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Developable surface is a simple and common surface in surface modeling.

Geodesic, line of curvature, asymptotic curve, and D-type curve are important

characteristic curves on the surfaces. This study gives a unified method for

constructing developable surface pencils interpolating these four kinds of

characteristic curves. Given a regular space curve R(r), we derive a new

condition that a surface pencil P (r, t) interpolating R(r) is developable. The

result shows that the condition completely depends on a univalent function λ

and an angle θ. By choosing different λ and θ, we can not only control the shape

of P (r, t), but also make R(r) become any kind of characteristic curve on P (r, t).

Furthermore, we take natural and conjugate curve pairs as those characteristic

curves to construct developable surface pairs. Finally, an example of a slant helix

shows that the proposed unified method is more general than other methods,

and has good interactivity and convenience.
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1 Introduction

A developable surface can unfold into a flat without scaling, folding, or tearing, which

is widely used in the manufacture of many products, such as the design of leather, paper,

and metal plates [1–6]. With the in-depth research of many scholars on the developable

surface, its construction theory has gradually become a system. At present, there are three

main construction methods: the point geometry method [7, 8], the dual method [9, 10],

and the construction method with certain geometric constraints [11–13]. In addition,

there are also scholars who focused on its related research, such as [14–19].

Geodesic, line of curvature, and asymptotic curve are crucial characteristic curves on

the surfaces, which determine the properties and shapes of the surfaces. The third method

mentioned earlier, namely, the surface construction method with certain geometric

constraints, is the method of constructing a surface pencil interpolating a given

geodesic, line of curvature, or asymptotic curve. This method was first proposed by

Wang and Tang [20], which constructed a surface pencil interpolating a given geodesic,

then Zhao and Wang [11] extended the method to the developable surface. Li and Wang
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[21] proved the constraint conditions that need to be satisfied

when a given curve is a common line of curvature on a surface

pencil. Later, they [12] also proposed a brand new method of

constructing a developable surface pencil interpolating a given line

of curvature. Bayram andGüler [22] explored the construction of a

surface pencil with a given asymptotic curve, and Liu and Wang

[13] extended the results of [22] to the developable surface. In

recent years, it has become popular to use special curve pairs to

construct surface pairs. Atalay [23, 24], constructed surface pencil

pairs interpolating Mannheim curve pairs as common asymptotic

curves and geodesics, and extended the surface pairs to the ruled

surface pairs. Wang and Jiang [25] took natural and conjugate

curve pairs as common asymptotic curves to construct developable

surface pencil pairs. Jiang [26] took the Bertrand curve pair as

asymptotic curves to construct surface pencil pair in Galilean

space, and the result is extended to the ruled surface pair.

Kaya and Önder [27] introduced a new characteristic curve

called D-type curve, which satisfiesW0 ·n = constant, whereW0 is

the unit Darboux vector of a surface curve, n is the unit surface

normal vector along the surface curve, andW0 ·n denotes the dot

product ofW0 and n. The conditions required for a surface pencil
interpolating a common D-type curve are proposed in [27]. The

D-type curve is more general because it contains the geodesic and

the asymptotic curve. However, it does not contain the line of

curvature, and the study on it is not extended to the developable

surface. This study discusses whether a unified method can be

proposed to construct developable surfaces interpolating

geodesic, line of curvature, asymptotic curve, and D-type curve.

In addition, Wang and Jiang [25] only proposed developable

surface pencil pairs interpolating natural and conjugate curve

pairs as asymptotic curves. To complete the results, we put

forward developable surface pencil pairs interpolating these

two kinds of curve pairs as common geodesics, lines of

curvature, and D-type curves, respectively.

In Section 2, we introduce the judgment methods of four

kinds of characteristic curves on the surfaces. In Section 3, the

unified method for constructing developable surface pencils

interpolating four kinds of characteristic curves is given. In

Section 4, we give the specific expressions for developable

surface pencil pairs interpolating natural and conjugate curve

pairs as common geodesics, lines of curvature, and D-type curves,

respectively. In Section 5, an example of a slant helix is given to

verify the efficiency and convenience of this unified method.

