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Introduction: The accurate cerebral cortex surface reconstruction is crucial for
the study of neurodegenerative diseases. Existing voxelwise segmentation-based
approaches like FreeSurfer and FastSurfer are limited by the partial volume effect,
meaning that reconstruction details highly rely on the resolution of the input
volume. In the computer version area, the signed distance function has become
an efficient method for 3D shape representation, the inherent continuous nature
makes it easy to capture the fine details of the target object at an arbitrary
resolution. Additionally, as one of the most valuable breakthroughs in deep
learning research, attention is a powerful mechanism developed to enhance
the performance of the encoder-decoder architecture.

Methods: To further improve the reconstruction accuracy of the cortical surface, we
proposedResAttn-Recon, a residual self-attentionbasedencoder-decoder framework.
In this framework, we also developed a lightweight decoder network with skip
connections. Furthermore, a truncated and weighted L1 loss function are proposed
to accelerate network convergence, compared to simply applying the L1 loss function.

Results: The intersection over union curve in the training process achieved a
steeper slope and a higher peak (0.948 vs. 0.920) with a truncated L1 loss. Thus,
the average symmetric surface distance (AD) for the inner and outer surfaces is
0.253 ± 0.051 and the average Hausdorff distance (HD) is 0.629 ± 0.186, which is
lower than that of DeepCSR, whose absolute distance equals 0.283 ± 0.059 and
Hausdorff distance equals 0.746 ± 0.245.

Discussion: In conclusion, the proposed residual self-attention-based framework
can be a promising approach for improving the cortical surface reconstruction
performance.
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1 Introduction

In neural image processing, the brain cortical surface reconstruction plays an essential
role in the study of neurodegenerative diseases [1] and psychological disorders [2].
Specifically, the cortical surface reconstruction aims to extract two surface meshes from
brain magnetic resonance imaging (MRI). The inner white matter surface separates the white
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matter and the gray matter tissues, and the outer pial surface
separates the gray matter tissue and the cerebrospinal fluid [3].
Considering the highly curved and folded intrinsic folding pattern of
the cortical surface [4], it is challenging to extract anatomically
plausible and topologically correct cortical surfaces in practice.

To address this, traditional approaches use a series of lengthy
and computationally intensive processing algorithms, with manual
intervention for hyperparameter fine-turning [5–11]. For instance,
the widely used and reliable [9] toolkit usually takes hours to process
a MRI volume data. In recent years, several deep learning
approaches have emerged to overcome this shortage, and
according to the data format being processed, these approaches
can be categorized as voxel-based, mesh-based, and implicit surface
representation-based. Voxel-based approaches first obtain the brain
white matter tissue segmentation based on 3D-CNN [12] or 3D-
Unet-like [13] architecture. Then the triangular mesh of the inner
surface is extracted by applying mesh tessellation to the
segmentation masks, with surface mesh smoothing and topology
correction [14]. The outer pial surface mesh can then be derived
from inflating the white matter surface mesh [15]. Leonie et al. [15]
proposed FastSurfer to accelerate the FreeSurfer pipeline by
replacing the traditional white matter segmentation algorithm
with a 3D-CNN network. [16] proposed the SegRecon framework
for cortical surface reconstruction and segmentation. Due to the
partial volume effect (PVE) [17], voxel-based approaches have
inherent limitations in capturing fine details at high resolution.
Mesh-based approaches are mainly implemented by deforming the
initial surface mesh to the target surface mesh, with a geometric
deep-learning model. For instance, [18] proposed PialNN to
reconstruct the pial surface from the white matter surface
handled by the FreeSurfer pipeline. [19] proposed Voxel2Mesh to
deform predefined sphere template meshes to cortical surfaces. [20]
Proposed Vox2Cortex that leverages convolutional and graph
convolutional neural networks to deform the template mesh to
densely folded target cortical surface. Despite fast processing,
theoretical guarantees are to be further developed to prevent self-
intersections of the surface mesh. Implicit surface representation-
based methods reformulate cortical surface reconstruction as the
prediction of the implicit surface representation [21]. Typically, [3]
proposed the DeepCSR network to learn an implicit surface function
in a continuous coordinate system, with topology correction
algorithm to ensure the geometric accuracy of the target surface.

