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Introduction:Nowadays, attention is growing on the Silicon Photomultipliers (SiPMs)
detector for many applications, especially in nuclear medicine. In Positron Emission
Tomography (PET) scanner, timing performance of a PET detector plays a significant
role in image reconstruction.

Methods: This work mainly aims at the processing of timing signal for the purpose of
achieving a good timing performance. We applied a timing detector made up of a 3 ×
3 × 10mm3 LYSO crystal directly coupled with a large-size SensL SiPM with a
sensitive area of 6 × 6mm2. The standard output of the SiPM was used for
energy calculation while the fast output was for timing pickoff. Three different
readout configurations for fast timing signals were used for timing performance
evaluation: 1) the recommended RF transformer-based readout, 2) the cascaded
Common Emitter Amplifier (CEA), 3) the commercial RF amplifier.

Results: Experiment results show that the best FWHM CTR values for the three were
228.3 ± 1.4 ps, 235.4 ± 1.1 ps and 231.1 ± 1.5 ps for the RF transformer-based, the
CEA-based and the RF amplifier-based readout configurations respectively. The
schemes based on the CEA-based and the RF amplifier-based configurations have a
good uniformity at different trigger thresholds.

Discussion: For practical application, the amplified timing signal based on the CEA
circuit is more desirable because it is more feasible for trigger threshold selection in
multichannel readout electronics system.

KEYWORDS

TOF performance, PET, SiPM, LYSO, amplifier

1 Introduction

In recent years, Silicon Photomultiplier (SiPM) had been increasingly used in many research
fields such as nuclear medicine [1–5]. Time-of-Flight (ToF) performance is a very important factor
to improve the image quality in Positron Emission Tomography (PET) reconstruction. Excellent
timing resolution enables direct annihilation photons localization using ToF information without
tomographic reconstruction [6]. Recent studies in timing resolution are mainly about fast
scintillators and Cerenkov emitting materials by using low-noise readout electronics [7, 8]. In
the development of ToF-PET scanners, timing resolution of the PET detector is still being improved
[9–11]. At present, the best Coincidence Timing Resolution (CTR) is about 30 ps Full Width at Half
Maximum (FWHM) when utilizing a Cerenkov detector coupled with a Microchannel Plate
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Photomultiplier (MCP-PMT) [12]. In high energy physics, the ToF
performance also dominates particle identifications in the
spectrometer. In the BESIII, the plastic scintillators serve as the ToF
system [13]. In the AMS-100 proposal, a ToF system is constructed with
small scintillator rods read out by SiPM arrays at both ends. The proposed
ToF system have achieved a time resolution of 50 ps for particle mass
reconstructions [14].

For practical application, it is very challenging to enable the ToF
capability of SiPM arrays or strip SiPMs that comprise so many
detection channels. For signal processing of the SiPM array, one
approach is to use multiplexing network circuit, which consists of
resistor-based [15] and capacitor-based [16] schemes. The number of
readout electronics channels can be reduced in these schemes.
However, contributions of extra RC constant in these schemes will
lower rise time of the SiPM signals, thus degrading the ToF
performance. For readout electronics of the SiPM detectors, Time-
Over-Threshold (TOT) is a commonly used method [17]. In the TOT
method, the timing information can be uniquely determined by
measuring the leading edge of the SiPM signals. Due to non-
linearity between the deposited energy and the digital pulse, it
needs additional corrections in this method. Another approach is
to apply compact Application-Specific Integrated Circuit (ASIC)
design. Compared with regular electronics readout schemes based
on discrete components, the ASIC designs are able to maximize ToF
capability such as NINO ASIC [18], HRFlexToT [19].

In nuclear medicine, the small-size SiPMs, such as those with 3 ×
3 mm2 and 2 × 2 mm2 active area, have been well studied [20–22]. In
high energy physics, however, the large-size SiPMs, such as 6 ×
6 mm2, are more desirable, such as Super Tau-Charm Facility
(STCF) [23] to be constructed in China. In this paper, the timing
performance of radiation detector based on large size SiPM is
evaluated. The evaluation is mainly focused on SiPMs with fast
output terminal. For the purpose of practical application, two kinds
of amplification circuits were designed to amplify the fast timing
signal.

