbolic expectations. Next, the environment is modified to

progressively make the failure more difficult for drawing the

shape A. We replace required 1 × 2 block with another:

• Block of same shape but different color

• Set of two 1 × 1 blocks of same color

• Set of two 1 × 1 blocks of different color

FIGURE 7
Overview of all objects implicated in MagneticAttach task as well as adiagrammatic description of attachment points and attachment normals.

Frontiers in Physics frontiersin.org08

Parashar et al. 10.3389/fphy.2022.975247

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.975247

The mismatch vector is used to identify the first instance of

action in the invoked task which uses the mismatched entity,

i.e., block in our case. Next, this action’s expectation is retrieved

from Pa and a nearest-neighbour algorithm is invoked to find

ranked matches from Edb. We compare the entries retrieved by

symbolic matching and grid-mapmatching to qualitatively assess

the usefulness of our hierarchical expectation representation.

Our results are summarized in Table 1 and compare the grid-

map retrievals against symbol expectation matching. The most

significant result is shown in row three where due to a grounded

encoding of grid-maps its matches were able to search for a visual

similarity of form unlike symbolic matching. For row 2, neither

found a match since no shape uses {1 × 1, red} blocks in the

current HTN plan library.

Our approach lends itself naturally to hybrid execution

architectures where reactive learners manipulate raw-data and

work in synchrony with deliberative planners which rely on some

heuristic or some other form of domain knowledge. While it is

easy to think of meta-reasoners as only an additional layer, its

strength lies in enabling trading of valuable information across

these two layers. It is this strength of the meta-reasoner to form a

global view which we believe will be a valuable addition to the

long-term autonomy literature in robotics. Specifically, its across-

event reasoning can augment the strength of episodic

performance exhibited by reactive learners and task-oriented

planners.

7 Reasoning across different object
poses

The occupancy grid expectations used in the last section are

useful for encoding states of the world but run into several

problems for generic usage. In a world where an agent is

actively interacting with the objects, the agent itself may

occlude the sensor which can result in a different expectation

which maps to the same underlying state. Further, these relative

poses are also entangled with the affordances of the object,

i.e., placing two different objects in the same relative pose

might not lead to an assembly which was not the case with

our previous simpler domain. Finally, while grids work for planar

cases, for more complex 3D assembly tasks the quantization can

abstract away important low-level state information. In this

section, we refine the expectations to be applied to the lower-

level state of assembly objects (i.e., position and orientation) and

propose a generic backtracking-based repair algorithm over the

representation. We use a key point-based object representation

since the entire 6-dimensional pose (3-dimensional position and

3-dimensional orientation in free-space) of multiple objects is

critical for the success of an assembly task; thus, addressing a

more general formulation of the assembly problem.

7.1 Problem setup

An assembly task-and-motion planning domain is defined by

a goal-state, i.e., its symbolic and sub-symbolic description. We

extend this definition to our modified HTN methods since the

original only has a precondition and a network. Continuing the

setup in the previous experiment, we assume that the symbolic

goal-state is given and the demonstration is used for extracting

sub-symbolic states of the objects. As described in Section 7.2.1.

Each state’s sub-symbolic description includes observed valid

poses of all objects and agents implicated in the state-description.

This distinction between all valid and observed valid poses is

important to note as it distinguishes our work from TAMP. We

do not assume all valid poses given, rather build these sets from

observations. This is also a weakness as in the current version we

do not include known kinematic poses of the agent in the

formulation which leads to motion planning failures

(discussed in Section 7.5.2). For simplicity of analysis, we only

consider two action primitives for this work:MoveTowhich takes

a pose as input and Grasp which toggles gripper state.

Building on the HTN specifications, for the purpose of this

study we categorize the preconditions into two types, those for

defining generic applicability (for example, gripper can grasp an

object if the object has a grasp-point and gripper is open) and

task-specific (for example, gripper should grasp the toy bricks

TABLE 1 Summary of match results. The white square shows which block’s resultant placement expectation in shape H was matched.

