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In the field of complex network research, complex network information

transmission models based on infectious disease models are often used to

study the mechanism of information transmission. This is helpful for the

prediction of information transmission trends and the formulation of control

strategies. However, the classification of node types in traditional information

transmissionmodels is too simple and cannot reflect the characteristics of each

node. To solve the above problems, this study proposes a layered SITR complex

network information transmissionmodel. Themodel is layered according to the

influence of nodes, and rational propagator nodes are added to optimize it. The

propagation threshold of the model is deduced theoretically and the stability of

the model is proved. To reduce the dissemination scale of the network’s public

opinion information, an optimal control strategy is proposed based on the

Pontryagin maximum principle to optimize the information dissemination

process. Finally, combined with real events from social network platform,

the simulation results show that the layered SITR model can describe the

process of network information dissemination more accurately, and the

optimal control strategy can effectively reduce the dissemination scale of

the network’s public opinion information.
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1 Introduction

With the development and progress of Internet technology, a variety of online social

platforms has enriched the ways people use to exchange information, but they have also

accelerated the spread of online rumors. When false and malicious information spreads on a

large scale, it triggers heated discussions among netizens, thus resulting inmany online public

opinions, which will have a negative impact on social stability and economic development.

Because of the high similarity between network information and virus transmissions,
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researchers have begun to combine the structural characteristics of

information networks to apply complex networks and infectious

disease models to the field of information transmission and

simulate the process of information transmission in social

networks based on mathematical models [1]. Therefore, it is of

great practical significance to establish an information transmission

model for realistic scenarios based on infectious disease models and

complex networks, analyze and study the mechanism of

information transmission, and formulate specific prevention and

control strategies.

At present, numerous achievements have been accomplished

in the research of infectious disease models in the field of

information transmission. Among them, Kermack and

McKendrick proposed the most classic infectious disease model

in 1927, that is, the susceptible-infected-recovered (SIR) model [2].

Subsequently, scholars proposed various optimized models of

infectious diseases on this basis and studied the mechanism of

information transmission [3–6]. Based on a simple susceptible-

infected-susceptible (SIS) model, Wang et al. innovatively

established an ESIS information transmission model based on

emotion weighting, which weighted different links according to

user emotions, effectively improving the accuracy of the model [7].

Based on the traditional SIRS model, Wang et al. proposed the

SPIRS model with potential propagation nodes and applied it to

different real networks, thus indicating that the number of

potential nodes can predict the peak of information

propagation [8]. After the introduction of the time-varying rate

of immune loss in the SIRS model, Shaji et al. proposed a new SIRS

model and conducted simulation verification on an artificial

network [9]. Zhao et al. proposed the SIHR social network

information transmission model and added hibernation nodes

to the model to study the mechanism of forgetting and memory

associated with the process of information transmission. The

results showed that nodes with a hibernation state can reduce

the overall impact of rumors [10].

Owing to the continuous progress of communication

technology, the abilities associated with the reception and

spreading of information are not identical and the individual

network user nodes are influenced by many factors that lead to a

complicated propagation behavior mechanism. Thus, single

information propagation models cannot accurately describe the

information in the network transmission process. Accordingly,

scholars have established a complex network of multilayer

information dissemination model to solve these problems

effectively. These efforts have rendered the multilayer

information transmission model the hot spot of current research.

In a multilingual environment, Li et al. stratified the infectious

disease model based on whether people transmitted information

through their first or second languages, improved the information

exchangemechanism between layers, and established a stratified ISR

model [11]. Yagan et al. improved the information transmission

mechanism based on the characteristics of the SIR virus

transmission model and established a social–physical, two-layer

network information diffusion model to explore the occurrence

of the seepage effect in multilayer networks [12]. Scholars divide the

model into consciousness layer and propagation layer and study the

influence of consciousness on propagation dynamics. Wang et al.

stratified the transmission channels of viruses in the network into

consciousness and viral transmission layers, so as to establish the

hierarchical transmission model of virus and information, and

studied the impact of information on viral transmission [13]. Wu

et al. proposed an aware-susceptible-infectedmodel (ASI) to explore

the effect of awareness on the spreading process in multiplex

networks. Experiment found that epidemic information can help

to suppress the epidemic diffusion only when individuals’ abilities of

transforming awareness into actual protective behaviors attain a

threshold [14]. Li et al. built a dynamic model to describe the

transmission of two competing complex information, in which

individuals in the network can only accept one of the two

messages. The results show that the heterogeneity of the

distribution of multiple network degrees has no qualitative

influence on the results [15]. Although scholars have conducted

in-depth studies on the multilayer information transmission model

in recent years, the node types are very limited and cannot accurately

describe the influence of various nodes in the network on

information transmission.

To make the model reflect the process of information

transmission more accurately, scholars have enriched the nodal

types in the network according to the characteristics of

information transmission. Jiang et al. added the truth

disseminator node in the model, established a two-stage SPNR

rumor propagation model, and studied the influence of official

information on online rumor propagation [16]. Wang et al.

established the 2SI2R model by considering the simultaneous

spread of two types of rumors in the population [17]. Sang

et al. proposed a SFTRD information transmission model based

on heterogeneous network, added controlled nodes into themodel,

and studied the information transmission process combined with

optimal control theory [18]. Zhu considered the influence of the

user’s psychological state on information dissemination when

facing major public opinions, classified nodes according to

different attitudes associated with believing and resisting public

opinions, and established the SBD (Susceptible–Believed–Denied)

public opinion dissemination model [19]. Li et al. proposed a

UAU-SIS information transmission model and conducted

simulations in a network composed of a static information

transmission network and temporal physical network to study

the influence of spatiotemporal characteristics on information

transmission [20]. Zhao et al. improved the SEIV information

transmission model by introducing vigilance nodes to improve the

SEIR model and solved the information transmission control

problem by using a group-based stochastic optimization

strategy, effectively improving the accuracy of the model [21].