Given brain MRI volume, existing deep learning approaches
spend less time reconstructing cortical surface compared to
traditional pipeline, with high reliability. Most of these
approaches require voxelwise or vertexwise features extracted
from the input MRI volume, however, none of them considered
the long range feature dependencies, which plays an important role
in model performance improvement. For instance, DeepCSR [3]
directly concatenates the local and global features from the encoder
feature maps, combined with the location coordinates of the query
point as the input of the decoder network, PialNN [18] combined
the norm and the location coordinate of the initial mesh vertex with
the volumetric features extracted from local convolution, to predict
the deformation displacement in the inflating process. Both
approaches ignored the relationship between query points or
mesh vertices. In this work, to efficiently model the long range
feature dependencies in cortical surface reconstruction, the concept

of the self-attention mechanism is introduced from neural language
processing [22–24] and computer version [25–27] area. For pioneer
works that apply self-attention to vision tasks [28], proposed Vision
Transformer (ViT) for image recognition [29], proposed Tokens-
To-Token Vision Transformer (T2T-ViT) to improve classification
accuracy [30], proposed Swin Transformer, a general framework for
image classification and segmentation, all the above works are
discussed around 2D images. In this work, firstly, the input MRI
volume is registered to a standard brain space, such as MNI105.
Secondly, after the 3D Convolution block, the residual connected
multi-head self-attention block and global flatten block, multi-scale
feature maps and global feature vector are prepared to obtain
volumetric features of sampling points at any given resolution.
Then combined with location coordinates in standard space, the
signed distance values of sampling points toward four cortical
surfaces are predicted, Thirdly, after topology correction and iso-
surface extraction operation, the inner and outer surface of the left
and right hemispheres are reconstructed in parallel.

In this paper, we proposed ResAttn-Recon, a novel implicit
surface representation approach based framework for inner and
outer cortical surface reconstruction. In this work, we propose
employing the concept of the self-attention mechanism and
residual connection trick to the 3D convolutional neural network
(3D CNN) encoder, 1 × 1 convolution is embedded into a multi-head
self-attention block to fit the 3D feature map input. The proposed
framework is able to reconstruct the cortical surface at an arbitrary
resolution and benefit from the theoretical support of the implicit
surface representation approach. The experimental performance has
been substantially improved compared to the DeepCSR and the
simple encoder-decoder framework without the attention block.
The main contributions of this paper are as follows.

1) To the best of our knowledge, this is the first exploration in
employing the residual self-attention mechanism in 3D cortical
surface reconstruction.

2) A Commit2 from Review4 with skip connections is developed as
an improvement over the DeepCSR decoder network, to simplify
the network structure without losing performance.

3) The prior constraints are imposed on the network training with
the proposed truncated L1 loss and Gaussian decay weighted
L1 loss, as a new strategy for model performance improvement.

The rest of this paper is organized as follows. Section 2
introduces the basic theories and the proposed framework, as
well as the dataset enrolled in this work, In Section 3, the details
of the experimental evaluation and analysis are given. Section 4 and
Section 5 provide a discussion and conclude this paper.

2 Materials and methods

In this section, we introduced ResAttn-Recon, a residual self-
attention-based cortical surface reconstruction network.
Simultaneously, the lightweight decoder networks and the loss
function with prior constrains are also explored to improve the
reconstruction performance. As shown in Figure 1, the proposed
framework consists of four main parts: 1) data preprocessing,
including data acquisition from FreeSurfer toolkit and MRI
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volume registration; 2) feature extraction; 3) implicit surface
representation performed with the proposed ResAttn-Recon
network; and 4) post-processing to extract the target inner
and outer cortical surfaces from the predicted signed distance
function representation. The residual self-attention block is
embedded in the encoder network following the intermediate
feature map.

2.1 Data acquisition

In this paper, we used the publicly available dataset from
Alzheimer’s Disease Neuroimaging Initiative (ADNI) [31], MRI
scans of 560 T1 original images are enrolled in this work,
470 images for training, 30 images for validation and the
remaining 60 images for testing. Ground-truth of inner and outer
surfaces from the left and right hemispheres are extracted by the
FreeSurfer pipeline. Images are normalized to the size of 182 × 218 ×
182, with voxel spacing to [1, 1, 1]. To unify the coordinate systems
of the input MRI scans, affine registration is first performed to the
MNI105 brain template [32].

2.2 Surface representation

The signed distance function (SDF) is a continuous function to
represent the surface distribution, and has been widely employed in
3D shape representation.

The SDF function can be defined as follows:

SDFsurface xi( ) � si,where xi ∈ R3, si ∈ R (1)
Here, xi stands for any point in Euclidean space represented by its
3D location coordinate, and si is the shortest Euclidean distance
from the point xi to the surface, with a positive sign if the point is
inside the watertight surface or negative sign if the point is outside
the surface.

