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Statistical physicists and social scientists both extensively study some

characteristic features of the unequal distributions of energy, cluster, or

avalanche sizes and of income, wealth, etc., among the particles (or sites)

and population, respectively. While physicists concentrate on the self-similar

(fractal) structure (and the characteristic exponents) of the largest (percolating)

cluster or avalanche, social scientists study the inequality indices such as Gini

and Kolkata, given by the non-linearity of the Lorenz function representing the

cumulative fraction of the wealth possessed by different fractions of the

population. Here, using results from earlier publications and some new

numerical and analytical results, we reviewed how the above-mentioned

social inequality indices, when extracted from the unequal distributions of

energy (in kinetic exchange models), cluster sizes (in percolation models), or

avalanche sizes (in self-organized critical or fiber bundle models) can help in a

major way in providing precursor signals for an approaching critical point or

imminent failure point. Extensive numerical and some analytical results have

been discussed.
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1 Introduction

Unequal distributions of resources (e.g., income or wealth) among the population are

ubiquitous. Economists, in particular, quantify such inequalities in distributions using

some inequality indices (e.g., Gini and Kolkata), defined through the Lorenz function [1,

2] ([3], for recent review). Unequal distributions of energy (per degrees of freedom), of

cluster sizes (sites and bonds), or of avalanches (elements failing in one go) in many-body

systems are also ubiquitous and also extensively studied in various physical systems by

statistical physicists over the ages ([4–6]). Physicists usually concentrate on the (fractal)

structure of the biggest (in size) cluster or avalanche, which becomes of the order of the

system size, inducing the eventual macroscopic self-similarity and the consequent critical

behavior characterized by the critical exponents ([5, 6]).
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Economists traditionally quantify the social inequalities in

distributions using inequality indices, defined through the

Lorenz function L(f) [7]. After ordering the population from

the poorest to the richest, the Lorenz function L(f) is given by the

cumulative wealth fraction possessed by the fraction f of the

population, starting from the poorest: L (0) = 0 and L (1) = 1

(Figure 1). If everyone had an equal share of the wealth, L(f) = f

would be linear (called the equality line), and the old and still

most popular inequality index, namely the Gini (g) index [8], is

given by the area between the equality line and the Lorenz curve,

normalized by the entire area (1/2) below the equality line. Thus,

g = 0 corresponds to perfect equality, and g = 1 corresponds to

extreme inequality. Another recently introduced inequality

index, namely, the Kolkata (k) index [9], can be defined as

the nontrivial fixed point of the complementary Lorenz

function Lc(f) ≡ 1 − L(f): Lc(k) = k. It says that the richest

(1 − k) fraction of the population possesses a fraction k of the

total wealth (k = 1/2 corresponds to perfect equality and k =

1 corresponds to extreme inequality). As such, the k index

quantifies and generalizes the century old 80–20 law

(corresponding to k = 0.80) of Pareto [10]. Extensive analysis

of social data ([11, 12]) indicates that in extremely competitive

situations, the indices k and g become equal in magnitude of

about 0.86 (instead of 0.80).

The Gibbs distribution ([4]) of kinetic energy among the

particles in a classical ideal gas in equilibrium can also be

analyzed in terms of the corresponding Lorenz function L(f)
and then extracting the Gini (g) and Kolkata (k) indices for the

kinetic exchange models of market by exploiting the formal

similarity between the energy of the gas molecules in the

kinetic theory and wealth of an individual and that between

temperature and noise in trade ([13–15]). Similarly, the

distributions of cluster sizes ([6]) in the percolation models

on lattices can be analyzed in terms of the g and k indices. At

occupation concentration p both below and above the

percolation threshold pc ≃ 0.5927 [6] gave g = k ≃ 0.865 at a

site occupation probability p ≃ 0.565, somewhat below the

percolation threshold pc. The statistics of avalanches

(successive failures in one go, without any increase in the

external perturbation), following the self-organizing critical

dynamics of the sand-pile models ([16]) have also recently

been analyzed in terms of the behavior of social inequality

indices g and k [17]. Finally, the avalanche statistics due to

collective dynamics of failure or breaking of individual elements

(in non-brittle materials), studied using the fiber bundle models

FIGURE 1
Lorenz curve L (f) (shown in red) and complementary Lorenz
curve Lc (f) (shown in green) used to calculate the inequality indices
Gini (g = 2S, S denoting the area of the shaded region between the
equality line and the Lorenz curve) and Kolkata (given by the
fixed point k = Lc (k) ≡ 1 − L(k)). Here, L represents the cumulative
fraction of wealth possessed by p fraction of the people, when
ordered from poorest to the richest. For the physical systems
considered here, such as the kinetic exchange model of gas, the
wealth could be replaced by the kinetic energy and the fraction of
people by the fraction of particles. For model systems such as
percolation, sandpiles, or the fiber bundles, the horizontal axis
represents the fraction (f) of clusters or avalanches when all
avalanches are arranged from the lowest to the highest size. The
vertical axis (L) represents the fraction of the cumulative mass of
these clusters or avalanches.