Type of Replacement Affected Action-Exp Pair Grid-map Match Symbolic Match

1 × 2, red → 1 × 2, blue BO = {1 × 2, red, 90°} B4 = {1 × 2, blue, 90°} B4 = {1 × 2, blue, 90°}

1 × 2, red → 1 × 1, red + 1 × 1, red BO = {1 × 2, red, 90°} None None

1 × 2, red → 1 × 1, blue + 1 × 1, blue BO = {1 × 2, red, 90°} B2 = {1 × 1, blue, 0°} None

Frontiers in Physics frontiersin.org09

Parashar et al. 10.3389/fphy.2022.975247

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.975247

without blocking the bottom attachment point). In an ideal

situation it would be desirable for the domain designers to

inject the generic preconditions marking the minimum set of

conditions necessary for applying an action to the environment,

and for the agent to learn the task-specific constraints based on

nominal scenarios, object knowledge and transitions made by

assembly skills. Thus, the aim of this study is to learn these task-

specific relations over objects and their sub-symbolic groundings,

assuming generic preconditions to be given. Please note, we

always assume that the nominal plan and traces associated

with this nominal plan are already provided to the agent. We

focus on the representation of trace, monitoring using

expectations based on trace and plan repair.

We model an assembly task as an initial state s0, a goal state

sg, an attachment (equivalent to a task method) attg and three

main entities: an assembly agent, an active object and a

reference object. An active object is the one being

manipulated by the assembly agent with respect to the

stationary reference object using the action decomposition of

attg leading to sg. Traces are provided for nominal task settings

where poses of objects match underlying assumptions of the

plan, the robot is then exposed to a variant setting where the

objects are in a different configuration. In the following section,

we define the knowledge and representations for capturing task

traces. This is followed by a description of how to generate

expectations, monitoring over expectations and observations,

and the algorithm to repair failures. Finally, we step through

our initial experimental result.

7.2 Execution trace: Knowledge and
representations

While the task plan considers gripper’s poses across the space

to ground a plan, the meta-reasoner explicitly collects traces

encoding deeper knowledge about how the change in gripper

pose is affecting the poses of the object it is operating upon. This

bears similarity to how high-level and low-level information is

connected in [50, 55]. However, unlike the former we do not

assume these relations to be already given rather learn them as

part of trace collection and compared to the latter we organize

knowledge differently and do not explicitly connect the poses

with kinematic constraints of the robot. Thus, for the given

attachment attg an action ai at ith place resulting in observed

state s0, will have trace-state:

T′(i) � ⋃
obji∈attg

state(obji)

Note that this bears similarity to the TAMP equation in

Section 4.B. relating sub-symbolic grounding of states to known

valid 6DOF states of objects. These traces can now be used to

calculate expectations over pose-changes over time for individual

objects, as well as for two objects with respect to each other. For

the lifted symbols, trace is collected by attaching causal-links to

variables which are established by assembly skills by way of

computation, perception or motion (see Supplementary

Materials).

7.2.1 Object state representation
Each object implicated in a task, i.e., O(attg) � {obja, objr},

is identified by its semantic name which is a string passed as an

argument for HTN task methods. Each obj is assigned the

following attributes for describing its state:

• Object Pose: P(obj): |O|0R6

• Attachment Point: AP(obj): |O|0R3

• Attachment Normal: AA(obj): |O|0R3, relative

to P(obj)

Even if implicitly related, all the components are converted to

be with respect to the robot’s coordinate frame for traces.

Figure 8 shows such a description for the objects in the

magnetic robot domain. This representation is based on the

preliminary assembly representation in [56] where attachment

normals and final pose of objects with respect to world

coordinate are specified. Note that here we encode keypoints

with respect to the object frame as intrinsic features or

affordances of the objects. One can imagine several models,

based on this representation, co-existing for a given set of

objects. For example, for the toy brick domain, the top and

bottom groove locations would count as legitimate attachment-

points when creating a 3D structure. On the other hand, for the

2D planar experiment outlined at the beginning of this chapter,

we would instead expect a representation where the sides of the

bricks count as legitimate attachment-points instead.

7.3 Monitoring for failure

In this work we assume we are only handling objects and pose

related failures. Given that the agent only knows about the

affordances of each object but not their relative importance to

the task or to each other, it is not clear to the agent whether a task

is destined for success or failure until the final attachment occurs,

especially when the agent has not seen any failures in the past.

Thus, we add a verification procedure [29] which is executed by

the agent at the end of a task to verify the task was a success or

not. If the task is deemed a failure based on verification

procedure, then the meta-reasoning process is triggered with

traces of past execution, Tpast, and the current execution trace,

Tcurr. The verification procedure is added as a task method as

shown in the code snippet in Supplementary Materials.