The traditional model has two major limitations: The division

of the SIRS model of node state is relatively simple, all the nodes in

the model have the same properties, part of the connection among
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the nodes are ignored, and the network users in the situation differ

markedly with reality. Especially in the process of public opinion

communication, different communicators have different groups of

people in contact, and the influence of communicator groups is

also different. Therefore, the model needs to be considered

stratified according to node influence. In addition, in the

traditional SIRS model, only communicators can influence

susceptible people. However, in practice, communicators have

different attitudes toward public opinion events. Thus, they also

influence each other. Therefore, we propose the layered SITR

(L-SITR) model to solve the above problems.

This paper discusses the emergency in the Sina Weibo

information dissemination process and proposes the L-SITR

model. According to the different number of neighbors of

nodes, information propagators are divided into influential

propagator node and normal propagator node, and the rational

propagator node is added to represent the information

dissemination of rational thinking to spread the correct

information of nodes. The mechanism of influential propagators

and rational guidance are established to make the model more

appropriate to the actual situation. Through the dynamic analysis of

the L-SITR model, the propagation threshold of the model is

theoretically solved, and the stability of the equilibrium point is

proved [22–25], and the optimal control problem of information

propagation is solved using Pontryagin’s maximum principle. Our

main contributions of this work can be listed as follows:

(1) Considering the differences between nodes in the network,

the complexity of node behaviors and the different attitudes

of communicators toward public opinion information,

rational propagator nodes were added to the study and a

new L-SITR information dissemination model was proposed

in accordance with optimization of the traditional SIRS

model.

(2) The propagation threshold of the L-SITR model was

calculated using the reproduction matrix method, and the

stability of the model was proved according to the

Routh–Hurwitz criterion and Lyapunov methods.

(3) The traditional SIRS and proposed L-SITR models were

simulated using the data obtained from Sina Weibo and

the performances of the different models were compared and

evaluated using the least-squares criterion.

(4) The information transmission process of the L-SITR model

was optimized and an optimal control strategy was proposed

for the information transmission process according to the

maximum principle of Pontryagin.

The organization of this paper is as follows. Section 2 is the

L-SITR model formulation and preliminaries. In Section 3, the

information propagation threshold of L-SITR model was

determined by dynamic analysis, and the stability of

equilibrium point was proved. In Section 4, the optimal control

strategy for network information is introduced and analyzed

theoretically. In Section 5, the simulation results are given and

discussed. Finally, conclusions are presented in Section 6.

2 L-SITR information propagation
model

We proposed the L-SITR model to study the dissemination

process of emergency information on the network platform under

the scenario of government intervention. The L-SITR model is

shown in Figure 1. This model divides network nodes in five

categories: uninformed persons S, influential propagators I1,

normal propagators I2, rational propagators T, and immune R.

After the occurrence of public opinion events, the uninformed

person is exposed to public opinion information and becomes a

propagator. Some will quickly spread all information they receive

about events, while others will spread official information.

According to their attitude, propagators are divided in two

categories: public opinion propagators I and rational propagators

T. Rational propagators T disseminate correct information in the

process of information transmission and convince public opinion

propagators to think rationally by contacting them so as to become

restorers with a certain probability and reduce the influence of public

opinion. In such emergencies with government intervention, the

media will report the event and ordinary netizens will also

participate in the discussion, but different groups have different

influences, therefore public opinion propagators are divided in

influential propagators (I1) and normal propagators (I2)

according to their influences. Influential public opinion

propagators will have a higher public opinion propagation power

and uninformed persons will have a higher probability of becoming

public opinion propagators after they are contacted. The L-SITR

model parameters shown in Figure 1 are listed in Table 1.

On the basis of the original transmission mechanism of

traditional SIRS model, this paper adds the transmission

mechanism of influential propagators and rational guidance

FIGURE 1
The information dissemination process of L-SITR model.
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mechanism. The mechanism of influential propagators refers to

that the uninformed person S will receive the information spread

by the influential propagators I1 and become the normal

propagators I2. This process is shown in the red dotted line

in Figure 1. The rational influence mechanism means that

influential propagators I1 and normal propagators I2 will

receive the information spread by rational propagators T, and

thus become immune Rwith a higher probability, as shown in the

yellow dotted line and green dotted line in Figure 1.

