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We studied the fission barrier of 236U with a microscopic mean-field model

employing Skyrme-type effective interaction. It has been known that the

microscopic mean-field calculation had a trend of overestimating the fission

barriers derived from the fission cross section, and our results were found to be

in accord with it. To reveal a major factor of the discrepancy, we investigated

various components of the Skyrme energy-density functional building of the

fission barrier height by a static mean-field model, including nuclear pairing

correlation. We found that the spin-orbit and pairing terms affected the fine

structure of the fission barrier as a function of elongation of the nucleus.

Therefore, we investigated the sensitivity of the fission barrier height on the

pairing strength, considering the change of level density along the calculated

fission path.
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1 Introduction

Nuclear fission arises as a result of large-amplitude collective motion in which a

nucleus transforms into two or more nuclei, releasing a huge amount of binding energy in

the form of kinetic energies of particles produced. Theoretical description of nuclear

fission with microscopic models has attracted great interests not only in fundamental

physics but also in nuclear applications [1, 2]. The nuclear fission has been one of the core

topics in nuclear physics for more than 70 years since it has been discovered accidentally

by German scientists. As a recent topic in fundamental physics such as nuclear

astrophysics, nuclear fission is one of the key issues to understand nucleosynthesis in

the rapid neutron-capture process (r-process) proceeding in the neutron star merger and

supernova explosion [3, 4]. In nuclear engineering applications, accurate knowledge on

nuclear fission is essential for safely operating nuclear reactors and predicting fission

product yields in the reactor [5, 6]. For this purpose, one is tempted to employ theoretical

models that should be able to treat “any” fissioning nuclei, because the yields of fission

fragments from the region of superheavy elements (the endpoint of the r-process) are

recycled to the start points of the r-process [7]. However, it is almost impossible to directly
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investigate the reaction mechanism of nuclear fission

experimentally because the time scale from the ground state

to scission is very short, about ≈ 10−20 s. It is also difficult to carry
out experiments on nuclear fission since fissioning nuclei are

basically unstable ones, and this fact prevents us from getting

highly accurate nuclear data in general. Therefore, theoretical

approaches which can predict wide aspects of nuclear fission, by

avoiding restrictions and assumptions as much as possible, are

highly desired.

There are many kinds of theoretical models to describe

unique structure of finite nuclear systems [8–11]. Nuclei are

self-bound systems consisting of a few hundred nucleons at most,

in each of which an average potential or mean-field is formed. In

the mean-field, there is a shell structure which makes the

distribution of single-particle energies spaced unequally, and

in which the nucleons occupy single-particle orbitals

according to the Pauli principle, like electrons in an atomic

system. Furthermore, there is a pairing correlation in nuclei that

couples two nucleons in the time-reversed states to form a

Cooper pair as described by BCS theory similar to the

correlation in condensed matter physics [12]. The nuclear

pairing correlation makes fractional occupation probabilities

of the orbitals in the mean-field and has an essential role in

forming the nuclear structure, including its shape. The mean-

field and the pairing correlation are fundamental features of

nuclei, and they affect strongly the fission mechanisms [13, 14].

Since the structures of nuclei depend on mass number, the

theoretical model to describe fission phenomena should be

able to treat nuclei comprehensively regardless of the mass

number. Therefore, microscopic mean-field models with

modern effective interactions and a pairing correlation have

often been employed to study nuclear structure and fission.

The modern effective interaction can be written with nuclear

densities, and then it is also called the energy density functional

(EDF). Several types of EDFs have been proposed with different

contexts, such as relativistic [15–17] or non-relativistic [18–20],

finite-range [21] or zero-range force [22], and so on. Although

the mean-field model calculation with the EDF needs huge

computational resources, we have been able to perform the

theoretical studies for the nuclei without symmetry

restrictions due to the recent progress in computer science.