FIGURE 2
Variation of the Kolkata index (k) against the Gini index (g) for
kinetic exchange model with uniform saving propensity (λ; CC
model). For λ = 0, the estimated values of k ≃ 0.68 and g ≃ 0.5
conform the theoretically estimated exact values of g = 0.5
and k ≃ 0.682, discussed earlier. As expected, with increasing
saving propensity, the inequality decreases and g tends to vanish,
and k approaches 0.5 as λ tends towards unity. The simulation data
fit well with the relation k = 0.5 + Cg with C ≃ 0.36 (a Landau-like
theory for the Lorenz function, discussed next, givesC= 3/8). Inset
shows the variations of g and k with λ.
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(FBMs) ([18–21]), when analyzed using the social inequality

indices g and k [17, 22], gives an intriguing possibility of

predicting the imminent failure of the entire bundle.

Typical FBMs or such failure-prone (dynamically coupled

many-element) systems, or the percolating systems, are not self-

organized and are externally driven or tuned. Particularly for the

FBM, a discrete set of elements, each having a failure threshold

randomly drawn from a distribution, carries a load. The elements

are irreversibly broken when the load on them cross the pre-

assigned threshold value. Either the remaining intact elements

(fibers) are able to support the applied load, or at a sufficiently

high value of the applied load (the critical load for the system),

the entire system breaks down. Unlike the other cases discussed

here, there are no dynamics on the other side of the critical point,

as the system does not survive at all beyond the critical load. For

self-organized-critical (SOC) systems, ([16]), as the average

“height” h per site increases, our numerical study (in square

lattice) [17] shows that g and k approach each other and become

equal to about 0.863 (BTW), and 0.856 (Manna) at the respective

values of average heights h ≃ 2.087 (little less than the actual

critical value hc = 17/8 = 2.125) for the BTW model and h ≃
0.6859 (compared to hc ≃ 0.7172) for the Manna model. For the

other SOC models considered here [17, 22], such as the driven-

interface Edwards–Wilkinson model and the centrally pulled

FBM, show similar growth (from g = 0 and k = 0.5) of the

inequality indices to about g = k ≃ 0.86 a little below the

respective SOC points.

All these numerical studies indicate that, except for the

irreversible dynamical systems such as FBMs (where the

dynamics eventually stop), all critical systems (self-organized

or otherwise) show a clear precursor behavior of the inequality

indices such as the Gini g and Kolkata k. Particularly, if the

inequality in the response of a physical system is measured as it

approaches a critical point, such measures show universal trends,

irrespective of the universality class of the associated critical

point. The particular response to be measured depends on the

particular system. For example, in the case of site percolation, it is

the inequality between the clusters for a given occupation

probability; for kinetic exchange model of wealth, it is the

wealth distribution between the individuals; for SOC systems,

it is the time series of the avalanches. The inequality indices Gini

(g) and Kolkata (k) typically start from 0 to 0.5 respectively (for

small and almost equal size clusters), when the systems are far

away from the critical point. Then, they approach g = k ≃ 0.86

slightly before the critical point is reached. Even for irreversible

systems such as the FBMs, the indices g and k assume universal

terminal values of about 0.45 and 0.65, respectively, providing a

major statistical precursor signal for the impending catastrophes.

Here, we reviewed some recent numerical studies on the

properties of Gini (g) and Kolkata (k) indices for extended kinetic

exchange models [14], with some analytical Landau-like

formulation of the Lorenz function L(f) and the analytical

estimates of g and k and the relationships between them,

including an estimate of the self-organized poverty (energy)

level. Next, discussed the numerical observations on g and k

for site percolating systems in two dimensions and discussed, in

particular, how their coincidence in magnitude (g = k ≃ 0.86)

occurs preceding the imminent percolation or critical point.

