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The neutron multiplicity measurement and analysis method is a very important
measurement and analysis method in the field of international arms control
verification and nuclear safeguards, and its measurement accuracy depends to
some extent on detector performance. In this paper, several newer current
metaheuristic algorithms are introduced to achieve neutron multiplicity counter
layout optimization by combining with MC (Monte Carlo) simulation software. The
algorithm with the best finding ability is selected for the optimization of another
detector layout. Based on the optimization results, k-means clustering analysis is
introduced so that the optimized structure can be applied to neutron multiplicity
measurements. The results show that the metaheuristic algorithm has good
application capability for neutron detector layout optimization and can be further
investigated.

KEYWORDS

neutron multiplicity, detector layout optimization, cluster analysis, MC simulation,
metaheuristic algorithm

1 Introduction

Thermal neutron multiplicity counters are usually composed of a certain number of 3He
tubes arranged uniformly in polyethylene, with different arrangements leading to different
detection performances. Neutron multiplicity measurement is achieved by processing the
neutron time information detected by the detector and solving the neutron multiplicity
measurement equation to measure the mass properties of nuclear materials [1]. The
current international 3He-based neutron multiplicity counters are AWCC [2], HLNCC
(high-level neutron coincidence counting) [3], ENMC (epithermal neutron multiplicity
counter) [4], etc. Different counters differ in the measurement layout and geometry, but
each detector must consider layout optimization in its design.With a certain number of detector
tubes, an algorithm is optimized to find the best layout to improve detection efficiency.

The production of 3He gas has been decreasing in recent years, but the demand for neutron
detectors has increased substantially [5], the cost of neutron multiplicity counters based on 3He
orthogonal counters has increased significantly, and research to replace 3He detectors is
ongoing [6]. In the design of neutron multiplicity counters, the design of detectors needs to be
reconsidered as new detectors become available.

The main difficulty of the current research on the optimization of the neutron multiplicity
layout is that the counter usually contains multiple detector tubes. These detector tubes can
produce an infinite variety of permutations, and it is difficult to abstract the process of detector’s
particle detection into a concrete mathematical formulation. Wang Duan et al. of the China
University of Nuclear Technology introduced artificial intelligence methods to the optimization
of the AWCC layout and initially realized the intelligent optimization design of the neutron
multiplicity layout [7]. Using neural network prediction instead of the Monte Carlo (MC)
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simulation process, the computational speed is greatly improved, but
the accuracy is sacrificed to some extent. In recent years, with the rapid
development of computer disciplines, methods for solving multi-
objective optimization problems represented by metaheuristic
algorithms are gradually enriched and have significant advantages
in solving multi-objective problems and are well used in different
disciplines. In this paper, we study the principle of neutron
multiplicity counter detection and introduce a combination of the
metaheuristic algorithm and MC simulation to find the optimal
detection layout of the detector. The main contribution is the
introduction of metaheuristic algorithm effectively combined with
the MC procedure, applied to the field of neutron multiplicity
counters, which provides new ideas for the detector design and
makes the future design of neutron multiplicity counters more
convenient and efficient.

The algorithm simulation of the article was performed in
MATLAB 2021; the computer needs to install MCNP simulation
software and the parallel program, and the processor is Inter Core
i9-12900k.

2 Introduction to metaheuristic
algorithm

A metaheuristic algorithm is an improvement of the heuristic
algorithm with generality, which is a product of combining a random
algorithm and a local search algorithm. Most of the current
metaheuristic algorithms simulate the group hunting behavior of
animals, and there are some differences between different
algorithms but overall seem to have a similar idea of leading the
whole population in a spatial search by a small number of good
individuals. While traditional methods seem to struggle in the face of
multi-objective optimization, metaheuristic algorithms can find near-
optimal solutions quickly and have some engineering significance. In
the metaheuristic algorithm, each population consists of several
individuals, and the location of each individual constitutes a
potential solution, and the optimal solution is finally obtained by
continuously updating the location in a space. The disadvantages are
that the operation is large, the operation time depends on the
computer performance, and it may fall into local optima and
cannot find the optimal solution in the real sense. Several well-
developed metaheuristic algorithms in recent years are described in
the following sections.