Furthermore, a beyond mean-field model is also proposed to

describe precisely the dynamical phenomena such as nuclear

fission. The time-dependent generator-coordinate-method

(TDGCM) is one of the methods to restore the spontaneous

symmetry breaking [23]. In the TDGCM approach, the many-

body wave function composes of a continuous or linear

superposition of the single-Slater wave function. The

stochastic mean-field model is also a skillful method for

incorporating the quantum fluctuation [24]. In the stochastic

methods, the statistical assumption in the microscopic treatment

supplies the quantum fluctuation in the initial state of nuclear

dynamics, and its effects propagate in the time evolution. The

calculations with the stochastic method show a qualitative trend

of fission fragment yield and the distribution of total kinetic

energy [25, 26].

The many studies with themean-field model calculation have

shown the mass asymmetric distributions of fission fragments

due to the shell structure of nuclei as mentioned above. They are

consistent with experimental results and this fact offers a rational

reason to choose the mean-field model to describe nuclear

fission. Potential energy surfaces (PESs) concerning multi-

dimensional deformations of the fissioning nuclei are often

calculated with the mean-field model to investigate the fission

path from the stable or metastable state to scission [27–29]. The

studies using static PESs with the deformation constraints for

quadrupole and octupole moments have been known to

correspond with the fission product yields successfully [30,

31]. Even though these studies do not include dynamical and

diabatic effects, they are useful for predicting fission barrier

height, fission fragment yields, and other fission quantities

[32, 33]. The fission barrier height is used to evaluate the

fission cross sections in terms of the Hauser-Feshbach theory.

Although the fission cross sections can be estimated from the

fission barrier height evaluated by the available experimental

data, the accuracy of the fission barriers is insufficient when there

are a few experimental data that disagree with each other, which

is the case for actinide nuclei [34]. This is so since the

experimental fission barriers were evaluated to reproduce the

fission cross sections or fission probabilities by the statistical

models, which include extra parameters such as optical potential

and level density which are different from analysis to analysis,

then they affect the deduced barrier heights. The situation is

worse, of course, for nuclei where there is no fission barrier data

obtained experimentally.

The study of PES is a typical approach to predict the fission

barrier height and has been able to reproduce a characteristic

barrier structure with the double humps [35, 36]. Simple liquid-

drop models fail to produce the double-humped structure, and

then the spin-orbit coupling force is essential to reproduce the

structure [37, 38]. The mean-field model calculation can

reproduce the double-humped fission barrier via a complex

competition among energy terms in the EDF, which

simultaneously describes the ground states of nuclei for a

whole nuclear chart. Although UNEDF1 [39], optimized

including fission isomers observables, provides lower fission

barriers, the mean-field calculations [40–42] tend to

overestimate the fission barrier heights derived from the

analysis of neutron-induced fission cross section [34]. The

purpose of this work is to reveal the reasons for the

discrepancy between theoretical and derived fission barrier

heights by analyzing various components of a microscopic

EDF. For this aim, we calculate the PES of 236U as a function

of quadrupole and octupole deformations using the mean-field

model with Skyrme EDF and pairing correlation, and focus on

the energy components of the fission barrier to analyze the
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energy competition on the fission path. We apply the constrained

Skyrme Hartree-Fock plus BCS model (CSHF + BCS) [43] to the

PES calculation and investigate how the pairing strength affects

the fission barrier height, using the level density near the Fermi

energy on the PES.

This paper is organized as follows. In Section 2 we present the

mean-field model to investigate the PES, and show the energy

components in the Skyrme EDF and pairing correlation. The

results of PES calculations using three Skyrme EDFs are shown

and discussed in Section 3. We focus on the double-humped

barrier shape, its heights for each EDF result, the competition

among energy terms, and the effects of pairing strength. Finally,

summary and conclusion are shown in Section 4.

2 Mean-field model and energy
components in the model

We employ the constrained Skyrme Hartree-Fock plus BCS

(CSHF + BCS) model to calculate the PES of 236U as a function of

the quadrupole and octupole moments. The PES is obtained as

difference of energies between states for various values of the

quadrupole and octupole moments and that of the ground state.

In this section, we explain briefly the CSHF + BCSmodel, various

terms of the Skyrme EDF, and the characters of three Skyrme

parameter sets (SkM* [40], SLy4 [44], SkI3 [45]) and show the

specific forms of the constraints and the pairing correlation.