With the SDF values of given spatial points, the target surface
can be expressed as a set consisting of all points satisfying the
following:

SDFsurface ·( ) � 0 (2)
Then, after Gaussian smoothing and topology correction

processing, the target surface is extracted with a zero iso-surface
extraction algorithm, such as marching cubes [33].

In this work, the continuous SDF inΩ space is approximated by
the deep learning model. Given query point, the well-trained
network predicts its SDF value to the target surface directly. This
provides theoretical support for reconstructing surfaces of arbitrary
resolutions. In detail, the approximator is implemented by a decoder
network parameterized by θ, which is further described below.

2.3 ResAttn-recon framework

2.3.1 Feature extraction encoder module
The network architecture is illustrated in Figure 2, and the raw

brain MRI need to be firstly registered to MNI105 space before being
sent to the network. The feature extraction encoder module consists of
three subblocks, the 3DConvolution (Conv3D) block, the Residual Self-
Attention block, and the Global Flatten block. The Conv3D block
consists of five Conv3D layers, each of which is followed by a Rectified
Linear Units (ReLU) activation, with the 3D max pooling operation
before the fourth convolution. The number of convolution output
channels is sequentially increased to 23; 24; 25; 26; 27 after each
convolution. The convolutional kernel is set to 3 × 3 × 3, with the
stride equal to two and padding equal to one. The fourth output feature
map is then input into the residual self-attention block, followed by the
global flatten block to generate the global feature map. The image
features represented by the encoder intermediate feature maps and
outputs are firstly extracted by the proposed feature extraction encoder
module from the registered MRI, then we construct a bounding box
grid with evenly spaced points at a predefined desired resolution (e.g;,

FIGURE 1
The workflow for cortical surface reconstruction. Input the 3D MRI volume, given enough sampling points, it predicts 4 mesh surfaces of arbitrary
resolution in parallel.
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512 × 512 × 512), which is capable of covering the registered brain
MRI in MNI105 standard registration space. After that, the relative
position coordinates of the predefined sampling points in
MNI105 space as mentioned above are projected to the multiscale
feature maps generated by the Conv3D block and the residual self-
attention block. The interpolated values obtained from the projected
locations and the global feature vector after the Global Flatten block are
concatenated as the feature vector of the sampling point.

2.3.2 Residual self-attention mechanism
To better aggregate the feature representation of the sampled

points, the widely used self attention mechanism is introduced to
our proposed encoder-decoder network architecture, where the
detail operation can be described as follows:

X̂ � Sof tmax
θ X( )ϕ X( )����

dfeat

√( )φ X( ) (3)

Where X ∈ N × L stands for the local and global feature
representation extracted from encoder feature maps, N is the
number of sampled points, and L is the dimension of the
corresponding feature vector. After the 1 × 1 convolution and

reshape operation, linear transformation of θ(·), ϕ(·) and φ(·)
are implemented by three single-layer perceptrons (Linear map)
in this work. The point-to-point affinity is calculated by the inner
product of θ(X) and φ(X).

In this work, the multi-head self-attention mechanism [22] is
applied to improve the expression ability of the attention module.
For this 3D reconstruction work, as illustrated in Figure 2, the
residual connection in the Residual Self-attention Block indicates
that this block does not change the dimension of the input feature
map, which equals (batch size × num channels × d × w × h) for
single image. From another point of view, the input feature map can
be considered as a token array (with the shape of (d × w × h)), each
token corresponds to a 128-dimensional feature embedding vector
alone the channel direction (number of channels equals 128 in this
case). Therefore, the input feature map of the Residual Self-attention
Block is converted to a 2 days array squence input X with the shape
of ((d × w × h), 128), by reshape and transpose operations. After
that, mulit-head self-attention operation can be easily applied to X.
In this case, the number of heads equals 4, thereforeX is projected to
subdimension space 4 times in parallel; after four self-attention
operations, the outputs are concatenated and further projected. The
sequence output is reshaped again by the reverse operation of “space

FIGURE 2
The proposed ResAttn-recon architecture for cortical surface reconstruction. The concept of the multi-head self-attention mechanism was
introduced to our residual self-attention block.
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and sequence conversion” as shown in Figure 2, and output the
attentioned 3D feature map, followed by a 1 × 1 × 1 convolution.
The “space and sequence conversion” operation means taking
feature in the same spatial location across all channels.