In practice though, due to occlusions we detect failure or

success after the attachment task by moving the entire sub-

assembly to a staging pose. Then we try to detect the assembly on

the table, if it is not found then the assembly is verified as

Frontiers in Physics frontiersin.org10

Parashar et al. 10.3389/fphy.2022.975247

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.975247

successful. This process is depicted in Figure 9. Note that if

obvious or hard failures like mismatched preconditions are

observed, then the meta-reasoner can use the algorithms

proposed in prior work [32, 33] to repair the domain. In

contrast this chapter focuses on non-obvious or soft failures

where all the tasks and skills are actuable however do not lead to a

successful result.

7.4 Meta-reasoning and repair

If the verification procedure results in a failure, the meta-

reasoning cycle is triggered where the meta-reasoner collects

past N traces for the same task, generates expectations and

invokes a step-by-step comparison with the current trace. We

focus on failures at the lowest level, since we have observed this

level to be most probable for failures and least explored in

related literature. Please note that while the final failure is

registered in the form of a logical inconsistency, i.e., task

executed but attachment was false, the originating reason for

this can be physical or logical.

The generated low-level expectations encode constraints over

the relative poses of the two objects or sub-assemblies being

attached in the given task. Informally, given aggregate and

current poses of assembly objects, it expects:

aggrpose(obj1): aggrpose(obj2)Tcurrpose(obj1):

currpose(obj2)

Formally, these relations are computed based on aggregation

over past traces and the following sets of equations define

relations extracted over each trace Tj for task-step i and the

expectations averaged over multiple traces.

Rp(i, j) � EuclideanDist(AP(obja), AP(objr))

Rn(i, j) � cos−1(AN(obja) · AN(objb))

Expp(i) �
∑N

j�1Rp(i, j)

N

Expn(i) �
∑N

j�1Rn(i, j)

N

If the attachment point and normal in the current trace are

significantly different from expected configurations, then the

gripper backtracks to the last primitive which assigned its new

pose. At this task-step a random good position for the active

object’s attachment point and corresponding normal is

FIGURE 8
An example of a task failure and how visual systems help in monitoring it to verify task completion.

Frontiers in Physics frontiersin.org11

Parashar et al. 10.3389/fphy.2022.975247

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.975247

sampled from the traces. We have provided the meta-reasoner

with a motion repair module. Given the kinematic relations

between the object and the gripper, this is transformed into the

related gripper position which is then treated as a repaired

argument for the primitive. The repair algorithm keeps

backtracking until the last pose which differs from trace if

no successful plan is found. The final successful repaired plan,

if found, is saved as a new refinement of the task along with

starting pose of the objects as a sub-symbolic precondition.

7.5 Experiments and results

7.5.1 Setup
We focus our experiment on the MagneticAttach high-level

task which is decomposed into a plan as shown in Figure 10. This

plan requires grounding for the MoveTo primitive poses. These

groundings are given by a human instructor via a graphical utility

aligning the arm with the objects. This grounding is recorded by

the task planner using object and gripper poses.

Figure 11 shows the progression of the nominal plan and the

changes made to objects. Figure 12 shows the novel variant task

which fails given knowledge gap in object grounding. In our

results we show how the plan is compared and changed, evaluate

transfer over traces which account for different objects as well as

configurations, and finally we also outline the complex failures

observed during the course of this attempted repair.

FIGURE 9
Depiction of Hierarchical Expectations, position of centroid removed from symbolic description for brevity. At the top, the darker H shape is
blue while the lighter A is red.

FIGURE 10
Variant setting leading to failure as the attachment points are
not aligned and the nominal method did not have explicit actions
to align them.

Frontiers in Physics frontiersin.org12

Parashar et al. 10.3389/fphy.2022.975247

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.975247

FIGURE 11
A high-level outline of how HTN plans are grounded using experience and compared for repairing object pose input to the execution actions.
Meta-reasoner repair process which starts when the top base plan results in failure. Themeta-reasoner first compares to see if the current trace was
significantly different from nominal traces, if it is then a replacement object pose is sampled from previous traces, the executor backtracks to last
action and tries this pose for next action. This sampling and backtracking occurs until a solution is found. Once solution is found, the current
trace is rewritten with the new values.

FIGURE 12
Nominal HTN plan decomposing a high-level assembly task (MagneticAttach) to primitives usingmethods. At the bottomwe show the nominal
task trace which grounds the high-level plan within the poses of the robot and the objects.