We can obtain wave functions |Ψ〉 of quantum systems from

the variational principle δ〈Ψ|Ĥ|Ψ〉 � 0 where Ĥ is Hamiltonian,

in general. When the HF + BCS model is applied to the quantum

many-body systems, the BCS state represented in the canonical

basis is written as,

|Ψ〉→|ΨBCS〉 � ∏
k>0

uk + vkâ
†
kâ

†
�k( )|0〉, (1)

where the â†k corresponds to the creation operator of a particle in

a single-particle orbit having quantum numbers labeled by a

subscript k. As usual, we choose the canonical-basis for the orbits

in the BCS states, which diagonalizes the density matrix [46]. The
�k state means the time-reversed state of the k state. The symbols

uk and vk are the usual BCS factors satisfying a normalization

condition, u2k + v2k � 1. The v2k denotes the occupation provability

of the k and �k orbitals. We can derive HF + BCS equations from

the variational condition δ〈ΨBCS|Ĥ|ΨBCS〉 � 0 adding a number

constraint term to the Hamiltonian,

ĥ, ρ[ ] � 0,
2~εkukvk + Δk v2k − u2

k( ) � 0, k> 0,{ (2)

where ĥ and ρ denote the single-particle Hamiltonian and the

diagonalized density matrix, respectively. The first equation is

consistent with the HF equation and the second corresponds the

gap equation of the BCS theory. The ~εk equals 1
2 (εk + ε�k) − λ,

where εk is a single-particle energy of k state and λ is the Fermi

energy. In this work, the single-particle state |ϕk〉 are represented
in a three-dimensional Cartesian coordinate space; |ϕk〉→ |ϕk(x,

y, z, σ)〉, where σ means the spin of a nucleon. The three-

dimensional space is discretized in a cubic mesh Δx = Δy =

Δz = 1 fm in a cuboid of 40 fm × 40 fm × 50 fm.

To calculate the PES as a function of quadrupole Q20 and

octupoleQ30 moments, we add constraints to the Hamiltonian as

follows:

Ĥ′ � Ĥ +∑
l,m

λlm Q̂lm − Qlm( )2, (3)

where l = 2, 3 are employed, and we takem = 0, 2 for l = 2 andm =

0, 1, 2, 3 for l = 3. TheQlm is the expectation value 〈Q̂lm〉, and the
Q̂lm is the operator such as Q̂20 � r2Y20 and Q̂30 � r3Y30, where

Ylm is the spherical harmonics. The PES was obtained by giving

finite value for Q20 and Q30 and zero for Qlm with m > 0.

We employed the Skyrme effective interactions [47] for the

calculation of the EDF. The Skyrme EDF has about ten

parameters tuned to reproduce the nuclear properties

according to strategy of each parameter set. The total binding

energy Etot is calculated as the expectation value of the

Hamiltonian including the Skyrme interaction with |ΨBCS〉,
and we decomposed the Etot into seven terms:

Etot � Ekin + ESkyrme + ECoul + Epair

� Ekin + Et0 + Et1, t2 + Et3 + Els + ECoul + Epair,
(4)

where Ekin, Et0, Et1, t2, Et3, Els, ECoul, and Epair correspond to the

kinetic, central, non-local, density-dependent, spin-orbit,

Coulomb, and pairing energy terms. Et0 is deduced from only

δ(r) terms, Et1, t2 corresponds to the momentum-dependent

terms, and Et3 contains the density-dependent term: ρα, where

the ρ � ∑k>0|vk|2(|ϕk|2 + |ϕ�k|2), and α > 0. In this work, the SkM*

[40], SLy4 [44], and SkI3 [45] Skyrme parameter sets are

employed to investigate the interaction-dependence of the

fission path and the barrier structure. The Skyrme parameter

sets differ in the protocol to decide each parameter set, although

they basically describe the ground state properties (binding

energy, charge radii, saturation density, and so on) for the

stable nuclei with the magic numbers. The SkM* parameter

set is tuned to reproduce the fission barrier height of 240Pu

deduced by the empirical liquid drop model. The

SLy4 parameter set is designed to describe the symmetric

nuclear matter and pure neutron matter properties at the

saturation point. For the SkI3 parameter set, the density

dependence of the spin-orbit potential has been adjusted to be

consistent with those of the relativistic mean-field model, which

shows the isotope shifts in the Pb region. We investigate the

fission path with these different EDFs to extract the important

elements governing the fission barrier height.