2 Materials

In the evaluation of timing performance, two identical one-to-one
coupling detectors were mounted. Each one had a LYSO crystal bar
with a size of 3 × 3 × 10 mm3 and a SensL J-series SiPM [24] evaluation
board (MicroFJ−SMTPA−60,035) [25]. The evaluation board
provided a standard output for energy and a fast output for timing
pickoff. The crystal was wrapped with Teflon (PTEE) tapes except for
the exit face and coupled to the SiPM window by use of silicon grease.
For the signal observation, an adapter board was designed and
assembled under the evaluation board. The detectors were
mechanically fixed using a designed 3-D printed holder. The SiPM
has an active area of 6.07 × 6.07 mm2 with 35 μ m microcell. The
breakdown voltage of the SiPM is 24 V. To obtain best timing
performance, the CTR values of both detectors at different bias
voltages were measured.

3 Methods

This work mainly focuses on readout method for best timing
performance. The fast output of the SensL J-series SiPM has a

sharp leading edge, giving rise to a better timing performance
compared with the standard output. The evaluation setups
described in the following sections have been applied for timing
pickoff.

3.1 RF transformer based output

The CTR measurement setup is illustrated in Figure 1. In this
system, the timing pickoff was based on the reference readout circuit.
The RF-transformer was applied to decrease the impact of the parasitic
and passive capacitances of the SiPM detector, which facilitated the
extraction of the fast signal components [26, 27]. The adapter board
was designed to directly connect the fast output signal to a 50Ω
terminated oscilloscope for signal observation. The fast output from
the SiPM was used for timing pickoff. The standard output for the
SiPM was also sent to the oscilloscope with a 50Ω termination, which
was for energy calculation. The oscilloscope features a bandwidth of
1 GHz and a sampling rate of 5 GS/s. In the experiment, a Na-22 point
source was applied to irradiate the two detectors. In the oscilloscope, a
logic trigger mode was applied. In the logic trigger, four waveforms
including two energy signals and two timing signals were
simultaneously recoded once when both of the energy signals
passed the thresholds. Note that the timing signals were not used
for event trigger because of their small amplitudes. The trigger
thresholds for both energy signals were identical. The bias voltages
for both SiPMs ranged from 27 V to 32 V, and the trigger thresholds
were 50 mV, 100 mV, 150 mV, 200 mV, 250 mV and 300 mV
respectively. For each bias voltage, we collected 20,000 events.

3.2 Readout circuit based on common-
emitter amplifier

Considering that the fast output has a small output capacitance of
160 pF [24], it will result in a very fast leading edge. However, the
amplitude of the timing signal from a gamma event is less than 15 mV.
In practical application, it is not suitable for the timing pickoff. In
second readout scheme, the timing signal was amplified by a two-stage
amplification circuit. The circuit consisted of two common-emitter
amplifiers generated by discrete components, as illustrated in Figure 2.
A low noise silicon bipolar RF transistor (BFR106, Infineon) with a
maximum 5 GHz frequency was applied to create the CEA circuit.
R1 and R2 were used to provide a bias for the transistor, establishing a
proper operating Q-point. A bypass capacitor C2 was to enhance the
AC gain at high frequency. R3 was for thermal stability by negative
feedback. The gain of the CEA was determined by R4. In between, the
two CEAs were coupled with a 100 nF capacitor. The fast output of the
SiPM was directly fed to input of the CEA circuit with a 50Ω
termination. The output of two-stage CEA circuit was directly sent
to the oscilloscope with a 50Ω termination. Overall, the gain of the
two-stage CEA circuit was about 70.