Frontiers in Physics frontiersin.org13

Parashar et al. 10.3389/fphy.2022.975247

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.975247

7.5.2 Repair result
The meta-reasoner backtracks one step each time, samples

a known good pose from past traces which resulted in a

successful task and plans a motion for it. This pose

replaces the argument for next action in the plan. We

observed as long as the gripper pose associated with the

object is reachable from current configuration this repair

can find a repair.

However, we observed two key failures which our approach

does not model:

1. CollisionFailure: In somecases, sincewearenotmodeling thegrasp

to be task-informed, the gripper can cover the attachment point of

theobject. Insuchcases,evenifourrepairalgorithmprovidesagood

pose for the object, the robot cannot plan for it since the gripper

would collide with the reference object in this configuration.

2. Reachability Failure: In certain cases, even if the gripper is not

covering the attachment point, the robot arm joint

configuration required for a good object pose is unreachable

from the backtracked pose. This is due to singularity issues in

arm motion planning and limited workspace.

TABLE 2 A comparison of calculated Rp and Rn across different poses of the same object. Column 1 is the nominal plan grounded in instructed poses.
Column 2 and 3 are variant poses from the test task. Rp is a good indicator of failure at the end of the task, however Rn is more sensitive to gross
variations in object's pose.

Rp 0.2276 0.3355 0.3409

0.2248 0.3286 0.3734

0.0575 0.0392 0.0720

0.0023 0.0058 0.0412

Rn 3.123 3.129 1.483

3.14 3.133 1.494

3.13 3.127 1.492

3.13 3.14 1.483

The bold values indicate higher distinction power between task-states.

TABLE 3 A comparison of calculated Rn across different objects. Column 1 is the nominal plan grounded in instructed poses for Object 1. Column 2
and 3 are nominal and variant poses for Object 2 operated on by the same MagneticAttach task. Rn traces are still able to differentiate between
wrong and nominal traces, given only the object attachment information about Object 2.

Rn 3.123 3.141 1.571

3.14 3.142 1.569

3.13 3.137 1.568

3.13 3.143 1.568

Bold values indicate higher distinction power between task-states.

Frontiers in Physics frontiersin.org14

Parashar et al. 10.3389/fphy.2022.975247

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.975247

7.5.3 Monitoring for same object’s variant poses
Table 2 presents the values for Rp and Rn for the object

configurations shown in the header. We see that by considering

both values for traces, we can establish better similarity between

successful tasks.

7.5.4 Monitoring across objects
Different objects may have their attachment normals aligned

with different axes of the object’s coordinate frame. In Table 3 we

present the Rn values comparing nominal trace for one object to

nominal and wrong configuration for another object. We observe

that by modeling attachment normals separately we can still

establish similarity between successful and failing tasks.

8 Conclusion

We started this paper by describing a research gap in traditional

industrial robotics’ planning around the issue of small-scale,

heterogeneous assembly scenarios. The traditional methods only

operate at high-level modeling of plans assuming low-level poses of

objects are fixed, however such mono-level architectures and

systems do not work well when an agent is required to adapt

and learn in unstructured environments. We also highlighted a

research gap in metareasoning literature with respect to grounding

methods of failure monitoring and repair in action and perception

that are critical for an embodied agent like an industrial robot.

In this investigation, we outlined lower-level task representations

and reasoning processes to include them in the meta-reasoning

architecture. These task representations focus on the action and

object representation components which are unique to embodied

agents. This gave rise to representations of expectations in meta-

reasoning which encode relations between physical goal-state and

acting processes rather than encoding themeta-relations between the

reasoning processes and their arguments, as is typically done in the

traditional meta-reasoning literature. This motivated an updated

architecture and processes to encode, store and use these

representations in an action and object-centric manner.

Our key finding is that extending the metareasoning

architecture with the lower-level expectations adds flexibility to

otherwise rigid model-based planners. We posit that this also

enables a crisper modeling of different knowledge bases and

processes involved in a robotics planning and execution process.

Using only conceptual expectations does not capture state changes

on the ground and our experiments suggest using both conceptual

and visual expectations solvesmore kinds of failures than conceptual

expectations alone. We conclude that knowledge transfer using

metareasoning makes a robotic system more flexible than one

with only classical planning. On the other hand, previous results

[42] suggest that learning with metareasoning requires more

structured knowledge but less data.

