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We analyze the effect of launch beam distribution on space-division

multiplexing (SDM) performance in multimode multicore silica optical fibers

(MMMC SOF) with seven cores. The time-independent power flow equation (TI

PFE) is used to explore the effect of the width of the distribution of the Gaussian

launch beam on power flow in each of the seven cores. We show that the

optical fiber length at which the equilibrium mode distribution (EMD) and

steady-state distribution (SSD) are obtained is greatly influenced by the

width of the Gaussian launch beam distribution. We further show that when

the width of the Gaussian launch beam distribution widens, the optical fiber

length at which angular division multiplexing (ADM) in each of the seven cores

can be realized with minimal crosstalk between neighboring angular optical

channels decreases. We demonstrate that, for increasing the capacity of an

optical fiber transmission system, an SDM system with two- and three-channel

ADM and multicore optical fiber multiplexing can be implemented with the

proposed seven-core MMMC SOF at optical fiber lengths up to ≈1 km (2 ADM

channels × 7 cores) and ≈200m (3 ADM channels × 7 cores), respectively. Such

characterization of MMMC SOFs under various launch conditions is important

for building a multicore optical fiber SDM transmission system.
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Introduction

Optical fiber communication is the backbone of worldwide telecommunications

infrastructure. In the last two decades, the capacity of optical fiber transmission

systems has increased as a result of technological advancements such as low-loss

single-mode and multimode fibers, spectral coding, fiber amplifiers, and multiplexing

[1]. Optical signal multiplexing is usually realized in wavelength, polarization, time, phase,

and space [1, 2]. Although wavelength-divisionmultiplexed (WDM) systems using typical
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commercial single-mode single-core fibers (SM SCFs) can

enhance the transmission capacity by two orders of

magnitude, current studies suggest that WDM systems are

rapidly nearing their Shannon capacity limit [3]. SDM,

including mode division multiplexing via MM or few-mode

fibers and/or core multiplexing using multicore fibers (MCFs)

[4], has gotten much attention in the last decade as the next step

in multiplicative capacity growth in optical fiber transmission

systems [5–9].

Research on SDM transmission in MM SCFs has recently

seen tremendous progress, with efficient solutions for signal

multiplexing/de-multiplexing in MM fibers and integrated

MM amplification. For example, every ADM channel inside

the carrier MM SCF is assigned radially distributed, dedicated

spatial positions in the case of SDM when using the same

wavelength [10]. The launch angle and mode coupling

strength determine where each channel is located inside the

MM SCF. To further increase the capacity of SDM in MM fibers,

MM MCF has been proposed as a promising spatial avenue.

SM SOFs have been the chosen solution for long-distance

and high-capacity communications networks, laser beam

delivery, sensing systems, lane control signaling devices, and

other applications for decades. To increase the capacity of SOF

systems, we here present an SDM scheme in a custom-designed

MMMC SOFs which have seven cores arrayed in a hexagonal

arrangement. The differential mode attenuation and the rate of

mode coupling both influence the optical signal transmission

characteristics of MM optical fibers [11–17]. By solving the TI

PFE, we explore the effect of the width of the Gaussian launch

beam distribution on the state of mode coupling, EMD and SSD

inMMMC SOFs with seven cores. In the core-cladding interface,

the refractive index (RI) profile of homogenous cores shows a gap

between two constant values. The effect of mode coupling

changes the input angular power distribution that comes from

a particular launch as the distance from the input end of the

optical fiber increases. As a result, the far-field radiation patterns

are changed [18]. For example, a ring pattern can be obtained at

the output optical fiber end in the case of a short optical fiber, for

a centrally symmetric launch (along a cone) at an angle θ0 from

the fiber axis. With increasing optical fiber length, the boundaries

of the ring will blur, and the ring progressively morphs into a

disk, which is a consequence of the mode coupling that occurs in

optical fiber. At coupling length Lc, the distribution of the highest

order guiding modes shifts the mid-point to θ = 0o, when an

EMD is attained. The unique angular power distribution will

become fixed and centered (independently on the launch beam

angle θ0 and the width of the launch beam distribution) when the

optical fiber is lengthened beyond the value known as zs, denoting

that an SSD is established.

The modelling of propagation and SDM inMM optical fibers

is still a challenging task since until recently, commercial

simulation software packages were not designed neither for

MM SCFs nor MM MCFs. This deficiency has been addressed

in our previous works for modeling a different types of

conventional MM SCFs [10, 13, 15, 17, 18]. In this work, by

numerically solving the TI PFE for varying widths of the launch

beam distribution, we calculate the length at which the EMD and

an SSD is attained in each of the seven cores of the MMMC SOF.