3.3 Readout circuit based on RF amplifier

The last readout scheme is similar with the CEA. The timing signal
was amplified by two high speed Minicircuits MAR-6+ RF amplifiers,
as illustrated in Figure 3. Both amplifiers were cascaded for signal
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amplification before timing pickoff. The commercial amplifier was a
wideband amplifier offering high dynamic range from DC to 2 GHz。
The cascaded structure provided a very high gain for small signals. The

RF amplifier needed an external bias resistor. In our experimental
setup, the resistor was 150Ω. After measurements, the overall gain of
the two-stage RF amplification circuit was about 60.

FIGURE 1
Experimental setup (A) and photograph (B) for timing evaluation.

FIGURE 2
Schematic (A) and photograph (B) of two-stage common-emitter amplification circuit.
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3.4 Signal processing

Figure 4 shows a typical example of the acquired waveforms by the
oscilloscope, including the energy and timing signals of the two
detectors (Det1 and Det2). Here we show the timing signal output

based on the RF amplifier. The waveforms on the oscilloscope were
sent to a PC via USB interface and recorded via MATLAB software
with TekVISA driver. Totally, three kinds of experiments based on RF-
transformer, CEA circuit and RF amplifier were carried out. For each
experiment, totally 20,000 events were recorded.

With the recorded waveforms, we firstly made the baseline
correction, that was, subtracting the mean baseline value at first
200 sample point. The energy was the integration of all data point
from energy signals. In the meantime, we used the timing signal to
determine the CTR. Picking off the leading edge of the timing
waveform, we performed a cubic spline interpolation at the rising
edge of the timing signals in 10 ps step. In order to obtain a better
timing performance, different trigger thresholds from 1 mV to 10 mV
in 1 mV step were used. For each threshold, we acquired a histogram
showing the distribution of time difference between Det1 and
Det2 signals for all back-to-back photon events. Additionally, a
400–600 keV energy window was applied to each detector to select
511 keV gamma photons. In the timing distribution, we directly
applied the FWHM of the histogram to represent the CTR.

4 Results

The timing signal waveforms of the three readout schemes are shown
in Figure 5. The recommended readout based on RF transformer resulted
in very small signals. The signals can be amplified by the commercial RF
amplifiers. For the CEA-based schemes, the waveform was a little
distorted. However, it ensured the high gain in high frequency.
Therefore, the optimum timing can be picked off.

FIGURE 3
Schematic (A) and photograph (B) of two-stage amplification
circuit based on minicircuit RF amplifier.

FIGURE 4
Typical waveforms of a coincidence event captured by the oscilloscope.
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Figure 6 shows energy spectra for Det1 and Det2 respectively.
For the energy resolution calculations, a referenced Cs-137 point
source was applied to irradiate the two detectors. Compared with the
energy spectrum irradiated by the Cs-137 source, the evaluated
energy resolutions were 9.41% and 9.38% for the two detectors
respectively.

Figure 7 shows the CTR distributions when scanning the trigger
threshold at different bias voltages. Under each bias voltage, it should
be noted that the CTR degrades with the increased thresholds. From
these timing distributions, one biased at 32 V showed best timing
performance. These experiments are repeated three times. The CTR
value of both coincidence detectors was given by the mean ± standard
deviation of the three measurements. The best CTR value at 32 V
based on the RF transformer-based scheme was 228.3 ± 1.4 ps.
Figure 8 shows a typical CTR spectrum at 2 mV trigger threshold
when biased at 32 V.

Since the best timing result was obtained when biased at 32 V,
the following experiments based on the CEA-based and RF
amplifier-based readout were also carried out at 32 V. Figure 9
was a plot of the CTR results when scanning different trigger
thresholds. The CTR distribution for the CEA-based readout
scheme was relatively uniform. The best FWHM CTR values
were 235.4 ± 1.1 ps at 24 mV threshold for the CEA-based
readout and 231.1 ± 1.5 ps at 14 mV threshold for the RF
amplifier-based readout, respectively. Figure 10 shows typical
CTR spectra for both readout schemes.

4 Discussions

In this work, we have evaluated and compared the CTR values
of three different timing readout schemes for two 3 × 3 × 10 mm3

FIGURE 5
Typical timing waveforms in three experiments based on transformer-based readout (A), CEA-based readout and RF amplifier-based readout (B)
schemes.