Similar results [17] (g = k ≃ 0.86) as the sandpile systems

approach the self-organized critical point in the

Bak–Tang–Wiesenfeld sandpile model, Manna model, and a

centrally pulled self-organized fiber bundle model have been

discussed. Finally, have discussed the numerical results (g ≃ 0.45

and k ≃ 0.65) as the global breaking point approach [22, 23] in the

equal-load-sharing fiber bundle models with irreversible local

failures and collective load-share mechanism and their relevance

in earthquake statistics [24].

2 Numerical results for social
inequality indices in kinetic exchange,
percolation, BTW, Manna, and fiber
bundle models

In this section, we have mostly discussed numerical results

for the Gini [3, 8] and Kolkata [3, 9] indices for the kinetic

exchange models [13, 25, 26], percolating systems [6, 27] and

three self-organized-critical (SOC) models, namely, the

Bak–Tang–Wiesenfeld model (BTW) [28], Manna model [29],

and a self-organizing centrally-pulled-fiber-bundle model [18,

19]. We also discussed the same for the standard fiber bundle

model (FBM) [30] ([19–21]), where the irreversible breaking

dynamics stop as the whole bundle fails. Except for the kinetic

exchange model considered here, all the other models exhibit

critical, externally tuned (as in percolation), or self-organized (as

in BTW, Manna, or centrally pulled fiber bundle) behavior at (in

percolation model) or beyond (for the SOC models) the

respective critical points (traditionally identified as the phase

transition point). The bundle failure points (stress) in such FBMs

have already been identified as the corresponding critical points

[19–21, 31].

As mentioned earlier, statistical physicists have studied

extensively, over the last five decades, the building up of self-

similarity in the spatial and temporal structures of the clusters or

avalanches near the critical point, where the system spanning

cluster (corresponding to the divergent correlation length [4–6])

or the consequent critically slow dynamics (divergent relaxation

time [4–6]), characterized by the (singular and universal)

exponents, occur. This self-similar system-spanning fractal

structure developed at the critical point is necessarily very

much unequal compared to the other structures, which

become quite unimportant there. The Lorenz function [7] of

these cluster or avalanche size distributions near these critical

points are found to become such that the Gini (g) and Kolkata (k)

indices become equal and nearly universal (g = k ≃ 0.86 or

becomes nearly universal (g ≃ 0.45, k ≃ 0.65) at the breaking or
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failure points of FBMs. This equality (g = k ≃ 0.86) or otherwise

(g ≃ 0.45, k ≃ 0.65) is seen to follow from Monte Carlo data in

various model cases discussed in this section, and it occurs a little

away from the critical point where the inequalities become much

larger. This universal value of the inequality indices in various

physical systems, prior to the arrival of the respective (widely

different) critical points, can provide excellent precursor signals.

2.1 Social indices g and k in kinetic
exchange models

First, we recount in brief the derivation of energy (ϵ)
distribution n (ϵ), representing the number of constituent free

(Newtonian) particles of a classical ideal gas in equilibrium at a

temperature T. If g (ϵ) denotes the “density of states”, giving g (ϵ)
dϵ equal to the number of dynamical states possible for any of the

free particles of the gas which has kinetic energy between ϵ and ϵ
+ dϵ (as counted by the different momentum vectors �p

corresponding to the same kinetic energy ϵ ~|p|2 (giving

g(ϵ)dϵ ~ �ϵ√
dϵ in three dimension); then, one can write n (ϵ)

dϵ = g (ϵ)ρ(ϵ, T) dϵ. For completely stochastic and ergodic many-

body dynamics or energy conserving exchanges, the statistical

energy distribution function ρ (ϵ, T) should satisfy ρ(ϵ1)ρ (ϵ2) = ρ

(ϵ1 + ϵ2) for any arbitrary choice of ϵ1 and ϵ2. This suggests ρ (ϵ) ~
exp (−ϵ/T). These finally give n(ϵ) � �ϵ√

exp(ϵ/T), where the

factor T can be identified from the observed knowledge about the

equation of state for the gas.

In a natural extension of this oldest and most established

many-body theory, econophysicists developed ([13, 25]) the

Kinetic exchange model of trading markets with fixed total

money (M = N) exchanged only among fixed (large) number

(N) agents or traders. Here, the money mi(t) [M = ∑imi (t)] at

any time t (measured by the number of trades or scattering) of

the i-th agent (or “social atom”) is identified as the kinetic

energy (ϵ) of the corresponding atom or particle. In the market,

the total amount of money (M = N) remains conserved as no

one can print money or destroy money (will end up in jail in

both cases). Following the kinetic theory picture of random

kinetic energy exchanges among the particles in an ideal gas, the

money exchanges among the agents in the market here are

considered to be completely random. One would, therefore,

again expect, for any buyer–seller transaction in the market,

ρ(m1)ρ(m2) �ρ(m1 +m2), where ρ (m) denotes the

equilibrium or steady state distribution of money m among

the traders in the market. This, in turn, in a similar way,

suggests ρ (m) = A exp (−m/Δ), where A and Δ are

constants. Since ∫ρ (m)dm = N = M = ∫mρ (m) dm, we

finally get n (m) = ρ (m) = exp (−m) for the steady state

number of traders with money m in the market (since there

cannot be any equivalent of the particle momentum vector for

the agents, the equivalent of the density of states g (m) here is a

constant).