L-SITR model can be expressed by the following dynamic

equation,

dS(t)
dt

� q − (β11 + β12)k1− S(t)I1(t)
N(t) − β22k2

−
S(t)I2(t)
N(t)

+ δR(t) − ηS(t) − dS(t)
dI1(t)
dt

� β11k1
−
S(t)I1(t)
N(t) − ε1k3

−
I1(t)T(t)
N(t) − γ1I1(t) − dI1(t)

dI2(t)
dt

� β12k1
−
S(t)I1(t)
N(t) + β22k2

−
S(t)I2(t)
N(t) − ε2k3

−
I2(t)T(t)
N(t)

− γ2I2(t) − dI2(t)
dT(t)
dt

� ηS(t) − γ3T(t) − dT(t)
dR(t)
dt

� ε1k3
−
I1(t)T(t)
N(t) + ε2k3

−
I2(t)T(t)
N(t)

+ γ1I1(t) + γ2I2(t) + γ3T(t) − δR(t) − dR(t).
(1)

where N is the total number of nodes, k1
−
, k2
−
, k3
−

represent the

average degree of nodes in states I1, I2, T. Therefore, we have [26]

that

dN(t)
dt

� q − dN(t). (2)

To simplify the analysis process, this study assumes that

the total population remains constant, that is, q � dN(t) and N
are constant. The normalization of N can be obtained as

follows,

S(t) + I1(t) + I2(t) + T(t) + R(t) � 1. (3)

3 The basic reproduction number and
stability analysis

In this section, the next generation matrix method was used

to calculate the basic reproduction number of the L-SITR model,

namely the propagation threshold and to prove the global

stability of the no information equilibrium and information

equilibrium of the model, respectively.

The basic reproduction number refers to the expected

number of secondary infections caused by an infected in an

environment full of susceptible people during the disease cycle.

For information propagation model, the basic regeneration

number is the threshold of information propagation. Firstly,

we study the basic reproduction number of model 1) through

the next generation matrix method.

Because the actual number of nodes in the information

transmission model cannot be negative, so the number of

nodes in the model presented in this study is as follows,

S(t)> 0, I1(t)≥ 0, I2(t)≥ 0, T(t)≥ 0, R(t)≥ 0. (4)

Let I1 � I2 � 0 and dS
dt � 0 in Eq. 1. Combined with Eq. 2, we

can obtain the no information equilibrium point

E0(S0, I01, I02, T0, R0) � ( q
(η+d), 0, 0, 0, 0) of the L-SITR model.

We set χ � (S0, I01, I02, T0, R0). Eq. 5 can then be expressed as,

dχ

dt
� F − V, (5)

Where F and V are both 5 × 1 matrix as follow:

F �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β11k1
−
S(t)I1(t)
N(t)

β12k1
−
S(t)I1(t)
N(t) + β22k2

−
S(t)I2(t)
N(t)

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6)

TABLE 1 Parameters defining the L-SITR model.

Parameter Description

β11 Uninformed persons S may receive information from influential
propagators I1 and becomes I1 with probability β11

β22 Uninformed persons S may receive information from normal
propagators I2 and becomes I2 with probability β22

β12 Uninformed persons S may receive information from influential
propagators I1 and becomes I2 with probability β12

γ1 The transmission probability of influential propagators I1 turning
into immune R

γ2 The transmission probability of normal propagators I2 turning
into immune R

γ3 The transmission probability of rational propagators T turning
into immune R

ε1 Influential propagators I1 may receive correct information from
rational propagatorsT and becomes immune Rwith probability ε1

ε2 Normal propagators I2 may receive correct information from
rational propagatorsT and becomes immune Rwith probability ε2

η The transmission probability of uninformed persons S turning
into rational propagators T

δ The transmission probability of immune R turning into
uninformed persons S

q The coming rate of uninformed persons S

d The leaving rate of the different compartment
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F �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε1k3
−
I1(t)T(t)
N(t) + γ1I1(t) + dI1(t)

ε2k3
−
I2(t)T(t)
N(t) + γ2I2(t) + dI2(t)
−ηS(t) + γ3T(t) + dT(t)

−q + (β11 + β12)k1− S(t)I1(t)
N(t) + (β22 + β21)k2− S(t)I2(t)

N(t) + ηS(t) + dS(t)

−ε1k3
−
I1(t)T(t)
N(t) − ε2k3

−
I2(t)T(t)
N(t) − γ1I1(t) − γ2I2(t) − γ3T(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(7)

At the no information equilibrium point E0, the simplified

transmission matrix F and immune matrix V of 3 × 3 are shown

in Eqs 8, 9, respectively.

F �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β11k1
−
S(t)

N(t) 0 0

β12k1
−
S(t)

N(t)
β22k2

−
S(t)

N(t) 0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (8)

V � ⎛⎜⎝ γ1 + d 0 0
0 γ2 + d 0
0 0 γ3 + d

⎞⎟⎠. (9)

Thus, we can calculate the basic regeneration number of the

regeneration matrix FV−1, that is, the propagation threshold of

the L-SITR model is the spectral radius of the regeneration

matrix, as shown below:

R0 � ρ(FV−1) � max
⎧⎪⎨⎪⎩ qβ11k1

−

(η + d)(γ1 + d), qβ22k2
−

(η + d)(γ2 + d)
⎫⎪⎬⎪⎭.

(10)
The stability of the no information equilibrium point is

detailed in Theorem 2. According to the expression of the

propagation threshold R0 and the results in the literature [27,

28], the values of ε1, ε2, δ do not change the propagation

threshold R0. Therefore, to simplify the calculation, ε1 � ε2 � δ �
0 we set in the following analysis.