For the pairing correlation, we employ the monopole-type

pairing functional; the smoothed constant G model [48].

Although the pairing functional does not include the density

dependent term such as Ref. [49], the pairing strength can be
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obtained self-consistently with the mean-field. The pairing

energy Epair and the pairing strength Gτ are:

Epair � − ∑
k>0,τ

Gτu
2
k,τv

2
k,τ , Gτ � gτf

2
τ εk,τ( ), (5)

where fτ is a cutoff function, and τ means neutron and proton,

and εk is the single-particle energy of k orbital. Furthermore, the

constant gτ is self-consistently obtained by solving the

continuously smoothed equations for the nucleon number

conservation and the gap parameters simultaneously, in which

the single-particle level densities are used:

Nτ � ∫∞

−∞
1 − ε − �λτ

















ε − �λτ( )2 + f2
τ ε( )�Δ2

√⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭ �D ε( )dε, (6)

�Δ � gτ

2
�Δ∫∞

−∞
f2
τ ε( )

















ε − �λτ( )2 + f2
τ ε( )�Δ2

√ �D ε( )dε, (7)

where the �D(ε) is a single-particle level density of the

Thomas–Fermi approximation, and �Δ is the pairing gap

and given by the empirical formula �Δ � 12A−1/2 MeV. Eq.

6 determines the Fermi energy �λτ , while Eq. 7 determines the

constant gτ. For our analysis, the monopole pairing is more

tractable than the density-dependent one, and we can easily

see significance of the pairing correlation for the

fission path.

3 Result

We first show the PESs of 236U obtained using three EDFs,

and the fission barrier heights are compared with the data

evaluated experimentally. Next, we decompose the PES to the

energy terms in the Skyrme EDF and search for the major

components to be in phase with the double-humped barrier

structure. Finally, the sensitivity to pairing strength for the

barrier heights is investigated.

3.1 Fission barrier calculated by the mean-
field models

Figure 1 shows the PES of 236U as a function of Q20 and Q30

calculated with the SkM* parameter set. The dE is defined by

the difference between the energies of the ground state and

each configuration point in Q20 and Q30; dE(Q20, Q30) =

E(Q20, Q30) − E(G.S.). The investigated ranges of Q20 and Q30

are [0 : 87] b and [0 : 65] b for all calculations. The nuclear

density distributions in Figure 1 are those at the ground

state, second minimum, mass symmetric (Q30 = 0), and mass

asymmetric (Q30 ≠ 0) configurations. The solid line

represents the lowest energies on the PES for nuclear

elongation, which corresponds to the fission path in the

mean-field model calculation, although the dashed line

means the symmetric elongated configuration (Q30 = 0).

The calculated fission path having the finite octupole

momentum corresponds to the fission fragment

distribution with mass asymmetry as obtained in the

measurements, which indicates the significance of the

static PES in the study of fission phenomena.

Figure 2 shows the energies on the PES of the symmetric

deformation paths with Q30 = 0 (left panel) and that along the

calculated fission paths (right panel) using three Skyrme EDFs

(SkM*, SLy4, SkI3). In each result, the double-humped barrier

structures appear in both of the fission and symmetric

deformation paths. We can see two characteristic barriers for

all EDF results: the one noted as Binner appears at slightly less than

Q20 = 20 b, and the second one noted as Bouter appears overQ20 =

40 b. A similar barrier structure appears in the three EDFs

calculations, although there are differences in the heights and

slopes near Bouter. The effects of finite Q30 is significant for the

configuration having elongation larger than the second

minimum. A remarkable reduction of Bouter due to the finite

octupole momentum, namely, mass asymmetry, is also

confirmed. As an example, the reduction on Bouter for SLy4 is

indicated by an arrow in the right panel of Figure 2. The double-

humped fission barriers and the reduction effects on Bouter by the

mass asymmetry are reported in the early researches by

Strutinsky [35, 36] and Möller [50] using other models. The

calculated E(G.S.), Binner, Bouter (Q30 = 0), and Bouter (Q30 ≠ 0)

