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The construction of large-scale integrated photonic circuit cannot be

separated from the important role played by silicon-based optoelectronic

devices. As a basic and important link in on-chip photon propagation, beam

splitting is of great significance for the efficient utilization of sources and the

compact integration of optoelectronic devices. It is widely used in power

splitting, polarization separation, wavelength division multiplexing and other

scenarios. This paper reviews the on-chip beam splitting methods in recent

years, which are mainly divided into the following categories: y-branch,

multimode interference coupling, directional coupling, and inverse design.

This paper introduces their research status, including optimization design

methods, functions and applications in large-scale quantum chips and

optoelectronic hybrid integration, looking forward to providing a reference

for the further research of beam splitting methods and the wide application of

beam splitters in the frontier field in the future.
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Introduction

Compared with the optical system composed of traditional optical devices, the

photonic integrated circuit composed of on-chip optical devices has the advantages of

wide bandwidth, easy implementation of dense wavelength division multiplexing

(WDM), compact structure, light weight, low energy consumption, high reliability,

easy integration, and compatibility with traditional CMOS technology. Typical

integrated optical systems include generation [1–4], coupling [5–34], splitting [35–81],

modulation [82–98], and detection [99–102] of photons. Among them, on-chip beam

splitting is not only the key link of photon propagation, but also an important part of

integrated devices such as Mach Zehnder interferometer (MZI) [103, 104] and

microcavity [105–107]. It is closely related to the efficient utilization of sources and

low loss propogation. So far, with the support of electromagnetic theory, optical

waveguide theory and coupled mode theory, researchers can design splitters with

different functions according to different applications, including power splitters,

polarization splitters, wavelength division multiplexers, mode multiplexers, etc. Over

the years, researchers have optimized the basic beam splitting devices for many times

through the application of special structural design and optimization algorithm, and
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realized beam splitting devices with rich functions, which laid the

foundation for the construction of large-scale integrated optical

systems. They are widely used in quantum sensing, quantum

information processing and other fields.

Nowadays, several classical structures used for on-chip beam

splitting mainly include y-branch waveguide [35–51], splitters

based on multimode interference (MMI) coupling [52–69],

splitters based on directional coupling (DC) [70–75], and

splitters based on inverse design [76–81]. Among them, the

design principle of y-branch waveguide is relatively simple,

and the separation of mode and power is mainly realized

through the y-type structure design. However, the y-branch

power splitter of traditional waveguide is limited by the

radiation loss at the branch angle, resulting in the large

transverse size of the device. Therefore, the y-branch power

splitter based on photonic crystal waveguide is introduced,

and its branch angle can reach 120°, which greatly reduces the

footprint of the devices. At the same time, splitters based onMMI

is a usual beam splitting method at present. Compared with other

devices, it has the advantages of lower insertion loss, wider

frequency band, easier fabrication process and better

tolerance. It has been widely used in optical devices such as

power splitter, polarization splitter, WDM and so on. The MMI

splitter uses the self-imaging effect to determine the structural

parameters of the multimode waveguide, and carries out phase

interference between the excited high-order modes in the

incident waveguide, so as to periodically reproduce the input

image along the propagation direction of the guided wave. By

analyzing the propagation of the light field and following the

existing design principles, multi-channel uniform power output

can be realized at the output. In addition, if the beat length

difference between TE and TM polarized light is required to be 0,

the purpose of polarization independent design can be achieved

[108]. As another important component of the beam splitting

methods, the DC is composed of two similar single-mode

waveguides. By using the mode coupling principle and

adjusting the length of the coupling region, the basic

separation of power and polarization can be achieved.

Different from the above design methods based on traditional

structures, the concept of inverse design has also been widely

used in the design of silicon-based optoelectronic devices in

recent years. In this method, an ideal target value is preset first,

and then the device is programmably designed by using topology

optimization [77], particle swarm optimization [81], direct

binary search [76, 78] and other optimization algorithms, so

as to obtain the structure that meets the functions. The splitter

designed by this method is often compact and flexible, but it also

has the problems of many iterations and long calculation time.

Based on the above analysis, the four main beam splitting

methods are compared as shown in the following Table 1.