1) One can easily calculate [14] exactly both the inequality

indices g and k here. We can now calculate the Lorenz

function L(f) � ∫m

0
xρ(x)dx � 1 − (m + 1)exp(−m),

where f � ∫m

0
ρ(x)dx � 1 − exp(−m), giving m = − ln

(1 − f), giving, in turn, L(f) = 1 − (1 − f)[1 − ln (1 − f)].

One, thus, gets (Figure 1, noting the area under the equality

line to be 1/2), the Gini index g � 1 − 2∫1

0
L(x)dx � 1/2 and

the Kolkata index k given by the self-consistent equation 1 −

k = L(k) or 1 − 2k = (1 − k)[ln (1 − k)], giving k ≃ 0.68.

2) We now proceed to study numerically the uniform saving

exchange model and the corresponding Gini and Kolkata

indices. In this model (called CC model [13, 32, 33]), we

consider again a closed economic system with a fixed amount

of money M and a fixed number of agents N = M, where the

agents are interacting (trading with) each other by exchanging

their money. A saving propensity λ(0 ≤ λ ≤ 1) of the agents is

introduced in this model, such that during each (two-body)

trade event, each of the agents saves a fraction λ of their

money in possession at that point of time (trade) and the rest

of money is again exchanged randomly between the two trade

partners. The exchange of moneymi (t) between two traders (i

and j) at time t can be expressed as

mi t + 1( ) � λmi t( ) + ϵij 1 − λ( ) mi t( ) +mj t( )( ), (1a)
mj t + 1( ) � λmj t( ) + ϵij 1 − λ( ) mi t( ) +mj t( )( ), (1b)

3) We now proceed with an approximate expansion [15] of the

Lorenz function L(p), employing a Landau-like argument [4]

for the expansion of free energy. A Landau-type minimal

expansion of the Lorenz function L(f) up to the quadratic

term f gives

L f( ) � Af + Bf2, A> 0, B> 0, A + B � 1. (2)

As may be noted, the abovestated expansion gives L (0) = 0

and L (1) = 1, and with the linear term alone, the Lorenz function

can represent only the equality line (Figure 1). One can now

calculate the Gini index g � 1 − 2∫1

0
L(f)df giving A = 1 − 3 g

and B = 3g. The value of the k index can be found from the

relation (Figure 1) L(k) = 1 − k, giving 3gk2 + (2 − 3g)k − 1 = 0, or

k � 3g − 2( ) ± �������������
2 − 3g( )2 + 12g

√
6g

. (3)

In the g → 0 limit, the above expression gives [15] k = 1/2 +

(3/8)g, which suggests k = g = 0.8, the Pareto value under extreme

competition [10] (see Figure 2). Of course, the full relation Eq. (3)

gives g = k ≃ 0.74, which is much smaller than the observed values

around 0.86 [3, 12] and even the Pareto value 0.80

(corresponding to Pareto’s 80–20 law [10]).

4) We now discuss the self-organized appearance of minimum

energy or poverty level [14] in the kinetic exchange model and

in its extension with uniform saving propensity, namely in the
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CC model. Specifically, we consider a kinetic exchange model

where one of the agents in the chosen pair is necessarily the

poorest (in money or energy) at that point of time (trade or

scattering), and the other one is randomly chosen from the

rest. Here, we vary the saving propensity (λ) for values other

than 0, and the exchange of money follows the same rule as

described by Eq. 3. An important observation is the

spontaneous appearance of a self-organized poverty (or

energy) level (SOPL) in the steady state distribution, below

which the distribution function vanishes (ρ (m) = 0). For λ = 0

the SOPL occurs atm = θ (λ = 0) ≃ 0.61 (Figures 3 and 4). This

SOPL [θ (λ)] also increases with increasing values of λ

(Figure 3), and the θ(λ) approaches unity as λ approaches

unity (Figure 4).