FIGURE 6
Typical energy spectra for Det1 and Det2 respectively.

FIGURE 7
FWHM CTR results by scanning trigger thresholds when the SiPMs
are biased at different voltages.
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LYSO crystals coupled with a 6 × 6 mm2 SiPM detector
respectively. The timing readout configurations were based on
RF transformer-based, CEA-based and RF amplifier-based circuits
respectively. From our measurements, the optimum timing can be
obtained at 32 V bias voltage. Scanning the trigger thresholds, the
best FWHM CTR values were 228.3 ± 1.4 ps, 235.4 ± 1.1 ps and
231.1 ± 1.5 ps for the RF transformer-based, the CEA-based and
RF amplifier-based readout respectively. Although we can obtain a
good CTR performance under the RF transformer-based readout,
it is not practical for multi-channel, high-density readout
electronics system where one can not set 1 mV trigger
threshold because it is very sensitive to the noise level. The best
way is to amplify the timing signals. From our studies, the
amplified timing signal retained the fast leading edge in the
CEA-based and RF amplifier-based schemes. In comparison,
the CTR distribution in the CEA-based scheme is more
uniform than that in the RF amplifier-based scheme. In
practical multi-channel readout electronics system, it is better
to set a unified trigger threshold under the condition of the
optimum timing performance.

In the three readout schemes, the RF transformer is a passive
component. The power consumption for the RF transformer-based
circuit can be negligible. In normal operation, a 6-V power supply
(223A-30-3, Tektronix) was applied on the CEA-based and RF
amplifier-based circuits. 18 mA and 16 mA current were observed
for the CEA-based and RF amplifier-based circuits respectively.
Although the power consumptions were a little large, the number
of timing channels is generally far less than that of the signal readout
electronics. It is acceptable for practical SiPM-based detector system.
One needs to make a trade-off when choosing the number of the
timing signals in whole readout system.

There have four factors that affect the total timing performance in
the experiment in terms of intrinsic timing performance of the
instrumentation, scintillation statistics of the scintillator, SiPM
technology itself and signal readout method. Firstly, from the
perspective of the instrumentation, the oscilloscope we used had a
bandwidth of 1 GHz and a sampling rate of 5 GS/s. Splitting the fast
output of the SiPM into two identical signals, the intrinsic timing
performance of the oscilloscope was measured, as shown in Figure 11.
The intrinsic CTR value was 116.0 ps. Deconvolving the contribution
of intrinsic timing performance of the instrumentation to the CTR, the

FIGURE 8
The CTR spectrum at 2 mV threshold based on the RF transformer-
based scheme.

FIGURE 9
CTR distributions at different trigger thresholds based on CEA-
based and RF amplifier-based readout schemes.

FIGURE 10
Best CTR spectra based on CEA-based (A) and RF amplifier-based (B) readout schemes.
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best FWHMCTR value for the RF transformer-based readout method
became 196.6 ps, which was a little better than the results in [28] where
it showed a 203 ps CTR value when two 3 × 3 × 20 mm3 LYSO crystals
were coupled with 3 × 3 mm2 SiPMs. Although many ToF
measurement experiments with multiplexed SiPM [29–32] had
proven the importance of reducing capacitance in the readout
electronics path, and the output capacitance (160 pF) of the 6 ×
6 mm2 SiPM at fast output end is four times larger than that
(40 pF) of the 3 × 3 mm2 SiPM, the contribution to rise time of
SiPM output signal should be negligible because the sense resistor RS

of the 6 × 6 mm2 SiPM is five times smaller than that of the 3 ×
3 mm2 SiPM.