MultiHead Q,K,V( ) � Concat head1, . . . , headn( )WO

where headi � Attention QWQ
i , KWK

i , VW
V
i( ) (4)

Here, Q, K and V represent the Query, Key and Value matrix as
shown in Figure 2, and n � 4, WQ

i � WK
i � WV

i ∈ R128×32,
WO ∈ R128×128 in this work.

It is worth noting that to fully take advantage of the spatial
sequence information extracted by sampling, the absolute positional
coding strategy is applied in this work, where the positional coding is
directly added to the input of the self attention module. Specifically,
one raw MRI input is firstly normalized and reshaped to
1 × 182 × 218 × 182, and the size of feature representation X
becomes 128 × 12 × 14 × 12 after the Conv3D block, where the
first dimension represents the number of channels. The shape of
positional coding P can be expressed as:
(batch size × embedded dim × width × height × depth), where
embedded_dim is the dimension of positional vector and equals
128 in this case. In this work, during network training, we initialized
the positional coding P with standard normal distribution where
P ~ N(0, 1), and then taking P as trainable parameters to update
with backpropagation. As seen in Figure 2, the learnable positional
encoding matrix P was simply added to the input feature map,
inspired by Sequence to Sequence Learning [34].

For the residual self-attention block, before the self-attention
module, two 3D convolution operations are performed, each
followed by 3D batch normalization and ReLU activation.
Notably, we added the residual connection between the Conv3D
block output and the self-attention module output to help improve
the learning.

2.3.3 Decoder with skip connections
To further simplify the decoder network without losing

performance, the feed-forward network is composed of six fully
connected layers, and feature vectors extracted from feature maps
and corresponding coordinates of sampling points are concatenated
as the input of the decoder network. Since position coordinates are
critical for 3D shape representation [21], we introduced skip-connection
to maintain the proportion of location information. As shown in
Figure 3, the input feature vector is concatenated with the
intermediate output of the following four fully connected layers. The
output vector of the decoder network representing the SDF values of four
corresponding cortical surfaces for each voxel is a vector with length 4.

2.3.4 Loss function
In 3D object reconstruction, L1 loss is the most frequently used

loss function, and the basic form of L1 loss for one cortical surface
can be written as follows, where N represents the number of
sampling points and B represents batch size during training:

L fθ X( ), S( ) � 1
B
∑B
b

∑N
i�1

fθ xi( ) − si
∣∣∣∣ ∣∣∣∣ (5)

And for parallel training with four cortical surfaces, the formula
becomes:

L fθ X( ), S( ) � 1
B
∑B
b

∑N
i�1
∑4
j�1

fθ xji( ) − sji
∣∣∣∣∣ ∣∣∣∣∣ (6)

For cortical surface representation with signed distance function
values, sampling points close to the cortical surface are critical for
reconstruction details, while sampling points away from the cortical
surface contribute less to the reconstruction process. To help the
training network capture more detailed information around the
surface, the truncate interval [−δ, δ] is applied to the ground-truth

FIGURE 3
Decoder network for SDF values prediction. The skip-connection mechanism is introduced to make full use of the location information of the
sampling points.
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and the predicted signed distance values, where the truncated L1 loss
can be expressed as follows:

T λ, δ( ) ≔ min max λ,−δ( ), δ( ) (7)

Ltruncate fθ X( ), S( ) � 1
B
∑B
b

∑N
i�1
∑4
j�1

T fθ xji( ), δ( ) − T sji , δ( )∣∣∣∣∣ ∣∣∣∣∣ (8)

T(·) is defined as the truncated function with parameter δ. Given
proper small hyperparameter values of δ, the network can focus
more on surface details, while for larger value of δ, more samples are
used for model weight updates. In general, the basic form of L1 loss
is the special case of its truncated form.

Furthermore, we also propose exploring the potential of the
L1 loss function with a Gaussian decay coefficient. The Gaussian
function in this case is of the following form:

G si( ) � A

σ
���
2π

√ exp −1
2

si − μ( )2
σ2

( ) (9)

where A is the amplitude coefficient. Due to the smooth decay
characteristic of the Gaussian function, as the distance between the
sampling point and the ground-truth surface increases, the loss
weight of the corresponding sampling point decreases. We hope this
design can perform dynamic loss constraint during network
training, and help the network to better converge to the optimal
solution. The Gaussian decay L1 loss can be described as follows:

Lgaussian fθ X( ), S( ) � 1
B
∑B
b

∑N
i�1
∑4
j�1
G sji( ) · fθ xji( ) − sji

∣∣∣∣∣ ∣∣∣∣∣ (10)

The amplitude coefficient A, μ and θ are hyperparameters based on
experience. In this work, A equals 20, μ equals 0, and θ equals 1.5.
For the netwok training, the Adam optimizer was employed with a
fixed learning rate equals 0.0001.