2.1 Gray wolf optimization algorithm

GWO (gray wolf optimization) algorithmwas proposed in 2014 by
Mirjalili et al. from Griffith University, Australia [8], and was
developed based on the predatory behavior of gray wolf packs. A
strict hierarchy is distinguished among gray wolf packs, and a small
group of gray wolves with absolute leadership leads the whole pack in
predation. Their ranks are α, β, δ, and ω from the top to the bottom,
with gradually decreasing leadership power. The predation process is
led by α wolves to complete, and there are three main processes:
encirclement, pursuit, and attack. The gray wolf with optimal
adaptation is considered the α wolf, the second best is the ß wolf,
and the third best is the δ wolf in the simulation.

The process of encircling the prey is defined as follows:

X t + 1( ) � Xp t + 1( ) − A ·D, (1)
D � C ·Xp t( ) −X t( )∣∣∣∣ ∣∣∣∣, (2)

where X denotes the position of the gray wolf, t denotes the number of
current iterations, Xp denotes the position of the prey, and D denotes
the distance between the gray wolf and the prey. The value of A
simulates the behavior of the gray wolf. WhenA belongs to the interval
(−1, 1), the wolf attacks the prey, at which time the wolf falls into the
local optimal solution. When not in the zone, the gray wolf moves
away from its prey and explores other areas. C is a random weight
between [0,2], which helps the wolf to avoid falling into a local
optimum. A and C are calculated as follows:

A � 2a · r1 − a, (3)
C � 2r2, (4)

where r1 and r2 are random numbers between [0,1] and a is linearly
decreasing from 2 to 0 as the number of iterations changes. When the
gray wolf identifies the prey location led by α, β, and δ and directs the
whole wolf pack to pursue the prey, the mathematical model of the
location update is described as follows:

X t + 1( ) � X1 +X2 +X3( )
3

, (5)
X1 � Xα t( ) − A1 ·Dα, (6)
X2 � Xβ t( ) − A2 ·Dβ, (7)
X3 � Xδ t( ) − A3 ·Dδ , (8)

Dα � C1 ·Xα t( ) −X t( )| |, (9)
Dβ � C2 ·Xβ t( ) −X t( )∣∣∣∣ ∣∣∣∣, (10)
Dδ � C3 ·Xδ t( ) −X t( )| |, (11)

where Dα, Dβ, and Dδ denote the distance of each individual from α, β,
and δ wolves, respectively; C1, C2, and C3 are random numbers
between [0,2]; Xα, Xβ, and Xδ denote the current positions of α, β,
and δ wolves, respectively; The position is updated for each individual
using Eqs 5–11.

2.2 Whale optimization algorithm

WOA (whale optimization algorithm) was proposed in 2016 by
Mirjalili et al [9]. Developed to simulate the hunting behavior of
humpback whales, it uses a stochastic approach to simulate the
hunting behavior and spirals to simulate the bubble attack
behavior. Its search consists of three main processes: rounding up
the prey, bubble-net predation, and searching for the prey.

The prey encirclement stage is to determine the location of the
prey to facilitate the encirclement of the prey. As the iterative process
increases, the location of the prey may change, requiring constant
adjustment of the population location. The position update equation is
as follows:

D � C ·Xp t( ) −X t( )∣∣∣∣ ∣∣∣∣, (12)
X t + 1( ) � Xp t( ) − A ·D, (13)

where t denotes the number of current iterations, Xp(t) denotes the
position of the global optimal whale, and X(t) denotes the current
whale position. A and C denote coefficients, and the formulas are
consistent with GWO algorithm, as in Eqs 3, 4. Bubble-net predation
involves swimming in a spiral shape toward the prey and constricting
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the envelope. The two behaviors during the simulation are chosen
according to probabilities, and the model is as follows:

X t + 1( ) � Xp t( ) ·D1 · eb1 · cos 2πl( ), p<Pi,
Xp t( ) − A ·D, p≥Pi,

{ (14)

where D1 denotes the distance between the current individual and the
current optimal individual, b denotes the spiral shape parameter, and l
is a random number uniformly distributed between [−1, 1]. The
mathematical model when searching for a prey is as follows:

D2 � C ·Xrand t( ) −X t( )| |, (15)
X t + 1( ) � Xrand t( ) − A ·D, (16)

where D2 denotes the distance between the current search individual
and the random individual and Xrand(t) denotes the position of the
current random individual.