2 Preliminaries

Let R(r), L1 ≤ r ≤ L2 be a regular curve in E3, where L1, L2 are

two real numbers, and r is an arbitrary parameter. Let κ(r), τ(r),

T(r), N(r) and B(r) represent the curvature, torsion, unit tangent
vector, principal normal vector, and binormal vector of R(r),
respectively, which follow [28].

κ� |R′×R″|
|R′|3 ,τ � R′,R″,R‴( )

R′×R″( )2 ,T � R′
|R′|,B� R′×R″

|R′×R″|,N �B×T,

where κ, τ, R, T, N, and B denote the shorthand of κ(r), τ(r), R(r),
T(r), N(r), and B(r), respectively, “×”denotes the cross product,
and (·, ·, ·) denotes the mixed product. T, N, and B form the

Frenet frame of R, which follows [28].

T′
N′
B′

⎛⎜⎝ ⎞⎟⎠ � |R′|
0 κ 0
−κ 0 τ
0 −τ 0

⎛⎜⎝ ⎞⎟⎠ T
N
B.

⎛⎜⎝ ⎞⎟⎠ (1)

Suppose [20].

P r, t( ) � R r( ) + α r, t( ), β r, t( ), γ r, t( )( )
×

T
N
B

⎛⎜⎝ ⎞⎟⎠, L1 ≤ r≤ L2, T1 ≤ t≤T2 (2)

is a surface pencil interpolating R(r), and P (r, t0) = R(r), where
α(r, t), β(r, t), and γ(r, t) are called the marching-scale functions,

T1, T2 are two real numbers, and t0 ∈ [T1, T2].

Let the angle between the principal normal vector N(r) of
R(r) and the surface normal vector n (r, t0) along R(r) be θ(r)

(Figure 1). Because the surface normal vector n (r, t0) is in the

normal plane, and the normal plane is made up of the principal

normal vector N(r) and the binormal vector B(r), the surface

normal vector n (r, t0) can be represented as a linear combination

of N(r) and B(r), that is.

n r, t0( ) � λ r( ) cos θ r( )N + sin θ r( )B[ ], (3)

where λ(r) is a univalent function.

If θ(r) satisfies a specific condition, then the curve R(r) will
become the corresponding characteristic curve of P (r, t). That is

Lemma 2.1 [29]. R(r) is a geodesic of P (r, t) as θ = 0 or π.

FIGURE 1
Angle between n (r, t0) and N(r).
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Lemma 2.2 [13]. R(r) is an asymptotic curve of P (r, t)

as θ � π
2.

Lemma 2.3 [21]. R(r) is a line of curvature of P (r, t) as

θ′ = −τ|R′|.
Lemma 2.4. R(r) is a D-type curve of P (r, t) as sin θ � C






κ2+τ2√
κ ,

where C is a real constant satisfying 0≤C≤ κ




κ2+τ2√ .

In Lemmas 2.1–2.4, θ denotes the shorthand of θ(r).

Proof. According to Eq. 3, suppose the unit surface normal

vector along R(r) is

�n r, t0( ) � cos θN + sin θB, (4)

and the unit Darboux vector of R(r) is [27].

W0 � τT + κB






κ2 + τ2

√ , (5)

if R(r) is a D-type curve of P(r, t), then [27].

W0 · �n r, t0( ) � C. (6)

According to Eqs. 4–6,

W0 · �n r, t0( ) � τT + κB( ) · cos θN + sin θB( )






κ2 + τ2

√

� κ sin θ






κ2 + τ2

√ � C,

then we get

sin θ � C







κ2 + τ2

√
κ

0≤C≤
κ







κ2 + τ2
√( ).

3 Unified necessary and sufficient
conditions for developable surface
pencils interpolating characteristic
curves

The results of developable surface pencils interpolating a

common geodesic, a common line of curvature, and a common

asymptotic curve can be found in [11–13], respectively, but

there is no unified method for constructing developable surface

pencils interpolating these characteristic curves. In this section,

we make up for this shortcoming. First, we recall a known

lemma.