In this paper, the on-chip beam splitting methods in recent

years are reviewed, the research progress, optimization design

methods, implementation functions and applications of several

main beam splitting methods are introduced, and the

applications of on-chip beam splitting in large-scale quantum

chips are prospected.

Design of splitters

Y-branch splitters

As one of the most basic integrated optical devices, the

y-branch waveguide is composed of one input waveguide and

two output waveguides, which can confine photons to the y

waveguide for distribution and propogation. On the one hand,

uniform power splitting can be achieved by using the

longitudinal symmetric design of the y-branch, and the basic

y-branch structure can be optimized, such as replacing the

common y-branch with the multimode tapered branch [37],

and the geometry at the branch is divided into multiple width

values to be optimized [47], the tapered branch model is

confirmed to be improved about 4 dB compared with the

normal branch model, and no variation is observed in the

wavelength range of 1260 nm-1360nm, both the bandwidth

and power uniformity of its output port have been

significantly improved. And it is possible to achieve any

proportion of power output through the asymmetric design of

the branch [109]. On the other hand, if some special structures

are combined on the basis of ordinary y-branch, more abundant

functions such as polarization beam splitting can be realized. For

example, in the polarization splitter based on hybrid plasma

y-branch (HPYB) waveguide proposed by Hu in 2016 [35]

(Figure 1A), Ag strip waveguides are added to the side and

upper surface of the traditional y-branch waveguide respectively,

so that the input TE mode and TM mode can excite the vertical

and horizontal hybrid plasma modes respectively. The device is

insensitive to wavelength and it has the advantages of

compactness, wide bandwidth (285 nm), and has a large

fabrication tolerance of 210 nm. Another method to realize

polarization beam splitting by using y-branch was proposed in

2017. Polymer waveguide and a high birefringence material play

a key role here. The relationship between the refractive index of

the two materials changes with the mode changing. Using this

principle, TE polarization and TM polarization can be separated.

For example, the device shown in Figure 1B, the birefringent

material“Reactive Mesogen (RM)” is inserted into a y-branch

optical waveguide to extract the TE polarized mode. In this

device, RM has the higher refractive index for TE polarization

compared with the CO-polymer waveguide, so that the TM

polarized light follows the CO-polymer waveguide while the

TE polarized light is coupled into the RM waveguide through

the taper structure [36].

In addition to the traditional strip y-branch waveguide,

subwavelength grating (SWG) waveguide, photonic crystal

waveguide, surface plasmon polaritions (SPPs) and 3D
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polymer are also methods to realize y-type splitting. The

photonic crystal power splitter [38] can achieve 99.2% of the

total transmission efficiency. It mainly uses the plane wave

expansion method to study the dispersion characteristics

between guided modes in the photonic band gap. The ultra-

wide band y splitter based on planar terahertz plasma

metamaterials [42] has similar dispersion relationships and

mode characteristics with SPPs. As for the 3D polymer beam

splitting using laser direct writing technology [48–51], we can

also see the performance of y-branch (Figure 1C). However, a

challenge is that due to technical limitations, the traditional

y-branch single-mode waveguide is difficult to measure, and

can only be made into multi-mode waveguide for experiments

[49]. Since SWG can increase the degree of freedom of waveguide

design, effectively reduce the footprint of waveguide devices, and

realize the low loss coupling between single-mode fiber and

waveguide. It can not only be applied to design the beam

splitting structure, but also introduce delay characteristics into

beam splitting. It is often used in the design of waveguide devices.

For the two functions of power beam splitting and polarization

beam splitting, Nib combined them with a splitter using SWG

and hybrid plasma grating in 2018 [44]. TE mode can be divided,

while TM mode is reflected by hybrid plasma grating. By this

way, polarization selection and power distribution are realized

simultaneously by using a single device. The device is

ultracompact, and the transverse size is only 6.2 μm.