2.3 Sparrow search algorithm

SSA (sparrow search algorithm) was proposed in 2020 inspired by
the foraging and anti-predatory behaviors of sparrows [10]. Sparrow
populations are divided into discoverers, followers, and vigilantes.
Discoverers are usually individuals with high energy reserves in the
population and provide the area and direction for foraging for the
whole population. The vigilantes move quickly to a safe area to get a
better position once they realize the danger during the food search.
The identity of the finder and follower changes dynamically
throughout the search process, and any sparrow may become a
finder as long as a better food source can be found.

During the food search, the discoverer’s location was updated and
expressed as follows:

Xt+1
i,j �

Xt
i,j · exp − iter

α ·Max _iter
( ), R2 < ST,

Xt
i,j + Q · L, R2 ≥ ST,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (17)

where Xi,j shows the position information of the ith sparrow in the jth
dimension, iter denotes the number of iterations,Max_iter denotes the
maximum number of iterations, α is a random number between [0, 1],
R2 denotes the alert value, ST denotes the safety threshold, and Q is a
random number obeying a positive-terrestrial distribution. L is a
matrix with all 1’s dimensions equal to the population dimension.
When R2<ST, it means that there are no natural enemies around and
extensive foraging is possible.

The follower formula is updated as follows:

Xt+1
i,j �

Q · exp Xworst −Xt
i,j

iter2
( ), iter>Max _iter

2
,

Xt+1
p + Xi,j −Xt+1

p

∣∣∣∣∣ ∣∣∣∣∣ · A+, otherwise,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (18)

where Xp denotes the optimal position of the current discoverer in the
population and Xworst denotes the current global worst value.

Vigilante locations are updated as follows:

Xt+1
i,j �

Xt
best + β · Xt

i,j −Xt
best

∣∣∣∣∣ ∣∣∣∣∣, fi >fb,

Xt
i,j + K · Xt

i,j −Xt
worst

∣∣∣∣∣ ∣∣∣∣∣
fi − fw( ) + ε

⎛⎝ ⎞⎠, fi � fb,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (19)

where Xbest is the global optimal position. β is a step control parameter
that obeys a positively random distribution of random numbers with
mean 0 and variance 1. K is a random number between [−1, 1]. ε is a
constant set to avoid a denominator of 0. fi is the current fitness value
of the individual sparrow. fw and fb are the current global worst and
best values, respectively.

2.4 Hunger games algorithm

HGS (hunger games search) algorithm was designed in 2021 by
animal hunger-driven activities and behaviors [11]. It is divided into
proximity to food and hunger roles.

The animal approaching the food process is modeled as follows:

X t + 1( ) �
X t( ) · 1 + randn 1( )( ), r1 < 1,
W1Xb + RW2 Xb −X t( )| |, r1 > 1, r2 >E,
W1Xb − RW2 Xb −X t( )| |, r1 > 1, r2 <E,

⎧⎪⎨⎪⎩ (20)

where R is a random number of [−a, a]. r1 and r2 are random numbers
between [0, 1]. t is the number of current iterations.W1 and w2 denote
the hunger weights and are calculated as in Eqs 21, 22. Xb is the
position where the current global optimum is located. E and R are
calculated as in Eqs 23, 24.