Also, an analysis is conducted on how the width of the Gaussian

launch beam distribution affects the optical fiber length at which

ADM in each of the seven cores may be achieved with minimum

crosstalk among neighboring angular optical channels.

Time-independent power-flow
equation

Gloge’s TI PFE for simulation of the power distribution

within a multimode SI optical fiber is [11]:

zP(θ, z)
zz

� −α(θ)P(θ, z) + D

θ

z

zθ
(θ zP(θ, z)

zθ
) (1)

where P(θ,z) denotes the angular power distribution, θ is the

propagation angle to the core axis, z is the distance from the input

end of the optical fiber, D is the coupling coefficient (which is

assumed constant [11, 14, 17, 18]), and α(θ) is the modal

attenuation. Since α(θ) need not be considered when

accounting for mode coupling in Eq. 1 and Eq. 1 becomes [15]:

zP(θ, z)
zz

� D

θ

zP(θ, z)
zθ

+D
z2P(θ, z)

zθ2
(2)

The boundary conditions are P(θc,z) = 0, where θc is the

critical angle of the fiber, and D(zP/zθ) = 0 at θ = 0. Condition

P(θc,z) = 0 implies that modes with infinitely high loss do not

carry power. Condition D(zP/zθ) = 0 at θ = 0 indicates that the

coupling is limited to the modes propagating with θ > 0. We used

FIGURE 1
Schematic of (A) the cross-section of MM MC SOF, and (B)
the index profile of the core structure.
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the explicit finite-difference method [15] to obtain a numerical

solution for the TI PFE (2) for Gaussian launch-beam

distribution:

P(θ, z � 0) � 1
σ

���
2π

√ exp[ − (θ − θ0)2
2σ2

] (3)

Here, 0≤θ≤θc, θ0 is the incidence angle distribution’s mean

value, θc denotes the critical angle, and σ specifies the standard

deviation (FWHM = 2σ
�����
2 ln 2

√ � 2.355σ).

Numerical results and discussion

The SDM capability of MMMC SOFs with seven cores,

which is designed based on the SC SOF experimentally

examined by [19], is investigated in this article. Figure 1A

shows the cross-section of the MMMC SOF with seven

cores placed in a hexagonal arrangement. Individual cores

and cladding for the MMMC SOF are presumed to be

composed of the same material as the core and cladding of

SC SOF. The MM SC SOF has a diameter of 600 μm, NA = 0.22,

core RI n1 = 1.4570 at λ = 633 nm, and a critical angle of θc = 8.8.

To avoid core-to-core mode coupling, the MMMC SOF with a

diameter d = 600 μm has seven cores with a radius a = 25 μm,

with inter-core distance Λ = 250 µm (the cores are uncoupled

for Λ ≥ 7a) [3] (see Figure 1). The coupling coefficient for the

MM SC SOF investigated by [19] was D = 4.9 × 10–7 rad2/m,

which is used in this work in modeling mode coupling in

MMMC SOF.

Using the following equation

FIGURE 2
Normalized output angular power distributions of different locations along each carrier seven cores of the MM MC SOF, for different Gaussian
input angles θ0 = 0 (solid line), 4 (dashed line) and 8o (dotted line), with (FWHM)z=0 = 1 for: (A) z = 200 m; (B) z = 1,050 m; (C) z = 2,200 m; (D) z = Lc =
5,180 m and (E) z = zs = 9,320 m (The solid line, dashed line and dotted line are overlapped at fiber length zs at which SSD is established).
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N � 2π2a2NA2

λ2
(4)

we obtain a number of modesN = 1,490 in each of the seven cores

of the proposed MMMC SOF. A large number of modes can be

seen as a modal continuum, which is necessary for the

employment of Eq. 2.

To make comparisons easier, we solved the TI PFE (2) and

calculated the lengths at which the EMD and SSD are attained in

each of the seven cores of the MMMC SOF for various widths of

the Gaussian distribution of the launch beam. Figure 2 shows the

normalized output angular power distribution for different

optical fiber lengths, when a Gaussian beam with

(FWHM)z=0 = 1 was launched at different input angles θ0 =

0, 4, and 8 (three different angular optical channels).