2.4 Cortical surface extraction

For the cortical surface extraction pipeline, firstly, the input MRI
volume is registered into the MNI105 space; secondly, given arbitrary
reconstruction resolution, i.e., 512 × 512 × 512 by uniform sampling
from MNI105 space, the attention-based encoder-decoder network
outputs the SDF representation with the shape of 512 × 512 × 512,
followed by aGaussian filter smoothingwith a standard deviation of 0.5.

To prevent grid self-intersection, and to ensure that the
predicted signed distance function values is homeomorphic to a
sphere, in this work, we apply a topology propagation algorithm
using a fast marching technique proposed by bazin. et.al [35], that
enforces the network prediction result to a desired topology.

1 Mvertices←[];

2 Mv ← 0 ;

3 While n≤ N do

4 if l≥Vi
n and l≤VN (i)

n (i � 1..8) then
5 ΔP ← (l−Vi

n)(|PN (i)
n −Pi

n |)
VN (i)

n −Vi
n

6 Mv ← Pi
n + ΔP ;/* Coordinate interpolation */

7 Mvertices.append(Mv) ;/* Accumulate mesh vertex

coordinates */

8 else

9 continue

10 end

11 end

Algorithm 1: Marching cubes pseudocode
Data: the SDF value of the i-th vertex of the n-th cube Vi

n, the 3D
coordinate of the i-th vertex of the n-th cube Pi

n,N cubes to iterate,
the scale surface level set l, the adjacency vertex index N(i) of the
index i in the query cube
Result: Extracted surface mesh vertices coordinates Mvertices

Then, the marching cubes algorithm proposed by [33] is further
employed to cortical surface extraction, followed by Laplacian
smoothing. The core idea of the marching cubes algorithm can
be summarized as Algorithm 1 For vertices vi ∈ M, where M
represents the extracted surface mesh, the Laplacian smoothing
operation can be described as follows:

Smooth vi( ) � ∑
k∈N i( )

vk
N i( )∣∣∣∣ ∣∣∣∣ (10)

whereN (i) is the adjacency vertices of the i-th vertex. Note that the
post-processing operation of the four surfaces is performed in
parallel, for efficiency.

4 Results

To verify the effectiveness of ourmethod, wefirst designed a series of
ablation studies to explore the importance of prior constraints and the
skip connections mechanism, after which we evaluated the performance
of three loss function. Finally, the precision analysis is performed
compared with DeepCSR for challenging pial surface reconstruction.

4.1 Ablation experiment

As shown in Table 1, the ablation experiment is conducted to
measure the importance of the proposed components.

The average absolute distance (AD) and the Hausdorff distance
(HD) [36,37] are employed as the surface evaluationmetrics, and the
lower the values, the better the reconstruction results.

4.1.1 Decoder network with skip connections
In this experiment we explored the expressive capability of fully

connected layers in the decoder network architecture with the skip
connections mechanism. As shown in Table 1, row 4 records the
baseline encoder-decoder network where the decoder network is the
fully connected layers without skip connections mechanism, and the
feature vectors and location coordinates are simply concatenated from
the decoder input. It was found that the decoder with skip-connection
(row 4) shows lower AD and HD indicators than that without skip
connections (row 5). The results indicate that the location information
of the sampling points make a considerable contribution to
reconstruction work. Nevertheless, there is still much room for
improvement in the reconstruction indicators, compared with the
DeepCSR framework (row 3).

In order to further validate the performance of the proposed
lightweight decoder network, different indicators are used to
compare with the decoder network in DeepCSR framework. As
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shown in Table 2, the proposed decoder network outperforms
DeepCSR’s decoder network in the number of parameters
(2636527 vs. 3549188), parameters size (10.05 MB vs. 13.53 MB),
and the average inference speed (0.47 ± 0.02 vs. 6.34 ± 0.02) for
testing dataset. The average L1 Loss (computational cost shown in
formula 5) of the proposed framework is 1,291.89 ± 10.50, lower
than that of the DeepCSR framework (1,452.85 ± 28.98). By the way,
the computational cost looks larger, because the distance space is not
normalized to the [-0.5,0.5] interval.