5) We now sketch a mean field-like argument to estimate the

value of θ, the self-organized poverty (energy) level (SOPL). If

we assume, following Ref. [14], that generally the steady state

distribution ρ (m) of money or energy in such kinetic

exchange models of SOPL remains Gibbs-like

(exponentially decaying, but with shifted origin to m = θ: ρ

(m) = exp [ − (m − θ)] form > θ and ρ (m) = 0 otherwise), the

average energy of any of the traders or particles will be equal

to [θ + (θ + 1)e−1]/2, which has to be greater than θ. This is

because one of the trade partners must have (with probability

1) θ amount of money, while the other can be any one else and

can be assumed to have an average money (M/N = 1, shifted

by the minimum θ) and, hence, comes with a probability exp

(−1). Finally, there will be, on average, a 50–50 share for any

one, and that share value has to be equal to or above the

minimum (θ). This gives the estimate θ ≤ [θ + (1 + θ)e−1]/2 or

θ ≤ e−1/(1 − e−1), giving θ ≤ 0.58. This upper bound is

somewhat less than the observed value (Figure 3; θ(0) ≃
0.61) at λ = 0. For λ approaching unity, the distribution

any way approaches equality (at m = 1) [13, 14]. Hence, the

abovementioned equation simplifies to θ ≤ [θ + 1]/2, or θ ≤ 1,

which is clearly observed.

2.2 Social indices g and k in percolation
model

In percolation models, a regular square lattice (L × L) with

site occupation probability p is considered. The cluster size

distribution is measured for different p values. The cluster size

smeasures the number of the nearest neighbor occupying sites

and the number n (s) of s size cluster at any particular p will

give the cluster size distribution (at any p), which has been

utilized to generate the Lorenz function. The inequality

indices g and k are obtained from the Lorenz function

(Figure 1) for distributed cluster sizes. Figure 4 shows the

variation of the Kolkata index (k) against the Gini index (g) of

the cluster sizes for different site occupation probability p (we

performed the simulations for system size 4000 × 4000). The

initial slope of the simulation data fits well with the relation

k = 0.5 + C*g (C ≃ 0.39). The upper inset shows the variation of

g and k with occupation probability p and the crossing value of

the two indices kc = gc ≃ 0.874 at p ≃ 0.565 (while the critical

point is pc ≃ 0.593). The lower inset shows the variation kc or gc
with system size (L).

FIGURE 3
Steady state money distribution ρ (m) for fixed saving
propensity λ in the kinetic exchange model where in each two-
body scattering (trade), one particle (trader) is with least energy
(money), and the other one is chosen randomly from the rest.
In the inset, the variations of inequality indices k and g and location
of the self-organized minimum energy (poverty) level (SOPL) are
shown against fixed saving propensity λ. Adapted from [14].

FIGURE 4
Kolkata index (k) against Gini index (g) for 2-d site percolation
on square lattice. The initial slope of the simulation data fits well
with the relation k = 0.5 + 0.39 g. The upper inset shows the
variations of g and k with occupancy probability p, and the
crossing value kc or gc of k and g is about 0.874 and occurs at p ≃
0.565, somewhat below pc ≃ 0.593.
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2.3 Social indices g and k in
Bak–Tang–Wiesenfeld, Manna sandpile,
and centrally pulled fiber bundle models

2 3.1 Inequality in the Bak–Tang–Wiesenfeld and
Manna sandpile models

In the BTW model on a square lattice, the sand grains are

added one by one at randomly selected sites. The heights of the

sand columns at different sizes will increase with the addition of

these sand grains. When the sand column height (h) at any site

reaches a threshold value (4, in the BTW model), the column

becomes unstable, and the sand grains from the unstable sites are

equally shared among the neighboring (4) sites uniformly. This

may cause the neighboring columns to become unstable, and the

avalanche continues. In the Manna sandpile model (on square

lattice again), when the sand column height reaches a threshold

value of 2, the column becomes unstable, and the sand grains

from the unstable column are shared randomly by two of the

neighboring columns which may become unstable again, and the

avalanche may continue. Therefore, an avalanche of topplings

will occur in both the models until height h at all the lattice sites

becomes less than the respective threshold values. The random

addition of sand grains to the sandpile then induces further

dynamics in the models. The avalanche size s measures the total

number of toppings in one go, without any further addition of

sand grain to the system, and the number of s size avalanches n

(s) in the steady state of the models will give respective avalanche

size distributions, which have been utilized to generate the

respective Lorenz functions.

The inequality indices (g and k) are obtained from the

abovementioned Lorenz functions for the respective models.