with SkM*, SLy4, and SkI3 EDFs together with the experimental

and derived values are listed in Table 1. In the derived values,

Binner is lower than Bouter, while all calculations fail to reproduce

this relation. Both the Binner and Bouter (Q30 ≠ 0) calculated with

all Skyrme EDFs overestimate the derived values, although the

FIGURE 1
The PES of 236U as a function of Q20 and Q30 using SkM*
parameter set.
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amplitude of the overestimation is not constant for Binner and

Bouter, which might indicate the configuration dependence of the

barrier.

3.2 Searching for energy components to
form the barrier

Here, we decompose the PES along the fission path obtained

in this work and investigate which energy term changes the

fission barrier heights and how. The PES is decomposed into

seven terms as in Eq. 4. Figure 3 shows the behaviors of the

energy terms dEx in SkM* EDF concerning Q20, where

dEx(Q20) = Ex(Q20) − Ex(G.S.), and x is a subscript

corresponding to those of Eq. 4. Even though the amplitudes

of dEt0 and dEt3 are much larger than other energy terms, they

are almost canceled out due to their opposite signs. The right

panel in Figure 3 shows a complicated competition among the

other energy terms. It is difficult to extract the small amplitude

like Binner or Bouter from the competition among large values

shown in Figure 3. We focus on comparing the results with

FIGURE 2
Energies of the symmetric path (A) and fission path (B) of 236U as functions ofQ20 for the three EDFs (SkM*, SLy4, and SkI3). The effect of mass
asymmetry for SLy4 is indicated by the arrow in right panel.

TABLE 1 Calculated ground state energies, fission barrier heights,
experimental, and derived values (MeV) of236U.

SkM* SLy4 SkI3 exp. [ [51]]

E(G.S.) −1796.97 −1796.46 −1799.85 −1790.41

SkM* SLy4 SkI3 derived value [ [34]]

Binner 8.9 10.4 8.7 5.00

Bouter (Q30 = 0) 13.1 18.1 14.2 -

Bouter (Q30 ≠ 0) 7.2 10.2 6.3 5.67

FIGURE 3
(A)Magnitude of the decomposed terms dEx of

236U along the fission path as in Eq. 4. (B) The same as the left panel but excluding the dEt0 and
dEt3 terms. They are represented as functions of Q20. The symbols denote the followings: solid squares dEt0, open triangles dEt1, t2, solid triangles
dEt3, open circles dEkin, solid circles dECoul, open squares dEls, and inverted open triangles dEpair.
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different EDFs since there might be a common mechanism to

form a similar barrier structure from the energy competition in

the EDF, as in Figure 2.

We compare here various components dEx on the fission

path calculated by the three EDFs to extract similarities and

differences depending on the effective interactions.

Furthermore, we wish to extract the component that forms

the double-humped barrier structures specific to the fission

barriers of the actinide nuclei. For this aim, we plot dEkin + dEt0
+ dEt1, t2 + dEt3, dECoul, dEls, and dEpair in Figure 4. The upper

left panel, exhibiting dEkin + dEt0 + dEt1, t2 + dEt3, shows that

relatively small difference among the results of the three EDFs

in which this combination of dEx’s increases for a large Q20,

corresponding to the increase of nuclear surface. On the other

hand, in the upper right panel, it is seen that the dECoul does not

depend much on the choice of EDFs, and decreases commonly

toward a large Q20 due to the enlarged distance between

localized charge distributions. The bottom panels of Figure 4

show dEls and dEpair. They have structures corresponding to the

double-humped structure in the fission barrier. The arrows in

the bottom panels indicate the positions of bumps and dips of

the barriers. We can see a similar phase on bumps and dips of

the fission barrier in the behavior of dEls. On the other hand,

dEpair has an opposite phase of the barrier structure as is known

well from their dependence on the single-particle level

densities. Therefore, we can conclude that dEls and dEpair
have significant roles in forming the fission barrier height

from their dependence on the nuclear elongation.