Theorem 1

The no information equilibrium E0 of the L-SITR model is

locally asymptotically stable if R0 < 1 and unstable if R0 > 1. The

Jacobian matrix of the L-SITR model is given by,

J �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−(β11 + β12)k1− I1(t) − β22k2

−
I2(t) − η − d −(β11 + β12)k1− S(t) −β22k2

−
S(t) 0

β11k1
−
I1(t) β11k1

−
S(t) − γ1 − d 0 0

β12k1
−
I1(t) + β22k2

−
I2(t) β12k1

−
S(t) β22k2

−
S(t) − γ2 − d 0

η 0 0 −γ3 − d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
(11)

By substituting E0(S0, I01, I02, T0, R0) � ( q
(η+d), 0, 0, 0, 0) in Eq.

11, the Jacobian matrix at the no information equilibrium point

can be obtained as

J0 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−η − d −(β11 + β12)k1− S(t) −β22k2

−
S(t) 0

0 β11k1
−
S(t) − γ1 − d 0 0

0 β12k1
−
S(t) β22k2

−
S(t) − γ2 − d 0

η 0 0 −γ3 − d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (12)

In order to simplify the calculation process, we set:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A � η + d

B � −β11k1
−
S(t) + γ1 + d

C � −β22k2
−
S(t) + γ2 + d

D � γ3 + d

. (13)

As R0 < 1, we can obtain A> 0, B≥ 0, C≥ 0, D> 0.

The characteristic polynomial of matrix 12) is,

|λE − J0| � m0λ
4 +m1λ

3 +m2λ
2 +m3λ +m4, (14)

where

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

m0 � 1
m1 � A + B + C +D
m2 � AB + AC + AD + BC + BD + CD
m3 � ABC + ABD + ACD + BCD
m4 � ABCD

, (15)

Because

m0 > 0m3m2 −m4m1 � A2B2C + A2BC2 + AB2C2 + A2B2D

+ AB2D2 + A2C2D + A2CD2 + A2BD2

+ B2C2D + B2CD2 + BC2D2 + 2A2BCD

+ 2AB2CD + 2ABC2D

+ 2ABCD2 > 0m3m2m1 −m4m
2
1

−m2
3m0 > 0.

(16)
According to the Routh–Hurwitz stability criterion [29],

when R0 < 1, the disease-free equilibrium point is locally

asymptotically stable.

Theorem 2

If R0 < 1, then the no information equilibrium point E0 is

globally asymptotically stable. In this case, we build the following

Lyapunov function,

V(t) � I1, (17)

The full differential equation of V with respect to t is,

dV

dt
� dI1(t)

dt
� β11k1

−
S(t)I1(t) − γ1I1(t) − dI1(t). (18)

When R0 < 1, we obtain β11k1
−
S0 ≤ γ1 + d and dV

dt ≤ 0.
dV
dt � 0 if

and only if the system is at an no information equilibrium point

E0(S0, I01, I02, T0, R0). Combined with the local asymptotic

stability of no information equilibrium point, according to the

LaSalle’s invariance principle [30] indicates that the no

information equilibrium point E0 is globally asymptotically stable.
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In the next theorem, we will prove the stability of the

information equilibrium point.

Theorem 3

If R0 > 1, then the information equilibrium point E1 is locally

asymptotically stable. By eliminating I1 and I2 in Eq. 1 and

solving them, the endemic equilibrium point E1(S*, I1*, I2*, T*, R*)
of the L-SITR model can be obtained, where

S* � γ1 + d

β11k1
−

I1
* �

[(γ1 + d)β22k2− − (γ2 + d)β11k1− ][qk1− − (η + d)(γ1 + d)]
(γ1 + d)2β22β11k1− k2

− + (γ1 + d)(γ2 + d)(β12 − β11)β11k1− 2

I2
* �

qβ12k1
− − (η + d)(γ1 + d) β12

β11(γ1 + d)β22k2− + (γ2 + d)(β12 − β11)k1−
T* � (γ1 + d)η

(γ3 + d)β11k1−
R* � −(I1* + I2

*) + q

d
− (η + d)(γ1 + d)

dβ11k1
− + γ3(γ1 + d)η

d(γ3 + d)β11k1−

. (19)

Substituting Eq. 19 into Eq. 11, we obtain,

m0 > 0
m3m2 −m4m1 > 0
m3m2m1 −m4m

2
1 −m2

3m0 > 0
. (20)

According to the Routh–Hurwitz stability criterion, whenR0 > 1,

the information equilibrium point is locally asymptotically stable.

Theorem 4

If R0 > 1, then the information equilibrium point E1 is

globally asymptotically stable. In this case, we build the

following Lyapunov function,

V(t) � [(S − S*) + (I1 − I1
*) + (I − I2

*) + (T − T*) + (R − R*)]2.
(21)

Because we assumes that the total population remains

constant, that is, q � dN(t) and N are constant. So we can

obtain q − dS* − dI1* − dI2* − dT* − dR* � 0, and set Q �
(S − S*) + (I1 − I1*) + (I2 − I2*) + (T − T*) + (R − R*).

The derivative of V(t) (see Eq. 21) is given as follow. Where,

we first substitute Eq. 1 into dV
dt , and then add q − dS* − dI1* −

dI2* − dT* − dR* � 0 to the equation to get the final result.

dV

dt
� 2Q(dS(t)

dt
+ dI1(t)

dt
+ dI2(t)

dt
+ dT(t)

dt
+ dR(t)

dt
)

� 2Q(q − d(S(t) + I1(t) + I2(t) + T(t) + R(t)))
� 2Q[d(S − S*) + d(I1 − I1

*) + d(I2 − I2
*) + d(T − T*) + d(R − R*)]

� −2dQ2

.