Lemma 3.1 [13]. P(r, t) (Eq. (2)) is developable if and only if

α r, t( ), β r, t( ), γ r, t( )( ) � t − t0( ) α r( ), β r( ), γ r( )( ), (7)
and

β r( )γ′ r( ) − β′ r( )γ r( )[ ] − κ|R′|α r( )γ r( ) + τ|R′| β2 r( ) + γ2 r( )[ ]
� 0,

(8)
where α(r), β(r), and γ(r) are marching-scale functions.

By Eq. 3, Lemma 3.1 can be rewritten as Theorem 3.1.

Theorem 3.1. P(r, t) (Eq. (2)) is developable if and only if the
functions α, β, γ, λ, and θ satisfy Eq. (7) and the following

conditions

λ λ θ′ + τ|R′|( ) + κα cos θ|R′|2[ ] � 0,

β � λ sin θ
|R′| , γ � −λ cos θ|R′| ,

⎧⎪⎪⎨⎪⎪⎩ (9)

where α, β, γ, λ, and θ represent the shorthand of α(r), β(r), γ(r),

λ(r), and θ(r), respectively.

Proof. According to Eqs 2, 7, P(r, t) can be represented as

P r, t( ) � R r( ) + t − t0( ) αT + βN + γB( ). (10)

By taking the partial derivative of Eq. 10 and using Eq. 1, we

obtain that

Pr r, t0( ) � |R′|T,Pt r, t0( ) � αT + βN + γB, (11)

then, according to Eq. 11, the surface normal vector is

n r, t0( ) � Pr r, t0( ) × Pt r, t0( ) � − R′
∣∣∣∣ ∣∣∣∣ γN − βB( ). (12)

By Eqs 3, 12, we get

β � λ sin θ

R′
∣∣∣∣ ∣∣∣∣ , γ � −λ cos θ

R′
∣∣∣∣ ∣∣∣∣ , (13)

substituting Eq. 13 into Eq.8, we obtain

λ λ θ′ + τ|R′|( ) + κα cos θ|R′|2[ ] � 0.

Hence, the theorem is proved.

Obviously, if λ = 0, P(r, t) is the tangent surface pencil of R(r),
that is, it is always developable, so next, we consider only the case

λ ≠ 0.

By Lemmas 2.1–2.4, if θ further satisfies a particular

condition, the curve R(r) can become the corresponding

characteristic curve on the developable surface, so we get

Theorem 3.2.

Theorem 3.2. P(r, t) (Eq. (2)) is a developable surface pencil
interpolating R(r) as a common characteristic curve if and only if

the functions α, β, γ, λ, and θ satisfy Eqs. (7), (9), and the

following conditions:

1. If this characteristic curve is a geodesic, then θ = 0 or π.
2. If this characteristic curve is an asymptotic curve, then θ � π

2.

3. If this characteristic curve is a line of curvature, then

θ′ = −τ|R′|.
4. If this characteristic curve is a D-type curve,

then sin θ � C





κ2+τ2√
κ (0≤C≤ κ





κ2+τ2√ ).

Theorem 3.2 unifies the conditions for interpolating four kinds

of characteristic curves to construct developable surface pencils, it

not only contains the results of [11–13], but also puts forward

interpolating a D-type curve to construct developable surface

pencil, simultaneously, which is not involved in all current studies.
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According to Theorems 3.1 and 3.2, the functions α, β, and γ
of the developable surface are only related to a function λ and an

angle θ, we can change the shape of the developable surface by

choosing different λ, and make the given curve become any kind

of characteristic curve on the developable surface by choosing

different θ. Therefore, the method in this study has better

interactivity than other methods. Now we continue to use this

method to complete the study of developable surface pairs

interpolating natural and conjugate curve pairs.