4.1.2 Loss function with prior constraints
The performance of the proposed framework between employing

prior constraints (trained with a truncated L1 loss or Gaussian decay
L1 loss) and without prior constraints (trained with a basic L1 loss) are
compared, as shown in row five and row six of Table 1, Additionally, the
reconstruction results improved with the help of prior constraints
imposed on the loss function from the perspective of AD and HD
indicators. For fairness, the training process of the DeepCSR-SDF
network also employs the L1 loss and its variants, and take the
optimal result for performance comparison and analysis.

4.2 Methods comparision

For further comparison and analysis, besides the DeepCSR
framework, Voxel2Mesh and GAN [38] were added to the
experiments. Since the Voxel2Mesh framework cannot
reconstruct the inner and outer surfaces in parallel, analysis of
white matter surface reconstruction performance is considered
for convenience.

For GAN model, the 3D-UNet is employed as the backbone of
the generator network. The generator predicts the SDF
representation (output channel equals 4) relevant to four cortical
surfaces. The discriminator takes the MRI volume and the ground
truth/predicted SDF representation as input, and discriminate true
or false label, where cross entropy loss is used as the discriminator
loss function. As shown in Table 3, the AD and HD values derived
fromVoxel2Mesh and GANmodel are significantly higher than that
from the proposed framework. The GAN model shows the worst
performance for AD and HD indicators.

From another persperctive, according to the data format being
processed, the GAN model reconstruct the cortical surface based on

TABLE 2 Lightweight decoder analysis.

Methods Params Params Inference Computational

Num (decoder) Size M) Speed (ms) Cost (basic L1 loss)

DeepCSR 3549188 13.53 6.34 ± 0.02 1,452.85 ± 28.98

Proposed 2636527 10.05 0.47 ± 0.02 1,291.89 ± 10.50

TABLE 1 Results of comparison analysis with DeepCSR and the ablation study on the proposed ResAttn-Recon framework for cortical surface reconstruction.
Including the white matter surface and the pial matter surface, where AD = Average symmetric surface distance, HD = Hausdorff distance.

Method Left white matter
surface

Right white matter
surface

Left pial matter
surface

Right pial matter
surface

AD(mm) HD(mm) AD(mm) HD(mm) AD(mm) HD(mm) AD
(mm)

HD
(mm)

DeepCSR(OCC) 0.669
(±0.543)

2.718
(±0.607)

0.601
(±0.482)

2.648
(±1.060)

0.298
(±0.149)

0.998
(±1.082)

0.291
(±1.082)

0.880
(±0.231)

DeepCSR(SDF) 0.280
(±0.054)

0.586
(±0.131)

0.273
(±0.047)

0.565
(±0.124)

0.292
(±0.073)

0.898
(±0.351)

0.290
(±0.063)

0.937
(±0.375)

Voxel2Mesh 0.389
(±0.251)

0.996
(±0.427)

0.403
(±0.187)

1.005
(±0.602)

- - - -

GAN 0.429
(±0.107)

1.094
(±0.133)

0.448
(±0.207)

1.146
(±0.192)

0.641
(±0.251)

2.518
(±0.426)

0.675
(±0.170)

2.704
(±0.332)

3D CNN encoder 0.389
(±0.045)

1.056
(±0.241)

0.391
(±0.137)

1.102
(±0.255)

0.413
(±0.120)

1.103
(±0.271)

0.398
(±0.036)

1.122
(±0.292)

+Fully connected decoder only

3D CNN encoder 0.318
(±0.103)

0.829
(±0.252)

0.359
(±0.128)

1.011
(±0.380)

0.352
(±0.090)

0.972
(±0.347)

0.343
(±0.131)

0.981
(±0.334)

+Skip-connection decoder

3D CNN encoder + Skip-connection
decoder

0.318
(±0.023)

0.705
(±0.023)

0.356
(±0.070)

0.750
(±0.101)

0.304
(±0.066)

0.968
(±0.467)

0.308
(±0.045)

0.834
(±0.164)

+Truncated L1 loss

ResAttn-Recon (Proposed framework with
residual self-attention block)

0.278
(±0.042)

0.591
(±0.075)

0.272
(±0.030)

0.557
(±0.064)

0.223
(±0.063)

0.614
(±0.277)

0.242
(±0.033)