As a dominant device in large-scale photonic integration, the

cascaded y-branch waveguide [40, 41] can achieve 2n channel

uniform output. The y-branch has achieved 1 × 256 [40] splitters,

which is of great significance for the efficient utilization of

sources and large-scale photonic integrated chips. As a result,

the ultralow-loss y-branch splitter is the goal of many researchers

at present, which can be used in ultralow-loss photon

propogation and optical interconnection. For example, in

reference [41], a 1 × 64 cascaded y-branch splitter based on

silica-on-silicon material platform for telecommunication

applications is proposed. The result confirms very low

insertion loss 0f −19.28dB, which is the lowest loss value in

cascaded 1 × 64 splitters as far as we know.

MMI splitters

The beam splitter based onMMI coupling principle is a more

mainstream beam splitting method in recent years. Compared

with the above y-branch splitter, it is not limited by the radiation

loss of the branch angle, so the transverse size is greatly reduced.

According to the general design principle, it can realize multi

inputs and multi outputs distribution. In recent years, for

different separation characteristics, a number of improved

designs for multimode waveguides have emerged, which can

efficiently realize the functions of power beam splitting [60–67],

polarization beam splitting [52–59], wavelength division

multiplexing (WDM) [110–114], mode division multiplexing

(MDM) [68, 115, 116], and the power splitter based on MMI

coupling is easy to realize polarization-insensitive design. By

analyzing the propagation of the photons, it is known that the

position of the reproduced n-double image is:

L � 3Lπ
N

TABLE 1 Comparison of four main beam splitting methods.

Beam
splitting
method

Principle Characteristics Performance Structure

y-Branch y design simple structure and principle,
radiation loss at the branch

MMI self-imaging effect parellel exit, smaller lateral
dimension

low insertion loss, high transmittance, high
extinction ration, becoming more compact

DC mode coupling
phase matching

longer lateral dimension, coupling
length affects spectral ratio

inverse design goal-oriented
related algorithms

flexible design, long calculation
time

ultra-compact, low insertion loss, flexible
design, arbitrary splitting ratio, arbitrary
direction output
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Where Lπ is the beat length, which is defined as:

Lπ � π
β0 − β1

β0 and β1 are propagation constants of the zero order mode

and the first order mode, respectively. The coordinate positions

of input and output waveguides are defined as:

xi � 2i − (N + 1)
2N

W0

According to the above design principles, different MMI

devices can be designed according to functional requirements.

For the polarization beam splitting, the multimode

waveguide of MMI coupler is often specially designed to allow

only one mode to pass through and the other mode to cut off. It is

found that, on the one hand, multimode waveguides can be

combined with waveguides of other types or materials to achieve

the purpose of polarization beam splitting. For example, Guan

combined the MMI coupler with the hybrid plasmonic

waveguide [53]. Due to the hybird plasmonic effect, the

multimode region covered by the metal strip realized the

imaging of the TE polarization mode, while the higher-order

TM mode was hardly excited without imaging. The multimode

region of the device under this method is only 1.1 μm. Compared

with polarization beam splitter based on evanescent field

coupling, the length is shorter and the fabrication is simpler.

The combination of multimode waveguide region and

asymmetric slot multimode silicon waveguide [52] (Figure 2A)

is also an effective means to realize polarization separation. TE

mode can enter the through port through multimode waveguide,

while TMmode forms an image at the cross port. In addition, the

compact polarization beam splitter combines silicon waveguides

and silicon nitride waveguides [54], and can propogate two

polarizations to waveguides of different materials respectively.

FIGURE 1
Optimal design of y-branch beam splitter. (A) Structural diagram of y-branch polarization beam splitter of hybrid plasma waveguide [35]. (B)
Schematic diagram of polarization beam splitter inserted with high birefringence material [36]. (C) Schematic diagram of 3D polymer beam splitting
using laser direct writing technology [48]. Figure reproduced with permission from: (A), © 2016, Institute of Electrical and Electronics Engineers
(IEEE); (B), © 2017, Nature Portfolio; (C), © 2021, Institute of Electrical and Electronics Engineers (IEEE).
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This method can control two polarization states independently,

and has the advantages of low insertion loss, high polarization

extinction ratio and width response.