3.3 Sensitivity of the fission barrier to the
pairing strength

The comparison among the decomposed PESs for the three

EDFs indicates that dEls and dEpair play an important role to form

the characteristic structure of the fission barrier.We investigate the

sensitivity of the fission barrier heights to the pairing correlation by

changing the pairing strengthG. In our model, the pairing strength

G is self-consistently calculated using the level density at each

configuration. This G is the original pairing strength that can

consistently deduce the pairing gap parameter with the empirical

one. In the investigation, we only change the value of this original

G by ± 20% and the changed G is fixed in the self-consistent

calculation for each configuration at (Q20,Q30). Figure 5 shows the

fission paths for the three EDFs with the enhanced and reduced

values of G, where dE ± 20% = E ± 20%(Q20) − E ± 20%(G.S.). For all

results of EDFs, the enhanced value of Gmakes both of Binner and

Bouter smaller, and vice versa. Magnitude of the change in the dE

brought by the change of the G parameter depends on the EDF.

Moreover, the change in dE depends on Q20, indicating

FIGURE 4
The dEx on the fission path for the three EDFs (SkM*:solid, SLy4:dashed, SkI3:dashed-dotted) as functions ofQ20. (A,B) show the results of dEx
for dEkin + dEt0 + dEt1, t2 + dEt3, and for dECoul, respectively. (C,D) show the results of dEx for dEls and dEpair. The solid and dashed arrows in the bottom
panels indicate the positions of bumps and dips of the fission barriers.
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configuration dependence of the effect of the pairing correlation.

The barrier heights and E(G.S.) for each interaction are shown in

Table 2. In all the cases investigated, it is concluded that

enhancement of the pairing strength leads to better

reproduction of the derived fission barrier heights.Furthermore,

we compare the changes of pairing energy and local level densities
~ρτ near the Fermi energy as functions ofQ20. In this work, the ~ρτ is

defined below:

FIGURE 5
The dE on the fission paths of 236U for the three EDFs (SkM*, SLy4, SkI3) with the original strength of G (circle), − 20% G (cross), and + 20% G
(square).

TABLE 2 EG.S., Binner, and Bouter in MeV along the fission path of236U for
three EDFs and three values of pairing strength G.

SkM* w/G−20% w/G+20% orig.

EG.S. −1796.53 −1798.91 −1796.97

Binner 10.6 6.3 8.9

Bouter 8.1 6.0 7.2

SLy4

EG.S. −1796.37 −1797.91 −1796.46

Binner 11.9 7.9 10.4

Bouter 10.8 9.0 10.2

SkI3

EG.S. −1799.82 −1801.17 −1799.85

Binner 10.1 6.6 8.7

Bouter 7.1 5.2 6.3

FIGURE 6
The local level densities ~ρ for neutron and proton, and ΔEpair
along the fission path of 236U calculated with SkM*. The left and
right vertical axes represent ΔEpair, and ~ρ, respectively.
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~ρτ �
1

2Δε ∑λτ+Δε
i�λτ−Δε

|vτi |2, τ � n, p, (8)

where Δε is the energy window to count the single-particle

states, and vτi is the occupation probability of the counted

states. We take Δε = 2.5 MeV which corresponds to the pairing

cutoff energy. The ~ρτ can be evaluated at each Q20. Figure 6

shows ΔEpair (solid circles) and ~ρ (open circles) evaluated with

SkM*, where ΔEpair is a difference between the pairing energies

obtained from Eq. 5 with the original G and enhanced value of

G; ΔEpair = Epair(orig.) − Epair(+20%). We can see that the

behavior of local level density ~ρn + ~ρp corresponds to that of

ΔEpair. The difference between the effects of the pairing

strength on Binner and Bouter is deduced from the difference

in local level density near the Fermi energy. The result indicates

that the effects of elongation-dependent pairing correlation is

essential to comprehend the barrier heights and the relation

between Binner and Bouter, and that the fission phenomena

might bring the information on density dependence of

pairing functional.