Wi
1 �

hungry i( ) N

Sumhungry
r4, r3 < 1,

1, r3 > 1,

⎧⎪⎪⎨⎪⎪⎩ (21)

Wi
2 � 1 − exp − hungry i( ) − Sumhungry

∣∣∣∣ ∣∣∣∣( )( ) · r2 · 2, (22)
E � sech f i( ) − fb

∣∣∣∣ ∣∣∣∣( ), (23)
R � 2 · a · rand − a, (24)

a � 2 1 − iter

Max iter
( ), (25)

where r1, r2, and r3 are random numbers between [0, 1]. f(i) denotes the
fitness value of the ith individual. fb is the current optimal fitness value.
sech is a hyperbolic function, calculated as in Eq. 26.Max_iter and iter
denote the maximum number of iterations and the current number of
iterations, respectively. hungry denotes the hunger level of each
individual, calculated as in Eq. 27. Sumhungry denotes the sum of
hunger of all individuals.

sech x( ) � 2
ex + e−x

, (26)

hungry i( ) � 0, fitness i( ) � fb,
hungry i( ) +H, else,

{ (27)

where fitness(i) denotes the fitness value of each individual. H is
calculated as follows:

H � TH,TH≥ LH,
LH · 1 + r( ), TH< LH,

{ (28)

TH � fitness i( ) − fb

fw − fb
· r6 · 2 · ub − lb( ), (29)

where fw and fb denote the current global worst and optimal fitness
values, respectively. ub and lb denote the upper and lower bounds of H,
respectively. r6 is a random number between [0, 1].

Frontiers in Physics frontiersin.org03

Lu et al. 10.3389/fphy.2023.1034157

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1034157


3 Principles and methods

3.1 Neutron multiplicity counting

Neutron multiplicity measurements have evolved from neutron
coincidence counting. Compared with conventional neutron
coincidence counting, which can only provide single and double
count rates, multiplicity measurement can provide another
parameter “triple” count rate for solving unknown parameters with
high accuracy. Since nuclear materials emit a varying number of
neutrons at the same time when they fission, the distribution patterns
of different masses and types of nuclides are not the same; so, the mass
properties of nuclear materials can be calculated based on the
multiplicity distribution of fission neutrons. To improve this
authentication capability, the triple count rate needs to be
increased, and the counter layout design needs to be optimized to
improve detection efficiency.

When nuclear material fissions, it randomly emits neutrons of
different energies in all directions and loses energy by slowing down
several times in polyethylene, increasing the probability of being
captured by detectors as the energy continues to decrease. Once
the neutrons are captured by 3He gas, a nuclear reaction occurs as
in Eq. 30, generating charged particles and causing the detector to
count them. Then, the neutron multiplicity shift register is used to
process the neutron time information detected by the detector to
generate the neutron multiplicity distribution, based on which the
mass of nuclear material is calculated using the neutron multiplicity
(Eq. 1).

n + 3He → p + 3H + 764KeV. (30)

3.2 Reference model

To facilitate comparative analysis, the AWCC [2] model of JCC-51
obtained from Canberra, United States, was studied to compare the
optimization capabilities of different algorithms. Each 3He tube of the
AWCC system has a length of 51 cm, a radius of 1.27 cm, an internal
charge of 4 atm, a sample cavity radius of 8 cm, a 3.45-cm-thick
cadmium reflective layer wrapped around the outside, and a detector
with an outer boundary radius of 23.9 cm. The NMC-01 model was
optimized by the algorithm with the strongest optimization capability

and analyzed in comparison with the original structure. The NMC-01
was obtained from the 5RMC structure with an optimization
improvement [12], with a sample cavity radius of 8.5 cm, a
detector with an outer boundary radius of 35 cm, and an
arrangement of 88 3He tubes, each 70 cm long and with a radius
of 1.27 cm. The interior is filled with a charge of 6 atm. The layout of
the two measurement systems is schematically shown in Figure 1, and
the radius where each circle of detector tubes is located is shown in
Table 1.

The optimization process in this paper is based on the
aforementioned two detector models. In the model-building stage,
some small structures are omitted, and for the layout optimization, the
principle of control variables is used, and these omissions have almost
no effect. During the optimization process, the measurement
conditions are identical except for the detector tube arrangement
position. The detection efficiency of both detectors, AWCC andNMC-
01, was calibrated using a 3-mm-radius 252Cf source with results of
32.1% and 68.1%, respectively.