If the launch beam distribution at the input of the optical

fiber is centered at θ0 = 0, by increasing the optical fiber length,

the width of the angular power distribution grows, owing to

mode coupling, as shown in Figure 2. The radiation patterns of

non-centrally launched Gaussian beams, as Figure 2A shows, are

centered near their initial values, which leads to minimization of

crosstalk between the neighboring co-propagating optical

channels. With increasing optical fiber length, all radiation

patterns become broader, thus increasing crosstalk among the

three co-propagating channels. At coupling length Lc = 5,180 m

(Figure 2D), where the highest order guiding modes centered

their mode-distribution at θ = 0, the EMD is achieved. At zs =

9,320 m, an SSD is established (Figure 2E). One should see from

Figure 2E that the solid line, dashed line and dotted line, which

represent angular power distributions for different launch angles,

are overlapped at fiber length zs at which SSD is established. This

unique angular power distribution, shown as a solid line, became

fixed and centered, denoting that an SSD is established. Mode

coupling restricts the length of the proposed MMMC SOF at

which an ADM may be implemented, as can be seen. In each

carrier seven cores of the investigated MMMC SOF, a three-

channel ADM (with launch angles θ0 = 0, 4, and 8) and two-

channel (with launch angles θ0 = 0 and 8°) can be realized at a

maximum length of 200 m (Figure 2A) and 1,050 m (Figure 2B),

respectively.

Table 1 shows that as the width of the distribution of the

Gaussian launch beam increases, the length Lc required for

obtaining the EMD, and the length zs required for establishing

the SSD, decreases. Due to the energy of a wide Gaussian launch

beam being divided more evenly between guided modes in the

optical fiber, wide beams realizing EMD and SSD are forced to

travel shorter distances than narrow Gaussian launch beams

(Figure 3). As a result, the three-channel and two-channel ADM

in each carrier seven cores of the MMMC SOF can be realized at

longer fiber lengths for narrower Gaussian launch beam

distributions.

For increasing the capacity of an optical fiber transmission

system, an SDM with two- and three-channel ADM and

multicore multiplexing is feasible with a seven-core MMMC

SOF at fiber lengths up to ≈1 km (2 ADM channels × 7 cores) and

≈200 m (3 ADM channels × 7 cores), respectively. In general, an

MM optical fiber that has weaker mode coupling is a good

potential candidate for SDM. These MM MC SOF’s

characteristics could be useful in their potential applications

as a part of a telecommunication and sensory systems

[20–22]. As a comparison, due to much stronger mode

coupling in multimode seven-core plastic optical fibers

(D≃10−4 rad2/m), SDM with two-channel ADM and multicore

multiplexing can be realized at fiber length of ≈7 m [23].

TABLE 1 The calculated length Lc for obtaining the EMD, length zs for establishing an SSD, andmaximum length zSDM for realization of three-channel
and two-channel ADM in each of the seven cores of a MM MC SOF for various widths of the Gaussian launch beam distribution.

FWHM (o) Lc (m) zs (m) zSDM (m) (3-channel) zSDM (m) (2-channel)

1 5180 9320 200 1050

5 4710 8450 180 870

10 4280 7670 160 790

15 3270 5850 120 590

FIGURE 3
Length Lc for obtaining the EMD and length.zs for establishing
an SSD for each of seven cores of MM MC SOF for different widths
of distributions of Gaussian launch beams.
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Finally, it is interesting to note that the theoretical approach

of modal diffusion inMMMC SOF employed in this work can be

used for calculation of fiber’s bandwidth, but instead of time-

independent power flow Eq. 2 which is solved in this work, one

has to solve the time-dependent power flow equation.

Conclusion

To further enhance the SDM capability of MM SOFs, we

designed a MMMC SOF with seven cores. By employing the TI

PFE, the effect of the width of theGaussian launch beamdistribution

on EMD and SSD in each carrier seven cores of the MMMC SOF is

examined. The numerical solutions of the TI PFE demonstrate that

with increasing width of the Gaussian launch beam distribution, the

length Lc required to obtain EMD and the length zs required to

establish SSD decreases. We showed that mode coupling is a

mechanism that limits the length for practical realizations of

three-channel and two-channel ADM in the MMMC SOF. We

found that an SDM with two- and three-channel ADM and

multicore multiplexing in the MMMC SOF investigated in this

work can be realized at optical fiber lengths up to ≈1 km (2 ADM

channels × 7 cores) and ≈200 m (3 ADM channels × 7 cores),

respectively. The findings of this study should be taken into account

when constructing MMMC SOF transmission systems for SDM

with various launch beam characteristics.
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