On the other hand, introducing other micro/nano structures

into MMI couplers [57, 59] is also an interesting method to

realize polarization beam splitting. For example, a photonic

crystal structure is introduced in the multimode region

(Figure 2B), and different polarizations are reflected and

transmitted by optimizing the photonic crystal band-gap

structure. Moreover, the introduction of an inclined grating

(Figure 2C) on the basis of the MMI coupling structure can

achieve accurate control of the structural anisotropy and allow

independent selection of the beat length of two orthogonal

polarization states. The structure achieves that the insertion

loss is less than 1 dB and extinction ratio greater than 20 dB

in the broadband range of 131 nm.

Power beam splitting is also an important function of MMI

coupler. The classical splitters based on MMI couplers and

directional couplers are often sensitive to polarization, so the

polarization insensitive power splitter is a research hotspot in

recent years. It is found that the polarization insensitivity can be

achieved by improving the classical MMI coupler. On the one

hand, for an independent MMI coupler, the effective refractive

index of TE and TM modes can be changed depending on the

special design of multimode structure, so that the coupling

intensity of the two modes is equal, so as to realize

polarization insensitivity. For the special design of multimode

region, there are mainly two methods: introducing SWG and

introducing shallow etching region. For example, The SWG with

gradual width is etched in the multi-mode region of MMI [60,

61]. The most significant advantage of them is very compact.

Among them, the multi-mode region in Figure 3A is only

1.92 μm. Particularly, the structure uses extensible method to

convert fundamental mode to higher order modes thus realizing

a compact mode order power division converter, with a

conversion efficiency of 99% [62]. The shallow etching area is

designed in the conical area in front of the output waveguide. In

this case, the TM mode is equivalent to output through a

y-branch waveguide [64]. For the independent MMI coupler,

there is also a polarization independent design, which shifts the

focus to the conical region in front of the multimode region

(Figure 3B), converts all waveguides into grating waveguides, and

uses different gratings to separate the polarization states [67].

However, compared with the above design methods, this method

has relatively large loss and is not compact enough.

On the other hand, the cascaded MMI coupler [63] can also

be used in polarization independent design, where phase shifter is

introduced between a 1×N and a N×N MMI couplers, and the

same power output with different polarizations can be achieved

by optimizing the length of the phase shifter. Similar structures

can also be applied to multi-channel optical switches and multi-

channel optical modulation.

FIGURE 2
MMI coupling structure for polarization beam splitting. (A)MMI polarization beam splitter based on slot waveguide [52]. (B) The photonic crystal
structure is etched in the multimode region, and the two polarizations are separated from each other in the opposite direction [57]. (C) The inclined
grating structure is used to replace the traditional MMI to realize the independent selection of two orthogonal polarization [59]. Figure reproduced
with permission from: (A), © 2014, Institute of Electrical and Electronics Engineers (IEEE); (B), © 2019, Institute of Electrical and Electronics
Engineers (IEEE); (C), © 2019, Institute of Electrical and Electronics Engineers (IEEE).
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MMI couplers are also suitable for designing WDM and

MDM. To realize this function, several MMI couplers need to be

cascaded or a single MMI coupler needs to be specially designed.

Two 3 × 3 MMI, and three phase shifters are introduced. The

input fundamental mode, first-order mode and second-order

mode can be converted into fundamental mode output at the

same time to realize mode demultiplexing [115]. The same design

idea can also be applied to WDM. Two cascaded 4 × 4 MMI

couplers [112] (Figure 4A), or three cascaded 1 × 2MMI couplers

[113] (Figure 4B) can realize the four channel WDM, increasing

the number of input and output ports of the MMI coupler,

maintaining the best power separation characteristics, and

expanding the performance of the device to support multiple

channels. In recent years, an independent angle MMI [114] for

WDM has been proposed. It has the advantages of simple design

and compatible manufacturing process. Since the processing

temperature is less than 400°C, a multi-layer integration

scheme can be realized. By combining a single MMI coupler

with a y-branch waveguide [116], mode conversion and

multiplexing can be realized. Due to the introduction of sub

FIGURE 3
MMI coupling structure for power beam splitting. (A) The SWGwith variable width is etched in themultimode region, and the output is designed
as slotwaveguide to realizemode conversion [60]. (B) Introducing conical grating structure in front ofmultimode region [67]. Figure reproducedwith
permission from: (A), © 2015, Institute of Electrical and Electronics Engineers (IEEE); (B), © 2021, Institute of Electrical and Electronics Engineers
(IEEE).
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FIGURE 4
MMI coupling structure for WDM and MDM. (A) Two 4 × 4 MMIs are cascaded for WDM [112]. (B) Three 1 × 2 MMIs are cascaded for WDM [113].
(C)MMI based on SWG is combinedwith y-branch to realizemode conversion andmultiplexing [116]. Figure reproducedwith permission from: (A), ©
2021, Institute of Electrical and Electronics Engineers (IEEE); (B), © 2021, Springer; (C), © 2018, Institute of Electrical and Electronics Engineers (IEEE).