0.720
(±0.214)
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MRI voxels, 1) Due to the partial volume effect, the reconstruction
accuracy is limited by the resolution of MRI volume, 2) The idea of
generative adversarial network is to infer whether each voxel is
inside or outside the surface of the cerebral cortex by training the
generator, and then give a true or false judgment through the
decision network. Each voxel has only binary information (inside
or outside), while ignoring the distance information to the surface.
Mesh based Voxel2Mesh model deform predefined sphere template
meshes to cortical surfaces. 1) Despite fast processing, theoretical
guarantees are lack to prevent self-intersections of the surface mesh.
2) Besides, a Voxel2Mesh model only able to reconstruct a single
surface once (outer or inner surface). The proposed framework
reconstruct the surface based on sampling points, and therefore has
the theoretical support to reconstruct cortical surfaces of arbitrary
resolution.

4.3 Visualization analysis

As illustrated in Figure 4, the reconstruction of the pial surface is
more challenging than that of the white matter surface. The
reconstructed pial surface of the left hemisphere is shown in the
first row. The proposed ResAttn-Recon framework achieves the best
reconstruction result, and the reconstruction result with DeepCSR has
obvious surface bumps in the red rectangle area. The encoder-decoder
architecture without the attention module (no attention version) has
several reconstruction defects. The upper rectangular frame area shows
severe reconstruction noise near the surface, and the lower rectangular
frame area has multiple grid self-intersections. For the white matter
reconstruction surface of the left hemisphere shown in the second row,
there is no major visual difference between the three network structures
in this case.

It is also worth noting that the ground-truth surfaces handled by
FreeSurfer look rougher than the actual physiological surface. To
address this, both the proposed framework and the DeepCSR

framework have moderately smoothed the predicted surface
through a post-processing algorithm. To further visualize the
robustness of the proposed model, another eight examples of
cortical surfaces (prediction and corresponding ground-truth)
were illustrated in Figure 5.

4.4 Loss function evaluation

As seen in Figure 6, we compared the convergence curve of the
intersection over union (IOU) based on the three loss functions
mentioned above. By the way, for IOU, the SDF representation of
the cortical surface could be further converted to the binarized SDF
mask, 0 for inner surface points and one for outer surface points,
then the binarized SDF mask based IOU could be further calculated
between the ground-truth SDF and the predicted SDF. It is clear that
the IOU curve based on the truncated L1 loss is distributed over the
other two curves throughout the training process. For the other two
curves, before 10 k training steps, the slope of the IOU curve based
on the basic L1 loss is larger than that based on the Gaussian decay
L1 loss, after which the IOU curve of the latter surpassed that of the
former.

As shown in Table 3, the maximum IOU value of the trained
with truncated L1 loss is 0.948 after convergence, followed by the
loss function based on the Gaussian decay coefficient with a
maximum IOU equals 0.935. The maximum IOU value based on
the basic L1 loss is 0.92, which is considerably lower than the former.
Also, thecorresponding convergence trend of the training curve can
be confirmedfrom Figure 6.

The experimental results show that training with the truncated
L1 loss and Gaussian decay L1 loss outperform the basic L1 loss, and
among them, the truncated L1 is more effective. For the Gaussian
decay L1 loss, the loss weighting coefficients tend to zero for
sampling points away from the ground-truth surface, which leads
to these points making less of a contribution for network training.

TABLE 3 The maximum IOU values with different loss functions: the L1 loss, Gaussian decay L1 loss and Truncate L1 loss functions.

Loss function L1 loss Gaussian decay L1 loss Truncated L1 loss

IOU peak value 0.920 0.935 0.948

FIGURE 4
Visual assessment of cerebral cortical reconstruction results. The first row corresponds to the pial matter surface of the left hemisphere, and the
second row corresponds to the white surface of the left hemisphere.
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4.5 Precision analysis

To measure the precision of the reconstructed cortical surface, the
average absolute distance (AD) is employed in millimeters (mm). Mesh
vertices with anAD greater than 1 mm, 2mmand 5mmas a percentage
of the total number of mesh vertices are calculated.

Due to the highly folded and curved geometry, pial surface
reconstruction is much more challenging than white surface
reconstruction. Moreover, 60 ADNI test datasets with pial surface
ground-truth are enrolled for precision analysis. As shown in
Table 4, compared with DeepCSR, the AD percentage greater

than 1 mm (3.616 vs 5.582 for left pial), 2 mm (1.467 vs
2.432 for left pial) and 5 mm (0.131 vs 0.249 for the left pial) are
lower than those of the DeepCSR framework, indicating that the
proposed method has a good robustness of the overall
reconstruction.