(22)

When R0 > 1, we can obtain dV
dt ≤ 0.

dV
dt � 0 if and only if the

system is at the information equilibrium point

E1(S*, I1*, I2*, T*, R*). Combined with the local asymptotic

stability of information equilibrium point, according to the

LaSalle’s invariance principle indicates that when R0 > 1, the

information equilibrium point E1 is globally asymptotically

stable.

4 Optimal control strategy

This section discusses the influence of optimal control on the

L-SITR model with control measures, as shown in Eq. 23. As the

government continues to report the truth, it will effectively

increase the probability of the uninformed becoming the

recovered person, assuming that the probability of the

uninformed becoming the recovered person increases by

u0(t). At the same time, the report also increased the

probability of the communicator who becomes the restorer by

assuming that the probability of the communicator becoming the

restorer from the influential propagator increased to u1(t). The
probability of switching from a normal propagator to a restorer

increased to u2(t).

dS(t)
dt

� q − (β11 + β12)k1− S(t)I1(t)
N(t) − β22k2

−
S(t)I2(t)
N(t) + δR(t)

− ηS(t) − dS(t) − u0(t)S(t)
dI1(t)
dt

� β11k1
−
S(t)I1(t)
N(t) − ε1k3

−
I1(t)T(t)
N(t) − u1(t)I1(t)

− γ1I1(t) − dI1(t)
dI2(t)
dt

� β12k1
−
S(t)I1(t)
N(t) + β22k2

−
S(t)I2(t)
N(t) − ε2k3

−
I2(t)T(t)
N(t)

− u2(t)I2(t) − γ2I2(t) − dI2(t)
dT(t)
dt

� ηS(t) − γ3T(t) − dT(t)
dR(t)
dt

� ε1k3
−
I1(t)T(t)
N(t) + ε2k3

−
I2(t)T(t)
N(t) + (γ1 + u1(t))I1(t)

+ (γ2 + u2(t))I2(t) + γ3T(t) + u0(t)S(t) − δR(t) − dR(t)
(23)

The purpose of public opinion control is to reduce the

number of propagators and the cost of public opinion

management as much as possible during public opinion

propagation. Let the cost of public resource consumption

caused by the propagator be proportional to the number of

propagators with the proportional coefficients being equal to ζ1
and ζ2. The cost generated by the control measures is

proportional to the square of the control intensity with the

proportional coefficients being equal to ζ0, ζ3, ζ4 respectively,

and the total cost generated by the public opinion propagation

period [0, tf] is defined as the objective function.

The objective function is set as [31]:
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J(u0, u1, u2) � ∫T

0
[ζ0u2

0(t) + ζ1I1(t) + ζ2I2(t) + ζ3u
2
1(t)

+ ζ4u
2
2(t)] (24)

Using Pontryagin’s maximum principle, we attempted to

find the optimal control for u0*, u1*, u2* so that the objective

function can be minimized. The control was defined as φ �
{(u0, u1, u2)|ui ∈ [0, ui max], i � 0, 1, 2}.

The Hamiltonian function for the control problem can be

described as,

H � ζ0u
2
0(t) + ζ1I1(t) + ζ2I2(t) + ζ3u

2
1(t) + ζ4u

2
2(t)

+λ1dS(t)
dt

+ λ2
dI1(t)
dt

+ λ3
dI2(t)
dt

+ λ4
dT(t)
dt

+ λ5
dR(t)
dt

, (25)

where λ1, λ2, λ3, λ4, λ5 are the covariant variables that satisfy the

transversal condition, λi(tf) � 0, i � 1, 2,/, 5, and the following

differential equation,

λ1
· � (λ1 −λ2)β11k1

−
I1(t)

N(t)

+(λ1 −λ3)⎡⎢⎢⎣β12k1
−
I1(t)

N(t) + β22k2
−
I2(t)

N(t)
⎤⎥⎥⎦+(λ1 −λ4)η

+(λ1 −λ5)u0(t)+λ1d

λ2
· � −ζ1 +(λ1 −λ2)β11k1

−
S(t)

N(t) +(λ1 −λ3)β12k1
−
S(t)

N(t)

+(λ2 −λ5)⎛⎝ε1k3
−
T(t)

N(t) +u1(t)+γ1⎞⎠+λ2d

λ3
· � −ζ2 +(λ1 −λ3)β22k2

−
S(t)

N(t)

+(λ3 −λ5)⎛⎝ε2k3
−
T(t)

N(t) +u2(t)+γ2⎞⎠+λ3d

λ4
· � (λ2 −λ5)ε1k3

−
I1(t)

N(t) +(λ3 −λ5)ε2k3
−
I2(t)

N(t) +(λ4 −λ5)γ3
+λ4d

λ5
· � (λ5 −λ1)δ+λ5d

(26)

According to the results obtained by Panja [32] and the

Pontryagin’s maximum principle, the following theorem applies.