From the perspective of scintillation statistics in the crystal, the
CTR is related to the scintillation decay time (τd), the scintillation rise
time (τr) and the number of detected photons n), i.e.
CTR∝

��������

τd × τr/n
√

[8, 33–35]. Lowering τd and τr can extremely
increase the CTR performance. In practical applications, imperfect
light collection efficiency of initially emitted scintillation lights (n)
limits the achievable timing performance. However, Enhanced
Specular Reflectors (ESRs) can increase light collection efficiency in
the end-coupled configuration, both energy resolution and timing
resolution can be further improved in comparison with the Teflon-
based wrapper [36]. Additionally, the side-coupled configuration [37]
between the scintillator and the SiPM provides not only excellent light
collection efficiency but also low photon transit time jitter. In this kind
of coupling configuration, the lateral surface of the crystal is directly
coupled to the multiple SiPMs. About 100 ps CTR can be obtained
when using an array of 4 × 4 mm2 SiPMs [38]. With the ESR wrapper,
the timing performance can be further enhanced for our experiment.

From the perspective of SiPM technology itself, the novel Near
Ultraviolet (NUV) SiPM from FBK provides a lower-afterpulse (Low-
AP) substrate and a lower electric field (Low-F) feature in comparison
with the SiPMs from Hamamatsu and SensL. The low-AP substrate
can achieve an improvement of the CTR of about 30 ps [39]. Coupling
a 3 × 3 × 5 m3 LYSO crystal to a 4 × 4 m2 NUV SiPM, an excellent CTR
value of 130 ps can be reached.

Last but not least, from the perspective of the readout method,
the time resolution in the electronics path can be given by σtiming �

σn
(dV/dt) where σn and dV/dt are the electronics noise and slew rate of
the signals respectively. Electronics noise mainly originates from
the thermal noise of the discrete components and 1/f noise from the
parasitic capacitance in the electronics circuit [40], which has clear
physics limits and is hard to be considerably improved. By
increasing the signal amplitude V and decreasing the rise time
(τr) of the signal, the slew rate can be enhanced. Hence, the
electronics timing jitter can be further improved. In this work,
we utilized the very fast signal of the SiPM, i.e., the fast output. In
order to achieve a high slew rate, two different high-frequency
amplification circuits were designed and evaluated. The CEA-based
amplification circuit showed a better uniformity with increasing
the trigger thresholds. However, the electronics noise (σn) was also
amplified in the single-ended readout method, which had a limit
for the best time resolution. More efficient way should be the
differential signal readout prior to the high-frequency
amplification, which doubled amplitude of the signal and
suppressed common noise [8]. With the differential readout
method, a 98 ± 2 FWHM CTR can be obtained when a long
LSO:Ce:0.2%Ca 2 × 2 × 20 mm3 crystal was coupled to a 4 ×
4 mm2 FBK NUV-HD SiPMs.

For future work, we plan to glue ESRs outside the LYSO crystal
except for the exit face. It can raise the number of scintillation
lights that the SiPMs receive. It should contribute to the leading
edge of the timing signals. In addition, we will construct a ToF
PET detector including a SiPM array and a LYSO array. Multiple
6 × 6 mm2 SiPMs will be designed to form the SiPM array, which is
used to read out the 2 × 2 mm2 LYSO array. The LYSO array
consists of many 2 × 2 × 10 mm3 LYSO bars. The LYSO array is
directly 9-to-1 coupled with the SiPM array. Consequently, we
will further improve the CTR performance of the ToF PET
detectors constructed with 6 × 6 mm2 SiPM. The other
experiment is for detector verification of the STCF experiment
[41]. In the STCF, plastic scintillators work as ToF detectors. We

FIGURE 11
Intrinsic CTR spectrum of the oscilloscope.
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plan to apply 6 × 6 mm2 SiPM to study the timing performance of
the scintillation detector with a dual-end readout.

5 Conclusion

In summary, we evaluated the timing performance of both
detectors based on large-size SiPMs using three different readout
circuit. The best CTR value can be obtained at 32 V bias voltage when
using RF transformer-based readout scheme for timing signal
processing. The CTR distribution for the CEA-based readout
scheme was relatively uniform. For practical application, the
amplified timing signal based on the CEA circuit is more desirable
because it is more feasible for trigger threshold selection in multi-
channel readout electronics system.
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