Our overall goal and motivation with this line of work was to

enable adaptive agents which can conduct long-term reasoning

but also learn from low-level data and thus explore the

environment in a meaningful way. We believe that while

learning paradigms can bring significant improvement to what

we believe a robot is capable of, a learned component is only as

good as the quality of data it is based on. We conclude that

designing transitional agents can enable a bridge to

systematically collect real-world data by specifically mining

failure-events.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Materials, further

inquiries can be directed to the corresponding authors.

Author contributions

This research is part of PP research thesis. Primarily advised by

HC on the robotics end, and advised by AG on the cognitive

system end.

Funding

The work was Funded by HC and Contextual Robotics

Institute, UC San Diego—Funding via RPDC and Dr. Nahid

Sidki for supporting part of this research.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fphy.2022.

975247/full#supplementary-material

Frontiers in Physics frontiersin.org15

Parashar et al. 10.3389/fphy.2022.975247

https://www.frontiersin.org/articles/10.3389/fphy.2022.975247/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphy.2022.975247/full#supplementary-material
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.975247

References

1. IFR. World robotics report. Frankfurt, Germany: International Federation of
Robotics (2020). [Internet]Available from: https://ifr.org/ifr-press-releases/news/
record-2.7-million-robots-work-in-factories-around-the-globe.

2. Huckaby JO. Knowledge transfer in robot manipulation tasks. Atlanta, GA,
United States: Georgia Institute of Technology (2014).

3. Huckaby JO, Christensen HI. A taxonomic framework for task modeling and
knowledge transfer in manufacturing robotics. In: Workshops at the twenty-sixth
AAAI conference on artificial intelligence (2012).

4. Huckaby J, Christensen H. Modeling robot assembly tasks in manufacturing
using SysML. In: Proceeding of the ISR/Robotik 2014; 41st International
Symposium on Robotics; June 2014; Munich, Germany. IEEE (2014). p. 1–7.

5. HuckabyJ,VassosS,ChristensenHI.Planningwithataskmodelingframeworkin
manufacturing robotics. In: Proceeding of the 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems; November 2013; Tokyo, Japan.
IEEE (2013). p. 5787–94.

6. Wang R, Guan Y, Song H, Li X, Li X, Shi Z, et al. A formal model-based design
method for robotic systems. IEEE Syst J (2019) 13(1):1096–107. doi:10.1109/jsyst.
2018.2867285

7. IFR. Advances in programming lower cost of adoption [Internet]. Frankfurt,
Germany: IFR International Federation of Robotics (2021). [cited 2022 Aug 21].
Available from: https://ifr.org/post/advances-in-programming-lower-cost-of-
adoption.

8. Devin C, Abbeel P, Darrell T, Levine S. Deep object-centric representations for
generalizable robot learning. In: Proceeding of the 2018 IEEE International
Conference on Robotics and Automation (ICRA); September 2018. IEEE (2018).
p. 7111–8.

9. Ghalamzan EAM, Paxton C, Hager GD, Bascetta L. An incremental approach
to learning generalizable robot tasks from human demonstration. In: Proceeding of
the 2015 IEEE International Conference on Robotics and Automation (ICRA); May
2015; Seattle, WA, USA. IEEE (2015). p. 5616–21.

10. Koert D, Maeda G, Lioutikov R, Neumann G, Peters J. Demonstration based
trajectory optimization for generalizable robot motions. In: Proceeding of the
2016 IEEE-RAS 16th International Conference on Humanoid Robots
(Humanoids); November 2016; Cancun, Mexico. IEEE (2016). p. 515–22.

11. Fitzgerald T, Goel AK, Thomaz AL. Human-guided object mapping for
task transfer. ACM Trans Hum Robot Interact (2018) 7(2):1–24. doi:10.1145/
3277905

12. Fitzgerald T, Goel A, Thomaz A. Abstraction in data-sparse task transfer. Artif
Intelligence (2021) 300:103551. doi:10.1016/j.artint.2021.103551

13. Wells AM, Dantam NT, Shrivastava A, Kavraki LE. Learning feasibility for
task and motion planning in tabletop environments. IEEE Robot Autom Lett (2019)
4(2):1255–62. doi:10.1109/lra.2019.2894861

14. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T,
et al. An image is worth 16x16 words: Transformers for image recognition at scale
(2020). arXiv preprint arXiv:201011929.