Figures 5A B show the variations of the Kolkata index against

the Gini index for different average heights of the sand columns

in the BTW and Manna models, respectively. The initial

variations of the simulation data in both the models seem to

fit well with the relation k = 0.5 + C*g (C = 0.385 ± 0.005) and gc =

kc = 0.860 ± 0.005 for the crossing point. It may be mentioned

that this crossing of g and k occurs at the values of average height

h ≃ 2.087 (slightly below the actual critical height hc = 17/8 for the

BTW model) and at h = 0.6859 (compared to the actual critical

height hc ≃ 0.7172 for the Manna model) [17]. For a finite size

scaling behavior of these values, see Figure 6.

2.3.2 Inequality in centrally pulled fiber bundle
model

In this version of the fiber bundle model [18], initially, a load

is applied only at a centrally located fiber in a two-dimensional

arrangement of fibers. The applied load (pull) is slowly increased

at a constant rate. When that fiber breaks, the load is shared

equally between its nearest neighbors. Should some of those

neighbors fail, their load would be equally redistributed among

all fibers that have at least one broken neighbor. The

redistribution process occurs at a much faster rate than the

pulling. Hence, the load per fiber value along the centrally

located damage boundary fluctuates around a steady state.

The numbers of fiber broken in an avalanche show power-law

size distribution. Unlike the usual version of the fiber bundle,

where the dynamics eventually stop due to a catastrophic failure

of the whole system, in this case, it continues until the damage

boundary reaches the system boundary, i.e., in the

thermodynamic limit of infinite system size, the dynamics

keep on going.

The inequality of the avalanches could be measured in the

same way as in the case of the SOCmodels mentioned above. The

plots of g vs. k are shown in Figure 7.

For a theoretical understanding of this behavior, if the Lorenz

function is written as L (f) = fθ, then, it is known that g = (θ − 1)/(θ

+ 1). In other words, then, θ = (1 + g)/(1 − g). Now, one gets k

from solving 1 − k = kθ Then, clearly,

g � ln 1 − k( ) − ln k( )
ln 1 − k( ) + ln k( ). (4)

This relation does not restrict the values of g and k and should be

valid as long as the form of the Lorenz function is a power-law. It

can be compared with the numerical observation of the relation

FIGURE 5
Kolkata index k against Gini index g plotted for (A) BTWmodel
and (B) Manna model. The initial slope of the simulation data fits
well with the relation k = 0.5 + C*g (C = 0.385 ± 0.005) and gc =
kc = 0.860 ± 0.005 is the crossing point with the g = k line.
Taken from Ref. [20].
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between g and k in the SOCmodels (discussed later). If, however,

one concentrates in the limit of small values of g and k, i.e., k = 1/2

+ ϵ, where ϵ → 0, then the above relation reduces to

k � 1
2
+ ln 2( )

2
g. (5)

The relation Eq. 4 is compared with the simulation of

centrally loaded FBM in Figure 7.

FIGURE 6
(A) BTW sandpile model: The values of the Kolkata kc(L) and the Gini gc(L) indices (at the point when they cross) have been plotted as a function
of the system sizes L = 128, 256, 512, and 1024. The crossing point (g = k = gc = kc) values of the indices decrease with the system size. (Inset) The
values of kc = gc as a function of L have been extrapolated with respect to L−1/], where the value of ] for the BTW model has been tuned for the best
possible linear fit of the data, and it gives 1/] = 1.776, giving, in turn, kc = gc= 0.863 in the limit of L→∞. (B)Manna sandpile model: The values of
the Kolkata index kc(L) and the Gini index gc(L) have been plotted against the system sizes L = 128, 256, 512, and 1024. The values of the indices
decrease with the system size. (Inset) The values of kc = gc as a function of L have been extrapolated with respect to L−1/], and the value of the
exponent ] has been tuned for the best possible fit of the data. The plot shows that the best fit corresponds to 1/]=2.162 for theMannamodel, giving,
in turn, kc = gc = 0.8554 in the limit of L → ∞. Adapted from Ref. [20].

FIGURE 7
Variations of k against g indices are shown for the centrally
pulled fiber bundle model. (A) The line is a fit for the initial growth
of g and k, while the g = k line is also shown as a guide to the eye.
Adapted from Ref. [20]. (B) The same variation is plotted with
g against k and compared with Eq. 4.