Theorem 5

There is an optimal control strategy u* � (u0*, u1*, u2*) used to

make J(u0*, u1*, u2*) � min
(u0 ,u1 ,u2)∈φ

J(u0, u1, u2) valid, and the optimal

control variable is as follows,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0
*(t) � min{u0 max, max{0, (λ1 − λ5)S*(t)

2ζ0
}}

u1
*(t) � min{u1 max, max{0, (λ2 − λ5)I1*(t)

2ζ3
}}

u2
*(t) � min{u2 max, max{0, (λ3 − λ5)I2*(t)

2ζ4
}}

(27)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zH

zu0
� 2ζ0u0 − (λ1 − λ5)S(t) � 0

zH

zu1
� 2ζ3u1 − (λ2 − λ5)I1(t) � 0

zH

zu2
� 2ζ4u2 − (λ3 − λ5)I2(t) � 0

(28)

.It can be obtained with calculations that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0 � (λ1 − λ5)S(t)
2ζ0

u1 � (λ2 − λ5)I1(t)
2ζ3

u2 � (λ3 − λ5)I2(t)
2ζ4

(29)

From the characteristics of the control variable that

ui ∈ [0, ui max], we can obtain:

u0 �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,
(λ1 − λ5)S(t)

2ζ0
< 0

(λ1 − λ5)S(t)
2ζ0

, 0< (λ1 − λ5)S(t)
2ζ0

< u0 max

u0 max,
(λ1 − λ5)S(t)

2ζ0
> u0 max

(30)

u1 �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,
(λ2 − λ5)I1(t)

2ζ3
< 0

(λ2 − λ5)I1(t)
2ζ3

, 0< (λ2 − λ5)I1(t)
2ζ3

< u1 max

u1 max,
(λ2 − λ5)I1(t)

2ζ3
> u1 max

(31)

u2 �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,
(λ3 − λ5)I2(t)

2ζ4
< 0

(λ3 − λ5)I2(t)
2ζ4

, 0< (λ3 − λ5)I2(t)
2ζ4

< u2 max

u2 max,
(λ3 − λ5)I2(t)

2ζ4
> u2 max

(32)

We can obtain optimal control variable

u0*(t) � min{u0 max, max{0, (λ1−λ5)S*(t)2ζ0
}}. Similarly, the specific

expressions for other two optimal control variables u1*(t) and

u2*(t) can be obtained in the same way. Hence, Theorem 5 was

proved.

5 Numerical example

MATLAB was used to conduct the simulations. In this

section, the accuracy of the L-SITR model is verified by an

example simulation and the influence of the interference

strategy on each node in the model was studied. The

“backward–forward sweep method” was used to solve the

optimal control problem, and the fourth-order Runge-Kutta

method was used to calculate the numerical solution of
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L-SITR [33–35]. In this method, the equation of state of the

model was solved forward in time, the equation was solved

backward in time, the value of the control variable was

constantly updated, and the process was repeated until

convergence.

5.2 Propagation threshold and stability
verification

5.2.1 Stability of no information
equilibrium (R0 < 1)

We set the parameters of the L-SITR model as q � 0.01,

d � 0.01, k1 � 40, k2 � 5, k3 � 20,γ1 � 0.05, γ2 � 0.03, γ3 � 0.06,

δ � 0.01,ε1 � 0.03, ε2 � 0.08, η � 0.03. To ensure the propagation

threshold R0 < 1, the stability of the model at R0 < 1 was verified
by changing the propagation rate and initial number of nodes. At

this time, the information eventually disappeared after diffusion

and propagation. The simulation results in these conditions are

shown in Figures 2-4. Figure 2 and Figure 3, respectively describe

the influences of different propagation rates β11 and β22 on the

number of nodes in the network when R0 < 1, and Figure 4

describes the influence of different initial node numbers on the

final equilibrium point of the model when R0 < 1.
In Figure 2 and Figure 3 the horizontal and vertical

coordinates represent the time step and the quantity of nodes,

respectively. From Figure 2 we observe that when R0 < 1, the
numbers of influential propagator and normal propagator will

increase rapidly in the initial stage of information transmission,

but will gradually decrease over time and eventually disappear.

From Figure 3 we observe that when R0 < 1, the number of

uninformed persons decreases rapidly, the number of rational

propagators increases slowly, and the number of immune

persons increases rapidly at the beginning of information

dissemination. When the information dissemination reaches

the peak, the decrease rate of uninformed persons and the

increase rate of restorers decrease slowly, and the number

tends to be stable after a period of time. Figure 2 and

Figure 3 show that when R0 < 1, regardless of how the

propagation rate changes, the nodes of uninformed person,

rational propagator, and immune will eventually tend to be in

dynamic equilibrium, which is consistent with the theoretical

results and verifies the stability of the model.

In Figure 4, the x-axis represents the proportion of normal

propagator nodes (%), the y-axis represents the proportion of

influential propagator nodes (%), and the z-axis represents the

proportion of immune nodes (%). We randomly generated ten

groups of different initial node proportions and conducted ten

simulations respectively. Curves of different colors in the figure

represent the changes in the number of nodes of the normal

propagator, influential propagator, and temporal variation of

immunity at different initial proportions of different types of

nodes. Irrespective of how different the initial proportions of

nodes of different types are in the case in which R0 < 1, the model

eventually converges to no information equilibrium point, which

is consistent with the results of theoretical deduction. The

stability of the no information equilibrium point of the

L-SITR model was verified.

5.2.2 Stability of information equilibrium (R0 > 1)
We set the parameters of the L-SITR model as q � 0.01,

d � 0.01, k1 � 60, k2 � 5, k3 � 20,γ1 � 0.04, γ2 � 0.03, γ3 � 0.06,

δ � 0.01,ε1 � 0.03, ε2 � 0.08, η � 0.03, the initial proportion of

FIGURE 2
Variation in the numbers of I when R0 < 1.