FIGURE 5
Optimal design of symmetrical DC. DC with bridged silicon waveguide etched with subwavelength grating [118]. Figure reproduced with
permission from: © 2020, Elsevier.
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wavelength gratings (Figure 4C), this paves the way for further

improving the transmission and bandwidth capacity of photon

interconnection.

DC splitters

Similar to the above two structures, DC is often used for

power and polarization separation, and it is also an important

part of other integrated optoelectronic devices such as MZI and

microcavity. Here we divide directional couplers into symmetric

and asymmetric structures to discuss their research progresses.

The common symmetrical DC has a simple structure, which

is composed of two parallel straight waveguides or two

longitudinally symmetrical curved waveguides. It works by

mode coupling with waveguides in the middle. It is often used

as a 3 dB power beam splitter and combiner, such as the beam

splitting and combiner of MZI. By changing it without changing

its symmetry, polarization beam splitting and multi-channel

power beam splitting can be realized. For example, adding a

silicon waveguide for bridging between two parallel waveguides

[117] can realize the separation of polarization states, and the

polarization extinction ratio of TEmode and TMmode can reach

about 40 dB. The introduction of subwavelength grating

structure into symmetrical directional coupler [118] is an

effective method to realize polarization independent power

beam splitting. As shown in Figure 5A, subwavelength

gratings are etched on both sides of the intermediate input

waveguide and the inner side of the output waveguide. The

effect is to enhance the coupling strength of one polarization

state and have little effect on the other polarization state, so that

the coupling lengths of the two modes are equal. Recently, a

similar coupling method has been used in the reference [119].

The difference is that the central input waveguide uses a strip

FIGURE 6
Optimal design of asymmetric DC. (A)DCcomposed of different types of waveguides [70]. (B)CascadedDC for polarization beam splitting [127].
(C) Polarization splitter with periodic etched structure and curved waveguide [131]. Figure reproduced with permission from: (A), © 2011, Optical
Society of America (OSA); (B), © 2021, Optical Society of America (OSA); (C), © 2020, Optical Society of America (OSA).
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waveguide combined with a hybrid plasma waveguide, and the

power splitter is only designed for TE mode, achieving an insertion

loss of 0.56 dB and an extinction ratio of 23.74 dB. To realize multi-

channel power beam splitting, it can be combined with slot

waveguide to determine the coupling length and waveguide gap,

so as to realize four-channel power output [73]. However, compared

with the multi-channel power splitter using MMI coupler, this

method requires a larger footprint.

In recent years, asymmetric DC have more abundant research

results. They can design beam splitting devices more flexibly to

achievemore compact area and better performance. Asymmetric DC

designed for polarization beam splitting are particularly abundant.

Here, the design ideas of asymmetric DC are roughly divided into the

following categories: the first is to introduce a SWG structure into the

traditionalDC, including the grating as a bridgewaveguide [120], and

etching the SWG on the strip waveguide at both ends of the coupler

[121–123]. Among them, a representative work is proposed in

reference [124], two SWG waveguides are applied in 2 ×

2 adiabatic 3 dB coupler, which support two transverse electric

modes and achieve an adiabatic mode evolution of the two-

waveguide system for broadband 3 dB power splitting with

130 nm wavelength range. This is similar to the reason why

symmetrical directional couplers introduce gratings. The scattering

characteristics of subwavelength gratings provide more flexible

design degrees of freedom for the design of polarization beam

splitters, which can often enhance the coupling strength of one

polarization mode without affecting the other polarization. The

second is to make several different types of waveguide structures

work together, so as to achieve the effect that a single waveguide type

is difficult to achieve. At present, the existing combination forms

include the combination of GaAs nanowires and hybrid plasma

waveguides [125], the combination of silicon nanowires and nanobelt

waveguides [70] (Figure 6A), and the combination of slot waveguides

and waveguides embedded with gratings [126]. The third common

design scheme is the curved directional coupler [71, 127–130]. For

example, conical curved waveguide is introduced into the curved DC

part, which enhances the coupling strength and significantly shortens

the coupling length, so that higher coupling and conversion efficiency

can be obtained in a wide bandwidth with a small footprint [129].