FIGURE 8
Kolkata index k for the avalanche distribution D(Δ) as the
dynamics of failure continues in the FBM (in the ELS scheme),
where the individual fiber thresholds are drawn from a Weibull
distribution. The estimated values of the index k at different
times t (scaled by N/log N) are plotted until complete failure of the
bundle (with disorder characterized by different Weibull moduli
(m) indicated using different colors). The terminal value of the k-
index, prior to complete failure bundle, seems to reach a threshold
(0.62 ± 0.03), and this terminal value is weakly dependent on m.
The inset shows the variations of the k index with unscaled time.
Taken from [22].
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2.4 Social indices g and k in the fiber
bundle model

In the previous sub Section 2.3 (b), we considered a self-

organized version of the fiber bundle model, where the breaking

dynamics continue indefinitely as the active fiber bundle system

(on the periphery of the central broken patch) grows

continuously in size as the central pull or load is increasing

with time.

In the standard version of the fiber bundle model ([19–21]),

of course, the breaking dynamics stop as the entire stem (fixed in

size) fails. Here, the collective dynamics of failure or breaking in

any non-brittle material sample proceed through the failures of

individual elements of the material as the external load or stress

on the sample increases. The subsequent redistribution of the

load shares among the surviving elements and consequent

further failures and avalanches (even when the external load

does not increase any further). These bursts of elastic energy

released (experimentally detected as acoustic emissions) until the

complete breakdown of the material are widely studied [13].

These bursts or avalanches are also studied often in models, such

as the fiber bundle model (FBM) [14, 15], both analytically and

numerically. An avalanche is defined as the size or mass of the

failure events taking place in the system in going from one stable

state to the next, as the external load on the system is increased

further to trigger a failure activity (load gradually increased),

while the (relatively faster) internal dynamics continues due to

load redistribution among the surviving fibers and consequent

failures due to such increased load on them. The avalanche size

could also be measured by the amount of elastic energy released

from these failed elements. Its distribution would then

correspond more naturally to the elastic energy emissions. In

the mean-field version of the model considered here, these two

quantities (avalanche and energy) have the same size distribution

FIGURE 9
Time variations of (A) g(t) and (B) k(t) are shown when individual samples are of sizes between Lmin and Lmax with uniform probability, where r =
Lmin/Lmax and 10 time series are shown for each value of r. While the failure times for the individual samples are vastly different, the terminal values of
g = gf and k = kf are narrowly distributed. The failure thresholds are taken from a Weibull distribution with a shape parameter value κ = 3 and Lmax =
10,000. Adapted from [23].

FIGURE 10
The time variations of (A) g(t) and (B) k(t) are shown when individual samples are of different disorder strengths—Weibull threshold distributions
with shape parameters distributed uniformly between κmin and κmax, with 10 samples for each κmin, κmax pair. In the labels, δκ= κmax − κmin, with (κmax +
κmin)/2 = 3.0, in each case. The system size is 1000 always. Again, the failure times are vastly different, but the terminal values of g = gf and k = kf are
narrowly distributed. Adapted from [23].
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function. For simplicity, here, we consider the avalanche size to

be given only by the number of failed elements. For successive

increases in the external load, further avalanches of different sizes

occur with various frequencies. As in the wealth distributions, the

distributions of the avalanche sizes across a broad class of systems

show the common feature of having a relatively larger number of

smaller events (poorer people) and much fewer number of large

ones (richer people), indicating similar nonlinear nature of the

corresponding Lorenz function L(f) (Figure 1). In statistical

physics, however, we usually concentrate on the (fractal)

structure, the biggest avalanche size, which becomes of the

order of the system size and causes the eventual macroscopic

failure of the sample ([5, 6]). Some recent studies [17, 22] on the

social inequality indices in equal-load-sharing FBMs [19–21]

having widely different fiber breaking threshold distributions,

suggest gradual increase of the Gini and Kolkata indices (see

Figures 8-10) with increasing load on the bundles, towards some

universal terminal values, namely g ≃ 0.45 and k ≃ 0.65,

respectively, at the breaking point σc (breaking load per fiber)

of the respective bundles (see Figure 11). Needless to mention,

monitoring the values of such (social) indices g and k for failure

avalanches (usually measured as acoustic emissions) can,

therefore, provide an easy and unique precursor signal [17,

22] to imminent disasters.

Indeed, our recent analysis [24] of USGS earthquakemagnitude

data for 22 years (2000–21) shows universal social inequality indices

terminal values. For the fiber bundle model, an analytical estimate of

the failure point values of g and k for particular limits (equally spaced

failure thresholds and equal load increase) can be attempted [24]. It

can give an idea of why the limiting values are independent of the

different threshold distributions.