3.3 K-means clustering

K-means clustering algorithm is a typical division-based clustering
algorithm, which is fast and simple to execute, and is widely used in the
field of data processing [13]. The basic idea is to use a similarity
measure to measure the relationship of all data in a dataset. First, the
initial centers of k classes are selected, the distance of each sample
point to these initial centers is calculated, and each point is divided to
the center to which it belongs according to the distance, while the
center of each class is recalculated. Then, each sample point is divided,
and the process is repeated until the center of each class no longer
changes.

3.4 General technical route

In this paper, the simulation is mainly composed of three parts:
algorithm optimization, MCNP program simulation, and result
processing, as shown in Figure 2. After determining the detector
size, the detection model is established in MCNP. The model is then
checked to make sure that there are no errors in the model and that the
neutron multiplicity simulation can be performed. Since neutron
multiplicity counters require the spatial detection efficiency curve
to be as flat as possible, the detection tubes need to be symmetrically
and uniformly distributed [14]. The optimization process transforms
the coordinate information of the location of the detector tubes into a
polar coordinate system to carry out improvement, where each tube
corresponds to a uniform distribution of the pole angle, i.e., only the
pole diameter needs to be considered in the optimization process. As
for the AWCC structure, the polar angles of each tube differ by π/21.
Since the location of the probe tube must be in the middle of the
slowing agent, the polar diameter must lie in this interval when
describing the upper and lower boundaries of the model. In
addition, the detector tubes must not overlap with each other,
i.e., the distance between the coordinates of the center of the
detector tubes needs to be larger than the tube diameter. The
simulated neutron source is a spherical 252Cf source with a radius
of 3 mm, and the number of spontaneous fissions is set to 30,000, and
3,066 induced fissions occur, emitting a total of 125,849 neutrons.

FIGURE 1
Schematic diagram of AWCC and NMC layout structures.
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In the optimization stage of the algorithm, the polar diameter
sequence [x1,x2,x3... xn] of all tubes for each probe layout constitutes
individual X. To compare the optimization ability of different
algorithms, the population size of each algorithm is specified as
30, and the number of iterations is 100. In addition, except for WOA,
the smaller fitness value of the other algorithms represents the better
position of the individual. The optimization algorithm requires a
cost function to measure the fitness of the current position, but for
neutron multiplicity counters, it is not possible to abstract each
layout method with its corresponding detection efficiency into a
concrete mathematical formula. Therefore, the algorithm needs to
perform an MCNP simulation after each update of the location
information to obtain the corresponding detection efficiency as an
alternative to the cost function. At the same time, the metaheuristic
algorithm relies on the generation of random numbers, and the
results of the same algorithm run themselves differently. To observe
the uncertainty and performance trends of the algorithms due to
random numbers, the optimization process of each algorithm was

repeated 10 times, and only the generated random numbers were
changed during the repetition process, while the remaining
parameters were kept consistent. In addition to this, the
metaheuristic algorithm needs to process the position information
beyond the boundary each time the position is updated. In this
paper, we define that when the upper boundary is exceeded, it is
forced to be equal to the upper boundary. When the lower boundary
is exceeded, it is forced to be equal to the lower boundary. Also, any
two tubes with a distance less than the tube diameter are subjected to
random wandering with a variance of 3 and a mean of 0 until all
constraints are satisfied.

The result processing stage is required to process the optimized
layout because the layout optimized by the algorithm cannot strictly
satisfy the uniform symmetric arrangement required by the neutron
multiplicity counter. In this stage, the k-means cluster analysis method
is introduced to distinguish the position information of different
classes, and then the positions of each class are fitted to obtain the
radius where each class is located.

TABLE 1 Radius of each circle of AWCC and NMC probe tubes.

Model First lap Second lap Third lap Fourth lap

Radius/cm AWCC 15.32 20.03 — —

Radius/cm NMC 11 15.5 20 24.5

FIGURE 2
Flow chart of the general technical route.
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4 Results and analysis

4.1 Analysis of AWCC optimization results

The trend of detection efficiency with the number of iterations
in the optimization process of the four algorithms is plotted in
Figure 3.