This idea is also applicable to polarization beam splitting and mode

multiplexing. Another bent DC used in a thermo-optic switch is

proposed to replace the multimode interferometers or straight DCs,

so that achieves a coupling ratio of 50%:50%, as well as low excess loss

over a broadband.

FIGURE 7
Design of beam splitter based on inverse design. (A) Simulation diagram of power splitter based on topology optimization algorithm [77]. (B)
Dual mode power splitter based on nonlinear DBS algorithm and topology optimization [78]. Figure reproduced with permission from: (A), © 2017,
Conference on Lasers and Electro-Optics (CLEO); (B), © 2018, Optical Society of America (OSA).
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In addition, as shown in Figure 6B, by combining the similar

curved waveguides with the slot waveguide, the TE extinction

ratio is greater than 30dB, which is the first high-performance

silicon-based splitter operating in the 2 μm band [127]. In

addition to the above three common design ideas, in recent

years, a polarization beam splitter with etched periodic structure

and curved waveguide has been proposed [131], with extinction

ratio of 36 dB for TE polarization. The advantage is that more

periodic structures and curved waveguides are used (Figure 6C),

and the polarization extinction ratio can continue to improve

without significantly affecting the insertion loss of the

output port.

These results will have great application value in the field of

optical interconnection and optical communication. As the beam

splitting part of integrated devices, they have great development

potential in large-scale quantum chips.

Inverse designed splitters

Different from the above three traditional design methods of

micro nano structures, the methods using concept of inverse

design often deduces the corresponding structural parameters

from the performance indicators of devices, which can not only

realize the optimal design of devices, but also use programmable

methods to design silicon-based optoelectronic devices with

adjustable functions. At present, there are inverse design

splitters based on a variety of optimization algorithms, such as

direct binary search algorithm, topology optimization, gradient

descent optimization algorithm, and combination of topology

constraints and direct binary search algorithm. In 2015, Shen

used the direct binary search algorithm (DBS) [76] to iteratively

calculate the pixel states in the beam splitting structure step by

step. This method uses the concept of free-form metamaterials in

the polarization beam splitter, allowing the geometric structure of

metamaterials to be optimized, making the device very compact.

It is experimentally proved that an average transmission

efficiency of greater than 70% and an extinction ration greater

than 10 dB within a bandwidth of 32 nm are realized. As for the

fabrication, a single lithography step is enough for the fabrication

of the splitter and input/output waveguides and the device is

tolerant to fabrication errors up to ±20 nm in the device

thickness. However, its transmittance does not reach the level

of the traditional beam splitter. Therefore, to ensure the excellent

transmission performance of the device and to realize the

compact and flexible design of the structure is the forward

direction of the splitter based on inverse design. Compared

with introducing multiple etch points in multimode structure,

FIGURE 8
Application of splitter in large scale quantum chip and optoelectronic hybrid integration. (A) Themicroscope image of fabricated 4 × 4 Si switch
with hybrid-integrated InP-SOA [154]. (B) Generalized multipath delay selection for large scale quantum nano photonic chips [153]. Figure
reproduced with permission from: (A), © 2018, Institute of Electrical and Electronics Engineers (IEEE); (B), © 2021, Nature Portfolio.
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changing the edge shape of the splitter by using topology

optimization is an effective method to realize compact power

beam splitter. As shown in Figure 7A, it uses topology

optimization and gradient descent optimization algorithms to

achieve uniform three-way power output [77]. It is worth noting

that the splitter is designed directly incorporates fabrication

constraints and the device have no small features which

would be difficult to resolve with photolithography. The

splitter has a insertion loss of 0.642 ± 0.057 dB and power

uniformity of 0.641 ± 0.054 dB. In addition to the above two

schemes, in 2018, Chang proposed to combine topological

constraints and nonlinear direct binary search algorithm [78]