4 Developable surface pencil pairs
interpolating natural and conjugate
curve pairs as common characteristic
curves

Developable surface pencil pairs interpolating natural and

conjugate curve pairs as asymptotic curves have been proposed in

[25]. To make this result complete, we continue to give

developable surface pencil pairs interpolating these two kinds

of curve pairs as the other three kinds of characteristic curves.

Definition 4.1 [25]. Given a unit speed curve R0(s), L1 ≤ s ≤
L2. R1(s) = ∫N0(s)ds and R2(s) = ∫B0(s)ds are called the natural

mate curve and the conjugate mate curve of R0(s), respectively,

where N0(s) and B0(s) are the principal normal vector and

binormal vector of R0(s), respectively. {R0(s), R1(s)} and {R0(s),

R2(s)} are called the natural curve pair and the conjugate curve

pair, respectively.

Definition 4.2 [25]. Let the developable surface pencils Pi(s, t)

interpolate Ri(s), i = 0, 1, 2, {P0(s, t), P1(s, t)} and {P0(s, t), P2(s, t)}
are called the natural developable surface pencil pair and the

conjugate developable surface pencil pair, respectively.

Let{Ti, Ni, Bi}, κi, and τi denote the Frenet frame, curvature,

and torsion of Ri(s), i = 0, 1, 2, respectively.

According to Theorem 3.1, if t0 = 0 and θi ≠ π
2, then

Pi s, t( ) � Ri s( ) − tλi
θi′ + τ i
κi cos θi

T i − sin θiN i + cos θiBi( ),
L1 ≤ s≤ L2, T1 ≤ t≤T2, i � 0, 1, 2,

(14)

where θi are the angles between the surface normal vectors ni(s,
t0) along Ri(s) and the principal normal vectors Ni of Ri(s), λi are

functions that control the shapes of Pi(s, t).

According to Theorem 3.2, substituting θi = 0 or π, θi′ � −τi,
and sin θi � C






κ2i +τ2i

√
κ2i

into Eq. 14, respectively, the following three

theorems can be obtained.

Theorem 4.1. Ri(s) are common geodesics of Pi(s, t) (see Eq.

(14)) if and only if

Pi s, t( ) � Ri s( ) ∓ t
λi
κi

τiT i + κiBi( ), i � 0, 1, 2. (15)

Theorem 4.2. Ri(s) are common lines of curvature of Pi(s, t)

(Eq. (14)) if and only if

Pi s, t( ) � Ri s( ) + tλi sin θiN i − cos θiBi( ), i � 0, 1, 2, (16)
where θi′ � −τi

Theorem 4.3. Ri(s) are common D-type curves of Pi(s, t) (see
Eq. (14)) if and only if

Pi s, t( ) � Ri s( ) − tλi giT i − sin θiN i + cos θiBi( ), i � 0, 1, 2,

(17)
where gi � (sin θi)′+τi cos θi

κi cos2θi
, sin θi � C






κ2i +τ2i

√
κi

, (0≤C≤ κi




κ2i +τ2i

√ ).

5 Example

Given a unit speed slant helix [25].

R0 s( ) � cos 3 s + 9 cos s
12

,
sin 3 s + 9 sin s

12
,
− 


3
√

cos s
2

( ).
The Frenet frame, curvature, and torsion of R0(s) are

T0 � −3
4
sin s − 1

4
sin 3 s,

3
4
cos s + 1

4
cos 3 s,



3

√
2

sin s( ),
N0 � −



3

√
2

cos 2 s,−


3

√
2

sin 2 s,
1
2

( ),
B0 � 3

4
cos s − 1

4
cos 3 s,

3
4
sin s − 1

4
sin 3 s,



3

√
2

cos s( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
κ0 �



3

√
cos s| |, τ0 �



3

√
sin s.