Figure 3 shows that the GWO, HGS, and search sparrow
algorithms converge with close accuracy, and WOA converges with
the highest accuracy. In terms of the convergence speed, WOA and
SSA converge at almost the same speed, and GWO algorithm
converges at the slowest speed. The average variation trend of the
fitness value of each algorithm for 10 optimization processes is plotted
in Figure 4. From the figure, it can be seen that WOA seems to be
better than the other three algorithms both in terms of speed and
performance, and it is more meaningful to study the optimization of
the neutron multiplicity counter layout.

The layout of the AWCC detector for the 10 optimizations of
the WOA is plotted in Figure 5. The first row from the left to the

FIGURE 3
Trend of optimized detection efficiency of different algorithms.

FIGURE 4
Trend of average adaptation of different algorithms.
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right shows the results of the first to the fifth optimizations, and
the second row from the left to the right shows the results of the
sixth to the tenth optimizations, respectively. As can be seen from
the figure, the optimized layouts obtained each time are not the
same, and there are some differences. This is because the algorithm
approaches the optimal layout in different directions in the initial
state generated randomly, and it is difficult to jump out of the
local optimum after approaching a certain degree, which is an
inherent defect of the metaheuristic algorithm. However, for
neutron multiplicity counters, the detection structures need to
be arranged uniformly and symmetrically to make the
spatial detection efficiency within the sample cavity as flat as
possible. The 10 optimized layouts can be seen to result in a
roughly two-ring arrangement with approximately the same
number of tubes in each ring. In order to optimize the
layouts to be used for neutron multiplicity counting, the
10 layouts were clustered using k-means clustering algorithm,
with category 2 selected, the initial centroids being the upper
and lower limits of the detectors, respectively, and the
number of iterations set to 500. The tubes of each of the two
categories after clustering are fitted to a uniform circular
arrangement to satisfy the symmetric design of the neutron
multiplicity counter. The radii where the two circles of the fitted
detection tubes are located and the corresponding detection
efficiencies are shown in Table 2.

As can be seen from the table, the results obtained from the
repeated runs are less different except for the sixth one, especially for
the radius where the inner circle is located. Overall, the detection
efficiency is almost around 39%, which is much higher than the 32.1%
of the original layout. The generation of layout 6 is mainly due to the
algorithm falling into a local optimum.

4.2 Analysis of NMC-01 optimization results

According to the final results of several algorithms, to optimize the
AWCC layout, it seems that WOA optimization results meet the
design requirements better. Here, the layout optimization of the
NMC-01 model structure using WOA is theoretically much more
complex due to the use of a larger number of 3He tubes. The NMC-01
detector structure itself is already an optimized structure, so the results
of the optimization using WOA are compared with the original

FIGURE 5
WOA to optimize the AWCC layout.

TABLE 2 Fitting the radius of the circle where each circle of the 10 layouts is located and the corresponding detection efficiency.

Layout 1 2 3 4 5 6 7 8 9 10

Inner ring/cm 12.89 12.75 12.79 12.75 12.77 13.27 12.75 12.76 13.11 13.15

Outer ring/cm 17.67 17.77 18.10 17.89 18.04 17.99 17.85 17.88 17.96 17.37

Efficiency/% 38.76 39.13 38.86 39.08 38.93 38.28 39.11 39.12 38.25 37.88

FIGURE 6
WOA-optimized NMC-01.
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detection efficiency to verify the ability of the application of the
metaheuristic algorithm in the optimization of the neutron
multiplicity counter layout. The variation in detection efficiency
with the number of iterations is plotted in Figure 6.

As seen from the figure, the algorithm is able to converge quickly
with each repeated run, and the converged detection efficiency is above
68%. The optimal layout obtained from 10 optimizations is plotted in
Figure 7.

As can be seen from Figure 7, the greater the number of detection
tubes used, the greater the difference in optimization results and the
greater the gap with the neutron multiplicity counter design
requirements. The same k-means cluster analysis method is used to
classify the probe tube positions in the aforementioned layout into
different classes in polar coordinates, as the initial centroid selection of
the method has a large impact on the clustering results, and the
selection of different initial centroids affects the clustering
performance [15]. The number of classes selected is also very
important; when the number is small, the number of inner circle

probes is too much and will lead to an overlap of probes in the same
circle. When the number of classes is chosen, the overlap between two
circles may occur. It needs to be selected according to the actual
situation, and this paper finds that NMC-01 meets various
requirements when the number of corresponding selection classes is 4.