5 Discussion

We successfully developed a residual self-attention-based
architecture to reconstruct the inner and outer surface of the left

FIGURE 5
More visualization examples of the prediction results by the proposed method with corresponding ground-truth, including pial and white matter
surfaces of left and right hemispheres.

FIGURE 6
IOU convergence curves during training process with different loss functions. L1 loss, the truncated L1 loss and the Gaussian decay L1 loss were
compared for analysis.
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and right hemispheres in parallel. In the current work of cortical
surface reconstruction, including the voxel-based, mesh-based, and
the implicit surfaces representation-based approaches, none of them
considered the importance of capturing long range feature
dependencies, during voxelwise or mesh vertex wise or sampling
pointwise feature extraction, which is essential for 3D geometric
surfaces representation is not considered. Given enough sampling
points, the implicit surface representation-based approach has the
theoretical support to reconstruct cortical surfaces of arbitrary
resolution, our study is developed based on this direction and
compared with the typical DeepCSR architecture. To adapt the
residual connected multi-head self-attention to the 3D shape
representation task, the 1 × 1 convolution is embedded in this
module, with a learnable positional encoding matrix.

Ablation studies are undertaken to evaluate the impact of the
residual self-attention module, the skip connections trick in decoder
network, and the loss function with prior constraints. Experiments
show that these components are effective in improving the
reconstruction performance. We proposed the truncated L1 loss
and the Gaussian decay weighted L1 loss to explore the effect of loss
function on model expression potential. The truncated L1 loss
achieves optimal results compared to simply applying the basic
L1 loss function, and the training process achieved a higher IOU
value (0.948 vs. 0.920) with the proposed truncated L1 loss. The
average symmetric surface distance (AD) for the inner and outer
surfaces is 0.253 ± 0.051, the average Hausdorff distance (HD) is
0.629 ± 0.186, which is lower than that of DeepCSR, whose AD
equals 0.283 ± 0.059, and HD equals 0.746 ± 0.245. In addition, to
measure the robustness of the overall reconstruction process, the AD
greater than 1 mm, 2 mm and 5 mm as a percentage of the total
number of mesh vertices are calculated, and we evaluated the
challenging pial cortical surface result compared with DeepCSR,
in 1 mm (3.616 vs. 5.582) and 2 mm (1.467 vs. 2.432) and 5 mm
(0.131 vs. 0.249). From the perspective of visual analysis, the
proposed ResAttn-Recon outperforms DeepCSR and the simple
encoder-decoder architecture without the attention module. From
Figure 5, it was found that the SDFs of pial matter surfaces are harder
to approximate than the white matter surfaces during network
training in parallel. Our proposed framework can better capture
the surface details in a limited data size. Thus, the proposed residual
self-attention-based framework can be a promising approach for
improving the cortical surface reconstruction performance.

Our study has one main limitation: due to the lengthy processing
time by the FreeSurfer pipeline, only a total of 560 T1 weighted images
are enrolled in our dataset. In the future, more MRI volumes will be
retrieved to expand the training dataset. Furthermore, it is desirable to
enroll a larger pool of multicenter data to demonstrate the clinical
value of this framework. Since topology correction algorithm during
post processing usually takes a few minutes to enforce the prediction

result to a desired topology, we will also pay more attention to the
optimization of the post processing algorithm to further shorten the
time of cortical surface reconstruction pipeline.

6 Conclusion

In this paper, we proposed ResAttn-Recon for challenging cerebral
cortical surface reconstruction tasks. Firstly, we explored the concept of
residual self-attention to the encoder-decoder architecture. Secondly, a
lightweight decoder network with skip connection is developed to
simplify the network without losing performance. In addition,
experiments show that the proposed truncated L1 loss and Gaussian
decay weighted L1 loss function contribute to the network training and
performance improvement. The superior performance is achieved by
the proposed framework compared with DeepCSR and a simple
encoder-decoder framework without an attention block. The
proposed framework can be a promising approach for improving
the cortical surface reconstruction performance. We hope our work
can inspire insights and show new directions toward cortical surface
reconstruction study.
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Method Left pial matter surface Right pial matter surface

AD (%>1 mm) AD (%>2 mm) AD (%>5 mm) AD (%>1 mm) AD (%>2 mm) AD (%>5 mm)

DeepCSR 5.582 2.432 0.249 5.615 2.455 0.269

Proposed 3.616 1.467 0.131 3.588 1.468 0.153
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