According to Definition 4.1, the natural mate curve is

R1 s( ) � −


3

√
4

sin 2 s,



3

√
4

cos 2 s,
s

2
( ),

and the conjugate mate curve is

R2 s( ) � 3
4
sin s − sin 3 s

12
,−3

4
cos s + cos 3 s

12
,



3

√
2

sin s( ).
By [30], the Frenet frame, curvature, and torsion of R1(s) are

T1 � −1
2



3

√
cos 2 s,



3

√
sin 2 s,−1( ),

N1 � sin 2 s,−cos 2 s, 0( ),
B1 � 1

2
cos 2 s, sin 2 s,



3

√( ),
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

κ1 �


3

√
, τ1 � 1.

Also, the Frenet frame, curvature, and torsion of R2(s) are

T2 � 3 cos s − cos 3 s
4

,
3 sin s − sin 3 s

4
,



3

√
2

cos s( ),
N2 � ε

2



3

√
cos 2 s,



3

√
sin 2 s,−1( ),

B2 � ε −3 sin s + sin 3 s
4

,
3 cos s + cos 3 s

4
,



3

√
2

sin s( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
κ2 �



3

√
sin s| |, τ2 � − 


3
√

ε cos s,

where ε = sgn τ0.
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Case 1. By taking λi = −κi in Eq. 15, {P0(s, t), Pi(s, t)}

interpolating {R0(s), Ri(s)}, (i = 1, 2) as common geodesics are

shown in Figure 2, and

Pi s, t( ) � Ri s( ) + t τiT i + κiBi( ),
i � 0, 1, 2, −π

2
≤ s≤

π

2
,−0.2≤ t≤ 0.2( ).

Case 2. By taking θ0 �


3

√
cos s, θ1 � −s, θ2 � −ε 


3
√

sin s,

and λi = s in Eq.16, {P0(s, t), Pi(s, t)} interpolating {R0(s),

Ri(s)}, (i = 1, 2) as common lines of curvature are shown in

Figure 3, and

Pi s, t( ) � Ri s( ) + ts sin θiN i − cos θiBi( ), i � 0, 1, 2,

−π
2
≤ s≤

π

2
,−0.2≤ t≤ 0.2( ).

Case 3. By taking

C � 1
4
, sin θ0 � 1

4
sec s, cos θ0 � −












1 − 1

16
sec2 s

√
, sin θ1 � 1

2


3

√ ,

cos θ1 � −



11
12

√
, sin θ2 � 1

4
|csc s|, cos θ2 �












1 − 1

16
csc2 s

√
, λi � s.

In Eq. 17, {P0(s, t), Pi(s, t)} interpolating {R0(s), Ri(s)}, (i = 1, 2), as

common D-type curves are shown in Figure 4, and

Pi s,t( )�Ri s( )−ts sinθi( )′+τ icosθi
κicos2θi

T i−sinθiN i+cosθiBi( ),i�0,1,2,
where − 0.2 ≤ t ≤ 0.2, and if i = 0, 1, then −π

3 ≤ s≤ π
3; if i = 2, then

−π
3 ≤ s≤ − π

8 and
π
8 ≤ s≤

π
3.

In Figures 2–4, the red curve, the green curve, and the blue

curve represent R0(s), R1(s), and R2(s), respectively.

FIGURE 2
{P0(s, t), Pi(s, t)} interpolating {R0(s), Ri(s)}, (i = 1, 2) as common
geodesics.

FIGURE 3
{P0(s, t), Pi(s, t)} interpolating {R0(s), Ri(s)}, (i = 1, 2) as common
lines of curvature.
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6 Conclusion

We give a unified method for constructing developable

surface pencils interpolating four kinds of characteristic

curves. This method not only contains the results of [11–13],

but also includes the method for constructing a developable

surface pencil interpolating a common D-type curve. We find

that the marching-scale functions are completely determined by

a univalent function λ and an angle θ, where λ controls the shape
of the developable surface and θ determines which kind of

characteristic curve the given curve is. Therefore, the method

in this study is more general and interactive than other methods.

Furthermore, we obtain specific expressions of developable

surface pencil pairs interpolating natural and conjugate curve

pairs as common geodesics, lines of curvature, and D-type curves,

respectively, which complete the results of [25].
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