15. Park D, Hoshi Y, Kemp CC. A multimodal anomaly detector for robot-
assisted feeding using an LSTM-based variational autoencoder. IEEE Robot Autom
Lett (2018) 3(3):1544–51. doi:10.1109/lra.2018.2801475

16. Nair S, Rajeswaran A, Kumar V, Finn C, Gupta A. R3M: A universal visual
representation for robot manipulation [internet] (2022). arXiv; 2022 [cited 2022 Aug
21]. Available from: http://arxiv.org/abs/2203.12601.

17. Simeonov A, Du Y, Tagliasacchi A, Tenenbaum JB, Rodriguez A, Agrawal P,
et al. Neural descriptor fields: SE(3)-Equivariant object representations for
manipulation (2021). [cited 2022 May 10]; Available from: https://arxiv.org/abs/
2112.05124v1.

18. Murali A, Liu W, Marino K, Chernova S, Gupta A. Same object, different
grasps: Data and semantic knowledge for task-oriented grasping. In: Conference on
robot learning (2020).

19. Manuelli L, Gao W, Florence P, Tedrake R. Kpam: KeyPoint Affordances for
category-level robotic manipulation. In: T Asfour, E Yoshida, J Park, H Christensen,
O Khatib, editors. Robotics research. Cham: Springer International Publishing
(2022). p. 132–57. (Springer Proceedings in Advanced Robotics).

20. Cox MT. Perpetual self-aware cognitive agents. AIMag (2007) 28(1):32.

21. Cox MT. A model of planning, action and interpretation with goal reasoning.
Adv Cogn Syst (2016) 5:57–76.

22. Cox MT, Alavi Z, Dannenhauer D, Eyorokon V, Muñoz-Avila H, Perlis D.
Midca: A metacognitive, integrated dual-cycle architecture for self-regulated
autonomy. Proc AAAI Conf Artif Intelligence (2016) 30:3712–8. doi:10.1609/aaai.
v30i1.9886

23. Dannenhauer D, Muñoz-Avila H. Raising expectations in GDA agents acting
in dynamic environments. In: Proceedings of the 24th International Conference on
Artificial Intelligence; July 2015 (2015). p. 2241–7.

24. Dannenhauer D, Muñoz-Avila H, Cox MT. Informed expectations to guide
GDA agents in partially observable environments. In: Proceedings of the Twenty-
Fifth International Joint Conference on Artificial Intelligence; July 2016 (2016).
p. 2493–9.

25. Murdock JW, Goel AK. Meta-case-based reasoning: Self-improvement
through self-understanding. J Exp Theor Artif Intelligence (2008) 20(1):1–36.
doi:10.1080/09528130701472416

26. Murdock JW, Goel AK. Self-improvement through self-understanding: Model-
based reflection for agent self-adaptation. Amazon (2011).

27. Stroulia E, Goel AK. Functional representation and reasoning for reflective
systems. Appl Artif Intelligence (1995) 9(1):101–24. doi:10.1080/
08839519508945470

28. Stroulia E, Goel AK. Evaluating PSMs in evolutionary design: The A
UTOGNOSTIC experiments. Int J human-computer Stud (1999) 51(4):825–47.
doi:10.1006/ijhc.1999.0331

29. Jones JK, Goel AK. Perceptually grounded self-diagnosis and self-repair of
domain knowledge. Knowledge-Based Syst (2012) 27:281–301. doi:10.1016/j.knosys.
2011.09.012

30. Goel AK, Rugaber S. Gaia: A CAD-like environment for designing game-
playing agents. IEEE Intell Syst (2017) 32(3):60–7. doi:10.1109/mis.2017.44

31. Conitzer V, Sandholm T. Definition and complexity of some basic
metareasoning problems (2003). arXiv:cs/0307017 [Internet]. [cited 2021 Feb 9];
Available from: http://arxiv.org/abs/cs/0307017.

32. Parashar P, Goel AK, Sheneman B, Christensen HI. Towards life-long
adaptive agents: Using metareasoning for combining knowledge-based planning
with situated learning. Knowledge Eng Rev (2018) 33:e24. doi:10.1017/
s0269888918000279

33. Parashar P, Naik A, Hu J, Christensen HI. A hierarchical model to enable plan
reuse and repair in assembly domains. In: Proceeding of the 2021 IEEE 17th
International Conference on Automation Science and Engineering (CASE); August
2021; Lyon, France. IEEE (2021). p. 387–94.