FIGURE 3
Variations in the numbers of S,T ,R when R0 < 1.
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uninformed persons was 0.9, the initial proportion of propagator

was 0.04, and the initial proportion of immune was 0.06. To

ensure the propagation threshold R0 > 1, the stability of the

model at R0 > 1 was verified by changing the propagation rate

and the initial number of nodes. At this time, the information will

propagate. The simulation results in these conditions are shown

in Figures 5-7. Figure 5, and Figure 6 respectively, describe the

influences of different propagation rates β11 and β22 on the

number of nodes in the network when R0 > 1, and Figure 7

describes the influence of different initial node numbers on the

final equilibrium point of the model when R0 > 1.
In Figure 5 and Figure 6 the horizontal and vertical

coordinates represent the time step and the quantity of nodes,

respectively. Figure 5 shows that when R0 > 1, the number of

influential propagator and normal propagator nodes increases

rapidly in the early stage of information transmission, and

gradually decreases after its peak, and then tends to a

dynamic balance, and the number of dynamic equilibrium

points is affected by the propagation rate.

From Figure 6 we observe that when R0 > 1, at the beginning
of information dissemination, the number of uninformed

persons decreases rapidly, the number of rational propagators

increases slowly, and the number of restorers increases rapidly.

When the information dissemination reaches the peak, the

decrease rate of uninformed persons and the increase rate of

restorers decrease slowly, and the number tends to be stable after

a period of time. Figure 5 and Figure 6 show that when R0 > 1,
regardless of how the propagation rate changes, each node

eventually tends to be in dynamic equilibrium, which is

consistent with the result of the theoretical derivation and

verifies the stability of the model.

In Figure 7, the x-axis represents the proportion of normal

propagator nodes (%), the y-axis represents the proportion of

influential propagator nodes (%), and the z-axis represents the

proportion of immune nodes (%). We randomly generated ten

groups of different initial node proportions and conducted ten

simulations respectively. Curves of different colors in the figure

represent the changes in the number of nodes of the normal

propagators, influential propagators and temporal variation of

immunity at different initial proportions of different types of

nodes. In the case in which R0 > 1, irrespective of the initial

proportion of nodes of different types, the model eventually

converges to information equilibrium point, which is consistent

with the result of the theoretical derivation and verifies the

stability of the information equilibrium point of the L-SITR

model.

FIGURE 4
Propagation threshold validation for R0 < 1.

FIGURE 5
Variations in the numbers of I when R0 > 1.

FIGURE 6
Variations in the numbers of S,T ,R when R0 > 1.
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5.3 Real case verification

Wemainly selected some real data of “old man died by falling

over a dog leash” on the official platform of Sina Weibo for the

experiment. The earliest information about the incident began to

spread on the Internet platform at 9:00 on 18 August 2020, which

aroused wide attention and a large number of comments and

forwarding on the topic of dog management and the safety of the

elderly. The number of forwarding reached the peak at 22:00 in

the evening, and then the number of comments and forwarding

gradually decreased. The discussion on the event ended at 8:00 on

August 24. It is worth noting that in this event, some articles

published by official media discussed the legal issues behind the

accident, guided netizens to think rationally, provided ideas for

improving relevant laws and regulations, promoted the rapid end

of public opinion caused by the emergency, and reduced the

negative impact caused by public opinion. According to the real

data of “Jiang Yi Yan” event, we have established a network with

72,000 nodes, among which the nodes are users who pay

attention to that event. The average degree of the nodes in the

network is about 24.76. MATLAB was used in the cases of the

L-SITR simulation model, SBD model [18] and the traditional

SIRS model, and outcomes were compared with real data, as

shown in Figure 8. The proportions of uninformed persons,

influential propagator and normal propagators, rational

propagator, and immunity were set to 0.95, 0.01, 0.03, 0, and

0.01. Table 2 lists the parameters used in the experiments.

In Figure 8, the horizontal and vertical coordinates represent

the time step in hours and the quantity of nodes, respectively.

Curves in different colors represent the prediction results of the

event by different models. Among them, blue, green and cyan are

the prediction results of L-SIRS model, traditional SIRS model

and SBD model respectively. The red curve is fitted with the real

data obtained from Sina Weibo.

In the initial stage of information transmission, the

uninformed nodes S of both L-SITR model, traditional SIRS

model and SBDmodel quickly acquire information and become

propagators. However, due to the consideration of high-

influence propagators, L-SITR model showed a faster

transformation rate of uninformed than traditional SIRS

model, and reached the transmission peak 12.4 h later, with

the number of peak propagators being 17.71%. However, the

traditional SIRS model takes 31.7 h to reach the transmission

peak, and the transmission range is also smaller than L-SITR

model, with only 14.47% of the peak propagators. The analysis

shows that the L-SITR model is more accurate compared with

the traditional SIRS model in predicting the arrival time of peak

FIGURE 7
Propagation threshold validation for R0 > 1.

FIGURE 8
Simulation of an actual case.

TABLE 2 Initial parameter setting.

Parameter Value

β11 0.0171

β22 0.0188

β12 0.0496

γ1 0.075

γ2 0.046

γ3 0.053

ε1 0.037

ε2 0.072

η 0.051

δ 0.01

q 0.01

d 0.01
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information transmission, the number of peak propagator

nodes, and the end time of information transmission. This is

because the traditional SIRS model ignores the difference in the

influence of different nodes, thus resulting in a low-node degree

average and slow information transmission rate in the network.