to realize a dual-mode 3 dB power splitter (Figure 7B). In this

paper, Matlab is also used to randomly generate different initial

mode distributions, select multiple device sizes, and then perform

iterative calculation one by one, so as to select the structure size

with the best performance, making the whole device more

reliable. Finally, the footprint is only 2.88 μm×2.88 μm. The

crosstalk of both modes is less than −20 dB within the

bandwidth of 60 nm. It is found that the device is also robust

to fabrication errors.

Adjoint method is a technique that allows the gradient of an

objective function to be computed with respect to an arbitrarily large

number of degrees of freedom using only two full-field simulations

[132]. In the reference [79], the inverse design problem thus reduces

to finding the permittivity and electric fields which simultaneously

satisfy physics and the device performance constraints. Compared

with other methods, the adjoint methods are more suitable for

gradient-based design of electromagnetic structures with respect to a

large number of free parameters. Meanwhile, it can be generalized to

nonlinear optical devices to create new possibilities.

Generally speaking, Due to the increase of design freedom

and the use of various optimization algorithms, the footprint of

inverse design splitters is compact, which is two orders of

magnitude smaller than that of conventional one. However,

insertion loss, extinction ratio and other parameters have no

obvious advantages compared with that of traditional design

methods. The complexity of inverse design splitters mainly

depends on the complexity of algorithm, which is also closely

related to our requirements for performance and function. As for

the fabrication, the processing of inverse design splitters mainly

depends on lithography and is compatible with CMOS process

and shows the robustness to manufacturing tolerance, which

requires that the processing constraints be considered in the

design.

Application of splitters

In general, as one of the most basic on-chip passive devices,

optical beam splitter is an important part of a variety of on-chip

active and passive devices and systems. Different beam splitting

methods can split light waves from multiple angles and

dimensions. The ultracompact integrated optical system,

cutting-edge optoelectronic integration technology and large-

scale quantum chip may contain hundreds of active and passive

devices, which are closely linked and work together to realize the

specific functions of the entire optical chip. Therefore, the

applications of on-chip beam splitters are discussed from

three aspects: related integrated optical devices, large-scale

quantum chips and optoelectronic hybrid integrated chips.

Integrated optical devices including splitters mainly include

optical interferometer [133–138], optical coupler [139–141],

optical modulator [82–98], optical switch [142], optical router

[143], mixer [144], optical isolator [145]. They play different

roles in wavelength division multiplexing, time division

multiplexing, space division multiplexing and other

multiplexing systems, so as to meet the growing demand for

communication capacity. Taking the optical modulator and

optical switch as an example, the beam splitting structure is

often combined with the MZI, and the signal is modulated

through the refractive index phase difference of different

beam splitting channels through electro-optic, thermo-optic,

acousto-optic and other effects. For example, the Y-branch is

used to split or combine the thermo-optic MZI [146], with an

extinction ratio of −16.5 dB, a rise time of 10 μs and a descent

time of 20μs. The power consumption of π phase shift is 0.39w.

The micro ring structure with directional coupling beam splitter

can be used not only for optical modulation, but also for micro

ring filter [147] and micro ring switch array. As for the optical

coupler, in the DAS underwater communication system

proposed in recent years [139], it is convenient to use the

optical coupler to divide the source into two. One beam of

light is modulated by the acousto-optic modulator to generate

the probe optical pulse with the frequency offset of MHz. The

implementation of optical router cannot be separated from the

participation of beam splitter. In the paper [143], Chen Kaixuan

proposed using 3 dB splitter and optical switch to simultaneously

control and route multiple modes, which is of great significance

in simplifying network system routing, sharing switch resources,

reducing power consumption and reducing size. As early as 2007,

Tao Dongjie used the splitter based on MMI to realize the

compact and easy to integrate optical isolator for TM mode

isolation [145]. It can be seen that a large part of integrated

optical devices are inseparable from the beam splitting structure.