Since there is no specific method for the selection of the initial
center point, this paper first finds the average of all tube center
positions under one layout, calculates its distance from the detector
cavity, and uses half of this distance as an increment to accumulate
from the lower boundary of the detector tube. The radius where each
circle of the final clustering is located and the number of tubes in each
circle are shown in Table 3, the corresponding layout is plotted as
shown in Figure 8, and the detection efficiency under this layout is
simulated using MCNP. The final result has a certain improvement in
detection efficiency compared with the directly optimized layout and
meets the neutron multiplicity counter design requirements.

The results show that there is a certain difference in the final
optimized layout, but the corresponding detection efficiency is not

FIGURE 7
Optimal layout of NMC simulation 10 times.

TABLE 3 Radius of the circle in which each circle of the 10 layouts was fitted and the corresponding detection efficiency.

Layout First lap Second lap Third lap Fourth lap Efficiency/%

Radius Pipe number Radius Pipe number Radius Pipe number Radius Pipe number

1 10.81 16 14.37 25 18.95 30 24.74 17 69.71

2 10.45 15 14.05 20 18.24 27 23.97 26 70.23

3 10.92 20 15.07 25 19.29 22 24.88 21 69.96

4 10.64 19 15.48 29 21.26 34 27.26 6 69.24

5 10.67 18 14.31 19 18.65 32 24.24 19 69.89

6 10.34 17 14.93 27 20.32 33 26.96 11 69.32

7 10.63 18 15.33 27 19.71 28 25.69 15 69.79

8 10.39 19 14.90 23 18.87 23 24.41 23 69.83

9 10.73 19 14.30 19 18.01 25 22.97 25 69.65

10 10.58 19 14.77 23 19.91 29 24.69 17 69.91

Frontiers in Physics frontiersin.org08

Lu et al. 10.3389/fphy.2023.1034157

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1034157


very different. This is because the greater the number of detection
tubes, the lower the proportion of each tube’s contribution to the
overall detection efficiency; a slight adjustment to the position of some
of the detection tubes in the final layout will hardly affect the detection
efficiency. Since this paper mainly focuses on this aspect of detection
efficiency, no other parameters of the layout are required, but for
neutron multiplicity counters, other factors need to be further
considered. In addition, it can be seen from Figure 3 and Figure 6
that the algorithm has the largest trend of detection efficiency change
in the early stage of layout optimization, and the algorithm can quickly
converge near the optimal layout, and the sensitivity of the algorithm
appears to be low at the later stage.

5 Conclusion

For the optimization of the neutron multiplicity detector layout,
this paper introduces the metaheuristic algorithm combined with
MCNP simulation to achieve fast optimization of the detection
layout. According to the results of the optimization of the AWCC
model and the NMC-01model, it seems that the detection efficiency of
the optimized layout is improved compared with the original layout
after the introduction of the metaheuristic algorithm, thanks to the
advantages of the metaheuristic algorithm in solving multi-objective
problems. Therefore, this paper solves the problem of layout
arrangement in the detector design to a certain extent and provides
a new idea for the detector design. Although the algorithm in this
paper can quickly optimize the layout, it can still be further improved.
Due to the limitation to the metaheuristic algorithm itself, the
algorithm may fall into a local optimum, so optimizing the same
detector several times and selecting the optimal value can solve the
problem to some extent. The algorithm design ideas need to be
improved if we want to further improve the algorithm’s optimal-
seeking ability. In addition, k-means clustering algorithm also relies on
the selection of the initial centroid, and the selection of a suitable initial

centroid can also improve the final results to some extent. In general,
the method proposed in this paper can meet the current multiplicity
counter design requirements to a certain extent and has research value.
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FIGURE 8
Optimal layout after NMC fitting.
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