Although the SBD model takes into account users’ different

attitudes towards public opinion information, it does not take

into account the influence of government intervention on

information transmission, resulting in the predicted value of

the number of peak transmission nodes being much higher than

the actual value. When the transmission peak is reached, the

descending trend of the transmission node is also slower than

that of L-SITR model, and the information is spread in the

network for a long time, with a large deviation from the actual

value. In addition, the root-mean-square error (RMSE) of each

model was calculated, and yielded an RMSE value of 4.69 for the

L-SITR model, while that of the traditional SIRS model was

15.38 and SBD model was 9.19. This shows that L-SITR model

can more accurately describe the information propagation

process of the event.

5.4 Information propagation subject to
optimal control

The information transmission process subject to optimal

control was simulated by using the real data of the event “An

old man fell over the dog’s leash and died,” the weighting

coefficients were set according to ζ0 � 0.2,

ζ1 � 0.3, ζ2 � 0.25, ζ3 � 0.4, ζ5 � 0.15, and the maximum

control intensity was set as u0max � 0.8, u1max � 1, u2max � 1.

5.4.1 Optimal control of uninformed person
Figure 9 shows the change in u0 under control of an

uninformed person. The horizontal and vertical coordinates

represent the time step and the control strength, respectively.

The control u0 reached the highest intensity in the early stage,

gradually decreased as a function of the information

transmission time, and approached zero at the end of

information transmission. This indicates that the government

needs to report the truth with high intensity in the early stage and

turn as many uninformed persons to immune persons, so as to

reduce the impact of adverse events.

Figure 10 shows the changes in the number of nodes of an

uninformed person S, information propagator I(I � I1 + I2),
and immune persons R subject to the control of the

uninformed and without control. The control of the

uninformed person can effectively reduce the information

transmission time, propagator node number, and can make

more people immune. The number of propagators decreased

by 4.64% at the peak of information transmission, and at the end

of the dissemination of information, the number of immune

persons increased by 9.29%, making more people no longer pay

attention to the message. But can also generate more insider

access cases to the public opinion events, and can’t reduce the

impact of information dissemination.

5.4.2 Optimal control of propagator
Figure 11 shows the variations of u1 and u2 subject to the

control of the propagator. The horizontal and vertical

coordinates represent the time step and the control

strength, respectively. The control u1 reaches the highest

intensity at an early stage, gradually decreases as a function

of the increase in information transmission time, and

approaches zero at the end of information transmission.

The intensity of control u2 increases gradually as a function

of the increase in information transmission time, decreases

gradually after reaching the peak value, and approaches zero

at the end of information transmission. This shows that

because of the small number of influential propagators and

slower growth rate, in the early days of control, good effects

can be achieved. So Thus, the government needs to reported in

the early days of the truth of this class of people and controls.

Additionally, the normal propagators are fewer, but the

growth rate is higher. Thus, the government does not need

to control the high strength at an early stage. However, with

the dissemination of information, it is still necessary to

gradually strengthen the reporting and control of the truth

of the incident.

Figure 12 shows the changes in the number of nodes of the

uninformed person S, information propagator I (I � I1 + I2),
and immune persons R, subject to the control of the propagator

and without control. The control of the propagator can

effectively reduce the number of information propagator

FIGURE 9
Variation in u0 subject to the control of an uninformed
person.
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nodes at the peak of information dissemination so that the latter

can be completed as soon as possible, the number of

propagators decreased by 9.16% at the peak of information

transmission. In addition, in the process of information

transmission, the number of uninformed nodes is effectively

reduced. At most, the number of uninformed nodes is 8.2%

more than that without control, avoiding more nodes to

participate in information transmission and reducing the

scope of information transmission.

6 Conclusion

This study proposed a novel L-SITR model that stratified

information propagators based on nodal influences and

improved the traditional SIRS model by adding rational

propagators. Through the study of the theory analysis of

dynamics equations, we determine the spread of L-SITR

model threshold, and combined with numerical simulation

proved that the stability of the equilibrium point. To suppress

the large-scale spread of online public opinion information,

optimal control was applied to the L-SITR model and the real

data obtained from Sina Weibo were used to conduct simulation

experiments. Simulation results show that the proposed L-SITR

model has higher accuracy than the traditional SIRS model, and

is more suitable for information propagation prediction in the

presence of rational communicators. Moreover, the optimal

control method proposed in this paper can effectively reduce

the influence of public opinion propagation.

Because of the complexity of the network information

dissemination, our work is not perfect; it also needs to work

in the future through the use of more accurate data collection,

analysis, and information dissemination mechanism between the

nodes to develop a more complete information propagation

model. Among them, exploring the information transmission

mechanism in line with the real scene is the basis for establishing

the propagator model, and the conscious and social attributes of

nodes should be taken into account in future work. Additionally,

many more methods are needed to simulate and analyze the

methods of the intervention process, further improving the

accuracy of the models and practicality.

FIGURE 10
Comparison of the changes in the number of nodes without
control and subject to the control of an uninformed person.

FIGURE 11
u1 and u2 subject to propagator control.

FIGURE 12
Comparison of the changes in the number of nodes without
and with control of the propagator.
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