They are often connected to each other and become an important

part of the optical system on chip.

In recent years, large-scale quantum chips, quantum

propogation and manipulation in large-scale integrated optical

paths have become a frontier research hotspot. On the one hand,

from the research fields of quantum state preparation and

quantum theory, the splitter can play a role in the following

three aspects [148]. First, the beam splitter can participate in the

preparation of quantum entanglement sources. For example, the

symmetric splitter can prepare EPR quantum entangled states

[149]; Second, the splitter can participate in the quantum
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operation generated by optical transformation, mainly including

complex fractional Fourier transform, entangled fractional

Fourier transform, and the operation of increasing and

decreasing photons [150]; Third, the splitter can be used to

simulate quantum dissipation in combination with conditional

measurement. For example, the input is in vacuum state and the

amplitude attenuation channel is simulated [151]. On the other

hand, from the research of large-scale integrated optical quantum

chips in recent years, the beam splitter is an indispensable part.

For example, in the new on-chip high-dimensional quantum

state preparation and regulation method [152] published by

Wang on Science in 2018, 122 MMI beam splitters and MZIs

with unequal arm lengths are used for 16 on-chip single photon

wavelength division multiplexing, realizing the loading of multi-

path information, so that each photon exists in multiple optical

waveguides in the form of superposition of quantum states, with

strong correlation and entanglement, up to 15 × 15. This research

result is of great significance for high-precision, programmable,

arbitrary general-purpose quantum manipulation and quantum

measurement of high-dimensional quantum entangled systems.

In addition, the research team of Peking University also showed

the importance of the splitter in the generalized multipath delay

selection experiment [153] of large-scale quantum nano photonic

chips published in 2021. As shown in Figure 8B, the state of the

d-mode quantum controlled splitter determines the delay selection.

The multimode quantum system thus constructed provides a multi-

functional platform for the study of multimode quantum

superposition and coherence, and also provides in-depth insights

into the benchmark controllability of multi-dimensional quantum

physics and integrated optical quantum technology.

In addition, the beam splitter also plays an irreplaceable role in

optoelectronic hybrid integration. The current optoelectronic hybrid

integration scheme is to integrate electronic devices and photonic

devices on the same silicon chip. The splitter used to connect silicon-

based lasers and many photonic devices undertakes the important

tasks of optical wavelength multiplexing/demultiplexing, optical

wavelength tuning and conversion. For example, in the hybrid

integration of flip chip based semiconductor optical amplifiers

(SOA) on a silicon photonics platform [154], it can be seen from

the microscope image of fabricated 4 × 4 Si switch with hybrid-

integrated InP-SOA (Figure 8A), whether it is between the SOA and

the multi-channel optical waveguide of the front input or between

the SOA and the rear 4 × 4 switch part, even the switch array are full

of beam splitters. As a result, the large compact silicon optical matrix

switch has become the key part of the optical path network, and the

loss and size of the splitter also greatly affect the lossless propogation

of the entire optical path network.

Conclusion and perspective

In conclusion, the on-chip beam splitting methods in

recent years are summarized and reviewed. Firstly, the basic

principles of four beam splitting methods are introduced;

Secondly, the design methods of beam splitter based on

y-branch, MMI coupling, DC and inverse design algorithm

are introduced. Through the comparison of these beam

splitting methods, it is found that the structural design of

each beam splitting method is diverse, but there are many

common points in the design ideas, including the

introduction of sub wavelength grating into the traditional

structure, Traditional silicon waveguides can be combined

with waveguides of other types or materials, or other

waveguides can be directly used to achieve similar

functions. Through this review, the future research

directions for beam splitting methods are clarified, that is,

increasing transmittance, reducing loss, improving

extinction ratio, reducing volume, etc., and the flexibility

of device design should be continuously enhanced. Finally,

this paper also discusses the applications of the on-chip beam

splitting method. Although the on-chip beam splitter is a

basic unit in the integrated optical circuit, it plays an

important role in many positions of the on-chip optical

circuit. Whether now or in the future, the splitter is very

important for the cutting-edge large-scale quantum chips,

high-speed quantum bit propogation, optoelectronic hybrid

integration and other fields.
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