Finally, we investigate dependence of the decomposed energy

terms obtained with SkM* on the change in the pairing strength

G. The decomposed and the combination of energy terms are

shown in Figure 7, where circle, cross, and open square symbols

show the results obtained with G, 0.8G, and 1.2G, respectively.

We can see very small changes in the combination: dEkin + dEt0 +

dEt1, t2 + dEt3, and in dECoul. Effects of the change in pairing

strength are the best seen for dEls and dEpair. For dEls, the effects

of pairing strength appear near the arrows which correspond to

fission barriers. These behaviors are consistent with the previous

discussion. The peak structure in dEls is smeared out for results

with 1.2G, while opposite trend is true for dEpair by out of phase.

By combining these two results, it leads to reduction of the fission

barrier heights. Therefore, dEls and dEpair contribute much to the

barriers since they depend on the details of behaviors of single-

particle states.

4 Conclusion

We investigated the fission barrier structure of 236U using a

constrained Skyrme HF + BCS model represented in the three-

dimensional Cartesian coordinate space. The barrier structure

was deduced from the potential energy surface (PES) obtained as

a function of quadrupole Q20 and octupole Q30 moments. The

fission path was estimated as the lowest energy path of the PES

projected to Q20 axis with a finite Q30. We employed three

Skyrme parameter sets (SkM*, SLy4, and SkI3) in this work to

calculate the fission paths. We confirmed that the double-

humped barrier structure of 236U arises, inclusion of the Q30

degree-of-freedom reduces the height of the outer fission barrier

Bouter significantly, and the calculated barrier heights are

overestimated compared to the value estimated experimentally

in all of the employed three EDFs.

To elucidate the major components to form the structure of

the barrier, we decomposed the energy on the PES along the

FIGURE 7
Same as Figure 4, but for SkM* with three choices of the pairing strength G.
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fission paths into seven energy terms of the Skyrme EDF. We

found the complicated energy competition of the barrier in which

the large components, the central and density-dependent terms,

almost cancel each other, and role of the kinetic, non-local, spin-

orbit, Coulomb, and pairing terms have been entangled. We

searched for the combination of energy terms that differ among

the three EDFs. The Coulomb term and the energy combination

excluding the spin-orbit and pairing terms, have a small EDF

dependence and change monotonically on the fission path. The

changes of spin-orbit energy term dEls on the fission path are in

phase with the bumps and dips of the barrier, and the pairing

term dEpair is in the opposite phase with them. Therefore, it can

be expected that their competition will decide the characteristic

structure of the double-humped fission barrier.

We also checked the sensitivity of the barrier structure on the

pairing correlation by changing the pairing strength. It was found

that fission barrier height decreases when the pairing strength is

enhanced, and vice versa. Furthermore, we found that the change

is not constant on the fission path. Nevertheless, enhanced

pairing strength was able to realize a lower Binner than an

Bouter. It indicates a possibility of theoretically reproducing the

fission barrier estimated experimentally by adjusting the pairing

functional. To investigate the configuration dependence of the

change of the fission barrier by changing the pairing correlation,

we calculated the local level density, which counts the occupation

probabilities near the Fermi energy related to the pairing

correlation. The changes in the pairing energy on the fission

path correspond well to the local level density behavior.

Therefore, we expect that the internal nuclear structure

strongly affects the fission barrier height through the spin-

orbit force and pairing correlation.

We will investigate the fission phenomenon using static and

dynamic models in future works. Furthermore, we will extend

our model to the beyond mean-field models by including the

stochastic effects on the initial state caused by temperature and

the quantum tunneling penetration. To realize the extension of

the theory, we will need to combine models which can treat

different time-scale.
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