3 Summary and discussion

Many physical systems close to their critical points exhibit

large fluctuations. Despite many differences, large groups of

systems show universal nature in the statistical features of

such fluctuations. In other words, such differences are

irrelevant in the renormalization group sense, and the critical

points are characterized by sets of critical exponents that only

depend on a few subtle parameters (space dimension and order-

parameter dimension). Nevertheless, in measuring the critical

exponents, the critical points need to be known, which can

depend on many details of the particular system under

investigation. There can also be some situations where the

system can only be probed from one side of the critical point

(e.g., breakdown of driven disordered solids). In such cases,

knowledge of the proximity to the critical point (imminent

breakdown) is often crucial. Knowing some typical universal

values of the critical exponents alone does not help in

determining the proximity to the critical point.

Here, we have outlined, in a variety of physical systems, how

the characterization of the (social) inequality in the response

statistics of systems close to the critical points can help in

determining the proximity to such a point. It is remarkable

that the precursor signal for the forthcoming transition, given

by the inequality measures (Gini and Kolkata indices), is quite

universal and independent of the details of the system. Therefore,

it can serve as a useful indicator of an imminent critical point, just

from the fluctuations of the order parameters and without

requiring the knowledge of the specific value of a critical point.

We have analyzed here the kinetic wealth exchange model,

geometrical percolation on a two-dimensional lattice, self-

organized critical models and the fiber bundle model of

failure in disordered solids. Specifically, in Section 2.1, we

have discussed the kinetic wealth exchange model and the

appearance of the self-organized poverty line and the

variations of the inequality indices with an analytical estimate

using a Landau-like expansion of the Lorenz function. In Section

2.2, inequality indices are computed from the unequal

distributions of clusters (occupied nearest neighbor sites) on a

square lattice for different values of occupation probability. The

crossing of g and k occurs (kc = gc ≃ 0.86) at an occupation

probability just below the critical (percolation) probability. In

Section 2.3, self-organized critical dynamics in sandpile (BTW

and Manna) and centrally pulled fiber bundle models are studied

in terms of the inequalities in their avalanche statistics. As before,

the crossing point of the inequality indices g and k (kc = gc ≃ 0.86)

again indicates proximity to the onset of a self-organized critical

state. Finally, in Section 2.4, the inequalities in avalanches are

discussed for the fiber bundle model where the dynamics

terminate at a catastrophic failure point, unlike the self-

organized dynamical state discussed in Section 2.3. In this

case, the inequality indices do not cross, but the terminal

values are broadly universal (gf ≃ 0.45 and kf ≃ 0.65) and,

FIGURE 11
Probability distributions of the terminal values of g = gf
(denoted by G (gf)) and k = kf (denoted by K (kf)) are shown for
extreme values of r= Lmin/Lmax = 0, 1 and δκ= 4.0. The distributions
show peak near 〈gf〉=0.41 ± 0.04 and 〈kf〉=0.64±0.02. The
averages are calculated over 10,000 ensembles. Adapted
from [23].
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therefore, could be useful in predicting the imminent failure

point.

Except in the last case, the fluctuations in the other models

(that of wealth of an individual, sites in the largest connected

cluster, or grains in an avalanche event) are only limited by the

system size (or at least an increasing function of the same).

This so-called “unrestricted competition” leads to remarkably

robust characterizations of the inequality measures.

Particularly, despite the wide variety of the physical

systems considered here, in their dynamics, dimensionality

and consequently the universality classes, the inequality

indices Gini (g) and Kolkata (k) cross at gc = kc ≃ 0.86, in

almost all cases (within a limited range of deviation) just

preceding the critical point. In the case of the fiber bundle

model of catastrophic failure, the dynamics stop. In such

cases, therefore, g and k do not cross but, nevertheless,

show robust features (with respect to disorder distribution

and system sizes) in terms of their values (gf ≃ 0.45 and kf ≃
0.65) at the failure point [22, 23] and seems to support also the

observations from analysis of earthquake data [24].

An analytical understanding of these features is still lacking.

However, we have discussed here [in Section 2.1 (c)] the minimal

Landau-like expansion of a Lorenz function that can correctly

predict the precise relationship between g and k in the small-

value limit of g (giving kc = gc = 0.80, the Pareto value; somewhat

less than the observed value kc = gc ≃ 0.86).

As can be guessed, a robust measure indicating an imminent

critical point in a system can be of vital use. We would like to

highlight that the social inequality indices are extremely

promising candidates for such an early signal and indicator

for approaching the critical point or the imminent failure in a

wide range of physical systems.
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