34. Christensen HI, Kruijff GJM, Wyatt JL Cognitive systems, Vol. 8. Springer
Science & Business Media (2010).

35. Kortenkamp D, Simmons R, Brugali D. Robotic systems architectures and
programming. In: Springer handbook of robotics. Springer (2016). p. 283–306.

36. Quigley M, Conley K, Gerkey B, Faust J, Foote T, Leibs J, et al. Ros: An open-
source robot operating system. In: ICRA workshop on open source software, 3 (2009).

37. ROS-Industrial. ROS-Industrial goals and background.

38. Parashar P. Using meta-reasoning for failure detection and recovery in
assembly domain [internet]. San Diego: University of California (2021). [cited
2022 May 11]. Available from: https://www.proquest.com/openview/
9e3639b5696fdd09488ed817b5786710/1?pq-origsite=gscholar&cbl=
18750&diss=y.

39. Beetz M, Mösenlechner L, Tenorth M. CRAM—a cognitive robot abstract
machine for everyday manipulation in human environments. In: Proceeding of the
2010 IEEE/RSJ international conference on intelligent robots and systems; October
2010; Taipei, Taiwan. IEEE (2010). p. 1012–7.

40. Muñoz-Avila H, Cox MT. Case-based plan adaptation: An analysis and
review. IEEE Intell Syst (2008) 23(4):75–81. doi:10.1109/mis.2008.59

41. Cox M, Raja A. Metareasoning: A manifesto. Cambridge, MA, United States:
BBN Technical (2007).

42. Parashar P, Sheneman B, Goel AK. Adaptive agents in minecraft: A hybrid
paradigm for combining domain knowledge with reinforcement learning. In:
International conference on autonomous agents and multiagent systems (2017).
p. 86–100.

43. Ulam P, Goel AK, Jones J, MurdockW. Using model-based reflection to guide
reinforcement learning. Reasoning, Representation, Learn Comp Games (2005) 107.

44. Erol K, Hendler J, Nau DS. HTN planning: Complexity and expressivity.
Seattle, WA, United States: AAAI (1994). p. 1123–8.

45. Nau DS, Cao Y, Lotem A,Munoz-Avila H. SHOP: Simple hierarchical ordered
planner. In: Proceedings of the 16th international joint conference on artificial
intelligence - volume 2; July 1999. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc. (1999). p. 968–73. (IJCAI’99).

46. Nau DS, Au TC, Ilghami O, Kuter U, Murdock JW, Wu D, et al. SHOP2: An
HTN planning system. J Artif Intell Res (2003) 20:379–404. doi:10.1613/jair.1141

Frontiers in Physics frontiersin.org16

Parashar et al. 10.3389/fphy.2022.975247

https://ifr.org/ifr-press-releases/news/record-2.7-million-robots-work-in-factories-around-the-globe
https://ifr.org/ifr-press-releases/news/record-2.7-million-robots-work-in-factories-around-the-globe
https://doi.org/10.1109/jsyst.2018.2867285
https://doi.org/10.1109/jsyst.2018.2867285
https://ifr.org/post/advances-in-programming-lower-cost-of-adoption
https://ifr.org/post/advances-in-programming-lower-cost-of-adoption
https://doi.org/10.1145/3277905
https://doi.org/10.1145/3277905
https://doi.org/10.1016/j.artint.2021.103551
https://doi.org/10.1109/lra.2019.2894861
https://doi.org/10.1109/lra.2018.2801475
http://arxiv.org/abs/2203.12601
https://arxiv.org/abs/2112.05124v1
https://arxiv.org/abs/2112.05124v1
https://doi.org/10.1609/aaai.v30i1.9886
https://doi.org/10.1609/aaai.v30i1.9886
https://doi.org/10.1080/09528130701472416
https://doi.org/10.1080/08839519508945470
https://doi.org/10.1080/08839519508945470
https://doi.org/10.1006/ijhc.1999.0331
https://doi.org/10.1016/j.knosys.2011.09.012
https://doi.org/10.1016/j.knosys.2011.09.012
https://doi.org/10.1109/mis.2017.44
http://arxiv.org/abs/cs/0307017
https://doi.org/10.1017/s0269888918000279
https://doi.org/10.1017/s0269888918000279
https://www.proquest.com/openview/9e3639b5696fdd09488ed817b5786710/1?pq-origsite=gscholar&cbl=18750&diss=y
https://www.proquest.com/openview/9e3639b5696fdd09488ed817b5786710/1?pq-origsite=gscholar&cbl=18750&diss=y
https://www.proquest.com/openview/9e3639b5696fdd09488ed817b5786710/1?pq-origsite=gscholar&cbl=18750&diss=y
https://doi.org/10.1109/mis.2008.59
https://doi.org/10.1613/jair.1141
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.975247

47. Nau D, Au TC, Ilghami O, Kuter U, Wu D, Yaman F, et al. Applications of
SHOP and SHOP2. IEEE Intell Syst (2005) 20(2):34–41. doi:10.1109/mis.
2005.20

48. Georgievski I, Aiello M. An overview of hierarchical task network planning (2014).
Mar 28 [cited 2020 May 16]; Available from: https://arxiv.org/abs/1403.7426v1.

49. Erol K, Hendler JA, Nau DS. Semantics for hierarchical task-network planning.
College Park, MD, United States: Maryland Univ College Park Inst for Systems
Research (1995).

50. Garrett CR, Chitnis R, Holladay R, Kim B, Silver T, Kaelbling LP, et al.
Integrated task and motion planning. Annu Rev Control Robot Auton Syst (2021)
4(1):265–93. doi:10.1146/annurev-control-091420-084139

51. Kaelbling LP, Lozano-Pérez T. Hierarchical task and motion planning in the
now. In: Proceeding of the 2011 IEEE international conference on robotics and
automation; May 2011; Shanghai, China. IEEE (2011). p. 1470–7.

52. Jindal P, Roth D. Learning from negative examples in set-expansion. In:
Proceeding of the 2011 IEEE 11th International Conference on Data Mining;
December 2011; Vancouver, BC, Canada. IEEE (2011). p. 1110–5.

53. Sarmento L, Jijkuon V, de Rijke M, Oliveira E. “More like these”: Growing
entity classes from seeds. In: Proceedings of the sixteenth ACM conference on
Conference on information and knowledge management - CIKM ’07; January 2007;
Lisbon, Portugal. New York, NY, United States: ACM Press (2007). [cited 2022 Aug
21]. p. 959. Available from: http://portal.acm.org/citation.cfm?doid=1321440.
1321585.

54. Zhang X, Chen Y, Chen J, Du X, Wang K, Wen JR. Entity set expansion via
knowledge graphs. In: Proceedings of the 40th international ACM SIGIR
conference on research and development in information retrieval; August 2017;
New York, NY, United States: Association for Computing Machinery (2017).
p. 1101–4. (SIGIR ’17). Available from. doi:10.1145/3077136.3080732

55. Dornhege C, Eyerich P, Keller T, Brenner M, Nebel B. Integrating task and
motion planning using semantic attachments. In: Proceedings of the 1st AAAI
Conference on Bridging the Gap Between Task and Motion Planning. Washington,
DC, United States: AAAI Press (2010). p. 10–7. (AAAIWS’10-01).

56. De Mello LH, Sanderson AC. A correct and complete algorithm for the
generation of mechanical assembly sequences. IEEE Int Conf robotics automation
(1989) 7:56–7.

Frontiers in Physics frontiersin.org17

Parashar et al. 10.3389/fphy.2022.975247

https://doi.org/10.1109/mis.2005.20
https://doi.org/10.1109/mis.2005.20
https://arxiv.org/abs/1403.7426v1
https://doi.org/10.1146/annurev-control-091420-084139
http://portal.acm.org/citation.cfm?doid=1321440.1321585
http://portal.acm.org/citation.cfm?doid=1321440.1321585
https://doi.org/10.1145/3077136.3080732
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.975247

	Using meta-reasoning for incremental repairs in multi-object robot manipulation tasks
	1 Introduction
	2 Motivating example
	3 System overview
	4 Related work
	5 Background
	5.1 Hierarchical task networks and assembly task domain
	5.2 Task and motion planning

	6 Reasoning across different objects
	6.1 Problem setup
	6.2 Approach: Hierarchical representation of expectations
	6.3 Implementation
	6.4 Experiment and results

	7 Reasoning across different object poses
	7.1 Problem setup
	7.2 Execution trace: Knowledge and representations
	7.2.1 Object state representation

	7.3 Monitoring for failure
	7.4 Meta-reasoning and repair
	7.5 Experiments and results
	7.5.1 Setup
	7.5.2 Repair result
	7.5.3 Monitoring for same object’s variant poses
	7.5.4 Monitoring across objects

	8 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

